авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 9 |

«База нормативной документации: А.А. Афанасьев, Е.П. Матвеев РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ Часть I Технологии восстановления эксплуатационной надежности жилых зданий ...»

-- [ Страница 2 ] --

База нормативной документации: www.complexdoc.ru § 1.7. Условия продления жизненного цикла зданий Оптимизация продолжительности жизненного цикла жилых и зданий инфраструктуры является производной целесообразных границ реконструкции, модернизации и ремонта.

В зависимости от степени соответствия функциональным и техническим требованиям они могут быть разделены на 4 группы.

I - объекты, полностью отвечающие современным жилищным стандартам.

II - объекты, требующие перепланировки основных и вспомогательных помещений путем модернизации или реконструкции здания в целом.

III - объекты, требующие больших объемов ремонтно восстановительных работ и реконструкции.

IV - объекты, уровень износа конструктивных элементов которых таков, что они не подлежат реконструкции или модернизации.

С точки зрения затрат, капитальность работ восстанавливающего и поддерживающего характера составляет до 5 % оценочной стоимости объекта для первой группы;

5-10 % для второй;

до 50 % для третьей группы. При этом ориентировочный срок эксплуатации объектов продляется на 30-50 лет.

Классификация объектов по степени физического и морального износа свидетельствует о необходимости планомерного проведения ремонтно-восстановительных работ начиная с эксплуатации построенного здания. Длительные перерывы приводят к значительному уровню затрат на восстановление требуемых эксплуатационных характеристик, а при увеличении межремонтного срока - к аварийным ситуациям.

На рис. 1.13 приведены графические зависимости уровня надежности и физического состояния жилых объектов для различных периодов восстановительных работ.

База нормативной документации: www.complexdoc.ru Рис. 1.13. Изменение уровня эксплуатационной надежности жилых зданий 1 - при выполнении плановых ремонтно-восстановительных работ;

2 - при выполнении восстановительных работ для зданий с низким уровнем эксплуатационной надежности;

3 - при отсутствии или эпизодических этапах восстановительных работ;

4 - интенсивное снижение эксплуатационной надежности при воздействии техногенных процессов При соблюдении плановых и текущих ремонтов (кривая 1) жизненный цикл зданий увеличивается, достигая параметров морального износа с сохранением физико-механических характеристик, определяющих эксплуатационную надежность.

Перерывы в восстановительных работах (кривая 2) существенно снижают общий жизненный цикл зданий, а для их восстановления требуются значительные затраты, в т. ч. производство работ с отселением жильцов.

При длительном отсутствии ремонтно-восстановительных работ наступление критической фазы, характеризуемой потерей несущей способности конструктивных элементов, существенно снижает жизненный цикл и само существование объекта.

Влияние техногенных процессов, отклонений режима эксплуатации, скрытые дефекты, вызванные нарушением технологии производства работ, также приводят к снижению жизненного цикла.

База нормативной документации: www.complexdoc.ru В этих случаях прогноз долговечности зданий основывается на оценке вероятностно-статистических моделей с использованием данных мониторинга состояния несущих, ограждающих конструкций и инженерного оборудования.

Данные исследований по оценке несущей способности конструктивных элементов крупнопанельного домостроения свидетельствуют о повышении их несущей способности вследствие длительного процесса гидратации цемента. Несмотря на это, недопустимые деформации зданий могут возникнуть от преждевременного износа и аварийных ситуаций сетей водопровода и канализации, когда интенсивное замачивание основания фундаментов приводит к потере устойчивости здания в целом. Несвоевременный ремонт и восстановление сетей, как правило, приводят к ситуациям, когда стоимость восстановительных работ конструктивных элементов здания в сотни раз превышает затраты на поддержание сетей.

Особенно при оценке надежности жилых зданий и методов их восстановления это относится к ремонтам, где повышен уровень сейсмичности, имеются процессы подтопления территорий, интенсивного развития карстовых образований, увеличения динамических нагрузок от транспорта и др.

Снижение жизненного цикла зданий связано с производством работ по уплотнению застройки, возведению заглубленных частей зданий и сооружений вблизи существующих. Как правило, использование технологий, нарушающих сплошность грунтового основания зданий, динамические нагрузки при забивке свай, изменение гидрогеологического режима в результате устройства противофильтрационных завес и водопонижения, прокладка трубопроводов глубокого заложения без необходимого крепления стенок приводят к изменению устойчивости зданий вследствие дополнительных неравномерных осадок фундаментов.

Очевидно, что сохранение жилищного фонда, повышение энергоэффективности зданий, модернизация и реконструкция застройки для средних и малых городов являются единственным путем предотвращения лавинообразного выхода из эксплуатации значительной части жилых зданий и системы инфраструктуры.

Задержка в решении этого вопроса существенно повышает затратный механизм восстановительных работ и создает социальную напряженность ремонтов.

База нормативной документации: www.complexdoc.ru Для планирования и управления этими процессами необходимы проведение инвентаризации жилого фонда на предмет оценки физического и морального износа зданий, разработки долгосрочных программ по повышению эксплуатационной надежности зданий, восстановления энергосистем как наиболее изношенных элементов, способствующих созданию критических ситуаций, особенно в зимний период.

§ 1.8. Основные положения по реконструкции жилых зданий различных периодов постройки Для построек различных периодов строительства требуется индивидуальный подход в разработке методов и технологий их реконструкции. При этом в основе процесса должно быть заложено не отдельно стоящее здание, а их комплекс - группа зданий, квартал или микрорайон. Это позволяет осуществить комплексную оценку градостроительной ситуации и принять наиболее рациональные решения, отвечающие современным условиям и обеспечивающие логическую связь различных архитектурных течений. При этом возможны варианты уплотнения и разуплотнения застройки, рационального использования межквартального, подземного пространства и систем коммуникации.

Повышение коммерческой стоимости земли в центральных частях городов приводит к необходимости уплотнения застройки, приемы которой позволяют осуществить эти решения при одновременных сносе и расширении межквартального пространства.

Застройка разных периодов имеет свои особенности, что приводит к многообразию вариантных решений, эффективность которых может быть оценена сложившейся ситуацией и потребительским спросом.

Переход от общих градостроительных задач к частным (на уровне реконструируемого объекта) требует учета факторов технического состояния, в том числе степени износа конструкций, состояния основных несущих и ограждающих элементов, архитектурно-планировочных решений реконструируемого здания, инженерных сетей и коммуникаций.

База нормативной документации: www.complexdoc.ru Эстетические задачи связаны с необходимостью внесения новых элементов повышенной художественной и культурной ценности застройки.

На уровне принятия решения при рассмотрении реконструируемого объекта в градостроительной системе требуется владение информацией, существенно влияющей на оценку затрат по восстановлению несущей способности, повышению капитальности и компенсации затрат путем увеличения объема, перепрофилирования объектов и создания более высоких комфортных условий.

Как правило, здания жилого фонда ранних периодов постройки имеют различные уровень капитальности конструктивных элементов и сроки их безотказной работы. Для периода до 40-х гг.

характерно применение деревянных перекрытий, долговечность которых существенно ниже ограждающих конструкций, выполненных в кирпиче. Переход на массовое использование железобетонных конструкций повысил долговечность перекрытий, но снизились характеристики ограждающих конструкций, их надежность и долговечность. Существенно претерпели изменения принципы формирования объемно-планировочных решений зданий, снизив комфортность квартир.

Для большинства жилых зданий старой постройки их реконструкция состоит в частичном или полном перепрофилировании, создании объемно-планировочных решений, исключающих коммунальное заселение, рациональном использовании первых этажей под различные административные, коммерческие и производственные нужды.

Особое значение приобретает реконструкция жилых зданий старой постройки с увеличением их строительного объема путем надстройки этажей, расширения корпусов, устройства различных вставок и т.п.

При сохранении функций здания их реконструкция должна быть основана на принципах укрупнения при формировании архитектурно-планировочных объемов из несменяемых конструкций. Такой технический прием позволяет повысить гибкость планировочных решений на любом этапе эксплуатации и осуществить перепланировку помещений в зависимости от динамики роста семьи, социального уровня жильцов, экономического состояния владельца квартиры.

База нормативной документации: www.complexdoc.ru Что касается жилого фонда первых и последующих массовых серий, то в основе концепции реконструкции должны быть заложены принципы и технические решения, обеспечивающие снижение физического и морального износа зданий, повышение долговечности, комфортности проживания и снижение эксплуатационных затрат.

При этом одной из важных задач является решение социальных вопросов путем создания инфраструктуры, учета интересов различных слоев населения, обеспечения экологически здоровой среды обитания.

Опыт обновления жилых домов первых массовых серий по результатам проектных разработок и их практической реализации можно разделить на несколько уровней в зависимости от степени сложности:

без изменения типового проектного решения жилого здания с выполнением реконструктивных работ по восстановлению надежности несущих конструкций и повышению эксплуатационных качеств;

без изменения типового проектного решения, но с частичной перепланировкой путем ликвидации проходных комнат с восстановлением эксплуатационных качеств здания;

с изменением структуры квартир без увеличения строительного объема здания путем объединения квартир в пределах секции и их перепланировки;

с изменением структуры квартир путем увеличения объема здания за счет пристройки объемов и надстройки мансардного этажа, устройство квартир в двух уровнях;

с изменением структуры квартир путем увеличения объема здания за счет расширения корпуса и надстройки несколькими этажами.

При выполнении работ по модернизации и реконструкции жилых зданий особое внимание должно уделяться повышению эксплуатационных характеристик и в первую очередь снижению энергопотребления за счет повышения теплотехнических параметров ограждающих конструкций. Эти требования распространяются на здания старого жилого фонда, жилых домов первых и последующих массовых серий.

База нормативной документации: www.complexdoc.ru Модернизация жилых зданий без изменения строительного объема не требует значительных материальных и энергетических затрат и составляет 25-40 % восстановительной стоимости жилого дома. При изменении структуры квартир - 35-50 %.

Реконструкция жилых зданий с увеличением строительного объема имеет возможность удовлетворения практически любых демографических требований при достаточно высоком уровне комфортности жилья. Эта форма реконструкции наиболее затратна и, как правило, требует проведения работ с отселением жильцов, что возможно при соответствующем инвестировании проектов.

При реконструкции зданий с надстройкой эффективность решений существенно повышается. Так, при устройстве мансардных этажей стоимость работ не превышает 40-50 % нового строительства, а возведение дополнительных этажей снижает себестоимость единицы площадей на 25-30 %.

Рассмотренные концептуальные положения отражают и определяют взаимосвязи комплексного процесса, направлены на механизм принятия оптимальных решений, что в условиях рыночной экономики оценивается надежностью инвестиционных проектов и их рентабельностью.

База нормативной документации: www.complexdoc.ru ГЛАВА ИНЖЕНЕРНЫЕ МЕТОДЫ ДИАГНОСТИКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ ЗДАНИЙ § 2.1. Общие положения Здания и сооружения представляют собой сложные строительные системы, состоящие из ряда конструктивных элементов, объединенных с помощью различных стыковых соединений. Особенностью таких систем является то обстоятельство, что их эксплуатационные качества и в первую очередь долговечность разнородны и зависят от таких же качеств составляющих их элементов, а также связей между ними. В результате неадекватности воздействия внешней среды, внутренних технологических и эксплуатационных процессов в различных конструктивных элементах возникают напряжения и деформации, способствующие процессам разрушения.

Разрушение нагруженных конструкций проходит три стадии:

стадию зарождения трещин в местах концентрации напряжений и образования различных дефектов, стадию медленного их развития и стадию лавинообразного разрушения при достижении критических напряжений и деформаций.

Начало разрушения обусловливается неблагоприятным сочетанием ряда факторов внешнего и внутреннего воздействий.

Возникновение одних дефектов носит случайный характер, других - обусловлено организационными и технологическими причинами.

Выявлением дефектов и воздействиями на них возможно существенно повысить качество зданий, эксплуатационную надежность, продлить их долговечность. При этом большое База нормативной документации: www.complexdoc.ru значение приобретают инженерные методы диагностики технического состояния зданий и конструктивных элементов.

Анализ причин повреждений элементов зданий позволяет выделить четыре группы факторов, степень влияния которых в каждом конкретном случае может быть различной по интенсивности воздействия (табл. 2.1).

Таблица 2. Классификация повреждений конструктивных элементов зданий Воздействие внутренних факторов включает природные и искусственные. К природным факторам следует отнести атмосферные, климатические, грунтовые, биологические и сейсмические воздействия. Из группы факторов следует выделить атмосферные, биологические и грунтовые условия, влияние которых в последние десятилетия заметно активизировалось.

В частности, наличие выбросов и загрязнений химическими соединениями атмосферы городов приводит к непрогнозируемым воздействиям, разрушающим ограждающие конструкции, кровли и другие конструктивные элементы. Широкая гамма химических соединений вступает в реакцию с материалом конструкций и способствует возникновению новообразований, нарушающих База нормативной документации: www.complexdoc.ru структурно-механические свойства и существенно снижающих долговечность конструктивных элементов. Особой опасности при этом подвержены композиционные строительные материалы с наличием полимерных материалов и соединений.

Опыт эксплуатации городских территорий показал, что ликвидация естественных насыпей, выемок и активное вмешательство в изменение естественного ландшафта приводят к изменениям геологического характера: повышению уровня грунтовых вод, карстовых образований, нарушениям физико механических характеристик оснований зданий и другим негативным явлениям.

Воздействие технологических факторов проявляется в результате повышения агрессивности сред, технологических загрязнений и механических воздействий. При этом агрессивными могут быть как атмосферные, так и грунтовые среды. Особое значение приобретают загрязнения грунтового основания и распространение их в результате миграции атмосферных и грунтовых вод. Так, при утечке технологических загрязнений промышленного комплекса последние попадают в грунтовые воды и распространяются на значительные площади, включая и зону жилых зданий. В результате этого, казалось бы, в удаленном от источников загрязнений районе наблюдаются разрушения фундаментов жилых зданий.

Повышение интенсивности транспортных артерий, увеличение грузоподъемности машин и подвижного состава рельсового транспорта приводят к возрастанию воздействий вибрационного и ударного характера. В сочетании с изменившейся структурой грунтов эти воздействия могут принимать весьма опасные размеры. Так, повышение влажности оснований приводит к увеличению скорости распространения колебаний, снижению демпфирующих свойств грунта и в конечном итоге дополнительным динамическим воздействиям на жилые дома. В ряде районов РФ из-за высокой активности техногенных процессов повысился уровень сейсмичности, что требует не только пересмотра норм на новое строительство, но и незамедлительного принятия мер по усилению существующих зданий с целью повышения уровня надежности.

Проявление дефектов при проектировании и технологии производства работ приводит к снижению долговечности и несущей способности зданий. Наиболее часто возникновение дефектов связано с нарушениями технологических регламентов База нормативной документации: www.complexdoc.ru производства работ на стадиях возведения нулевого цикла, надземной части, устройства кровли, производства отделочных работ и т.п. Вероятность возникновения значительных дефектов повышается при производстве работ при отрицательных температурах, стесненных условиях, отсутствии инструментального контроля со стороны заказчика и инвесторов.

Нарушение режима эксплуатации зданий является одной из главных причин преждевременного возникновения дефектов в конструктивных элементах зданий. Наличие протечек кровли приводит к замоканию и размораживанию элементов стенового ограждения, перекрытий, балконных плит, козырьков и других выступающих элементов. Протечки, связанные с авариями системы водоснабжения или канализации, приводят к переувлажнению основания, размыву подошвы фундаментов, что нередко приводит к потере устойчивости здания, вызванной неравномерными осадками.

Нарушение температурно-влажностного режима эксплуатации зданий является причиной снижения эксплуатационной надежности ограждающих конструкций и изменения физико механических характеристик материала конструкций.

Это далеко не полный перечень факторов и причин, вызывающих повреждения, которые приводят к возникновению дефектов трех категорий. I категория - приводящая к аварийному состоянию здания;

II - возникновению повреждений, снижающих несущую способность и эксплуатационную надежность зданий;

III повреждения, не снижающие несущую способность конструкций и легко ликвидируемые при ремонте.

Уровень и значимость повреждений возможно оценить, используя инженерные методы диагностики. Комплекс исследований позволяет получить полное представление о состоянии конструктивных элементов, что является основой для оценки остаточной долговечности зданий, требуемого объема восстановительных работ и методов реконструкции [65].

§ 2.2. Физический и моральный износ зданий С момента введения здания в эксплуатацию все элементы и конструкции постепенно снижают свои качества. Эти изменения База нормативной документации: www.complexdoc.ru являются следствием воздействия многих физико-механических и химических факторов. К наиболее важным из них относятся:

неоднородность материалов;

напряжения, вызывающие микротрещины в материале;

попеременное увлажнение и высушивание;

периодические замораживания и оттаивания;

высокий температурный градиент, приводящий к неоднородным деформациям и разрушениям структуры материала;

химическое воздействие кислот и солей;

коррозия металла;

загнивание древесины и т.п. При этом интенсивность протекания процессов колеблется в достаточно широких пределах и является следствием экологического состояния окружающей среды, уровнем технической эксплуатации, капитальности зданий и качества выполнения строительно-монтажных работ.

Надежность и долговечность конструкций зависят от интенсивности разрушительных процессов. Основной характеристикой зданий является долговечность. Под этим термином понимают такой расчетный срок службы, в течение которого материал или конструкция сохраняют свои свойства и заданные характеристики. Под физическим износом конструкций и зданий подразумевается ухудшение технического состояния, приводящее к потере прочностных, эксплуатационных и других качеств.

Величина физического износа - это количественная оценка технического состояния, показывающая долю ущерба по сравнению с первоначальным состоянием технических и эксплуатационных свойств конструкций и здания в целом.

Прогнозирование износа - сложная многофакторная задача. В связи с наличием в здании огромного количества разнопрочных и разнодолговечных конструкций и материалов нереально спрогнозировать весь срок его службы как сочетание сроков службы каждого элемента в отдельности.

Теоретически предполагается, что физический износ здания со временем увеличивается (рис. 2.1, кривая 1). Фактически, по результатам натурных обследований, параметры физического износа менее интенсивны (кривая 2) в результате поддержания элементов здания в нормальном техническом состоянии и могут периодически снижаться (кривая 3) при выполнении ремонтных сроков эксплуатации зданий.

База нормативной документации: www.complexdoc.ru Рис. 2.1. Изменение физического износа зданий 1 - по данным С.К. Балашова;

2 - по статистическим данным;

3 при выполнении ремонтно-восстановительных работ Вообще ремонту должны подвергаться только сменяемые конструкции, срок службы которых менее нормативного срока службы несменяемых конструкций. В свою очередь, несменяемые конструкции при наличии физического износа должны подвергаться регенерации, т.е. процессам, обеспечивающим восстановление несущей и эксплуатационной способности. В результате использования новых материалов и технологий восстановительные работы могут существенно повысить уровень надежности и долговечности конструкций и здания в целом.

Результаты обследований показывают, что износ зданий и отдельных его элементов происходит более интенсивно в первые 20-30 лет эксплуатации и после 90-100 лет. Анализ развития физического износа конструктивных элементов свидетельствует, что срок службы зданий существенно превышает усредненные и нормативные значения. Данные позволяют сделать вывод, что здания II группы капитальности, уцелевшие и просуществовавшие 70 лет и имеющие при этом износ 40 %, как бы стабилизируются и их дальнейшее существование остается без заметных изменений в условиях нормальной эксплуатации.

В зависимости от капитальности нормами определены усредненные сроки службы конструкций в годах.

База нормативной документации: www.complexdoc.ru I группа II III группа группа Фундаменты.............. 150 125 Стены......................... 150 125 Перекрытия............... 150 100 Опыт эксплуатации зданий показывает, что технический срок службы превышает нормативные значения, которые являются в некотором смысле условными. Об этом свидетельствуют различные нормативные сроки для одинаковых конструкций различных стран. Так, расчетный срок службы фундаментов в Венгрии и Бельгии составляет 150, Франции - 100, Швеции - 80 лет.

Физический износ конструкций связан прежде всего со старением материалов и изменением условий эксплуатации.

Снижение физико-механических характеристик материала в результате старения соответствует плавному изменению степени износа, в то время как изменение условий эксплуатации и внешних воздействий способствует более резкой и скачкообразной интенсивности износа.

На рис. 2.2 приведены данные по физическому износу фундаментов жилых домов старой постройки за период более лет. При этом установлены области интенсивного износа, связанные с возрастанием динамических нагрузок от транспортных средств, а также вызванные техногенными процессами.

База нормативной документации: www.complexdoc.ru Рис. 2.2. Интенсивность износа фундаментов 1 - при нормальной эксплуатации здания;

2 - при изменении внешних воздействий;

3 - при возрастании внешних нагрузок;

4 при замачивании фундаментов (аварийные ситуации) Статистическая обработка результатов исследований зависимости процента износа от продолжительности эксплуатации зданий первых массовых серий показала, что интенсивность старения зависит от конструктивной схемы, применяемых материалов и конструкций, а также от характера эксплуатации и планомерности проведения ремонтных работ. Так, для зданий со стенами из кирпича и железобетонными перекрытиями период времени до постановки на капитальный ремонт составляет 15- лет, до проведения текущего ремонта - 3-5 лет.

Отсутствие текущего и капитального ремонтов характеризуется кривыми износа 1,3 (рис. 2.3), а при соблюдении правил и технических условий эксплуатации - кривой 2.

База нормативной документации: www.complexdoc.ru Рис. 2.3. Зависимости износа жилых зданий от продолжительности эксплуатации 1 - крупнопанельные с внутренними несущими стенами и наружными однослойными панелями из легких бетонов;

2 - здания с кирпичными стенами и железобетонными перекрытиями;

3 крупнопанельные с наружными многослойными стенами Жизненный цикл зданий возможно повысить при выполнении элементарных требований по их эксплуатации.

Оценка степени износа конструктивных элементов, их несущей способности и ограждающих функций является достаточно сложной и трудоемкой задачей и требует инженерных методов диагностики.

Физический износ оценивается, как правило, методом натурных обследований.

Оценка степени физического износа по общей характеристике технического состояния приведена в таблице 2.2.

Рассматриваются четыре степени физического износа и примерная стоимость восстановительных работ. Несвоевременное восстановление несущей способности конструктивных элементов, как правило, приводит к росту стоимости восстановительных работ, иногда превышающей стоимость самих конструкций.

Таблица 2. База нормативной документации: www.complexdoc.ru Оценка степени физического износа по материалам визуального и инструментального обследования Примерная стоимость Физический Оценка технического Общая характеристика работ, % износ, % состояния технического состояния стоимости конструктивных элементов 0-20 Хорошее Повреждений и До превышающих деформаций нет.

Имеются отдельные дефекты, устраняемые ремонтом 21-40 Удовлетворительное Конструктивные 15- элементы пригодны для эксплуатации, но требуют ремонта 41-60 Неудовлетворительное Эксплуатация 40- конструкций возможна при условии восстановительных работ 61-80 Плохое Состояние 90- конструктивных элементов аварийное.

Необходимы меры безопасности и полная замена конструкций Экономическая целесообразность реконструкции жилых зданий может быть установлена путем сравнения расходов на реконструкцию с затратами на строительство нового здания такой же площади с учетом сроков дальнейшей эксплуатации.

База нормативной документации: www.complexdoc.ru Моральный износ зданий - это устаревание со временем типов, параметров и объемно-планировочных решений зданий, их оборудования и отделки, художественно-стилевых особенностей архитектуры и внешнего облика зданий в связи с изменением представлений общества. Категория морального износа зданий включает прежде всего изменившиеся со временем нормы и представления об условиях проживания различных слоев населения. Это обстоятельство привело к разработке нормативов, являющихся обязательными при проектировании жилых зданий.

Рассматривая систему морального износа в динамике, следует отметить несколько фаз развития нормативной базы жилищного строительства. К основным показателям, существенно влияющим на моральный износ зданий, следует отнести объемно планировочные решения и, в частности, площадь нежилых помещений - кухни, санитарного узла, подсобных помещений, наличие инженерного оборудования - мусоропровода, лифта и т.п.

Немаловажное воздействие на показатель морального износа оказывают факторы архитектурно-планировочных решений:

высота этажа, соотношение размеров комнат, общая площадь квартир, объем помещений, приходящийся на одного жильца.

Анализ данных периода индустриального строительства показывает, что большая часть построенного жилищного фонда за период с конца 50-х до начала 90-х годов является морально устаревшей, не отвечающей современным нормативам.

Характерными чертами возведенных зданий первого периода индустриализации являются исключительно малые площади кухонь (4-6 м2), наличие совмещенных санитарно-технических узлов, практически отсутствуют прихожие и холлы, а высота этажа составляет 2,5-2,6 м.

Второй период индустриализации связан с широким использованием крупноблочного и панельного строительства зданий высотой 9-12 этажей. Для жилищного фонда этой категории характерно некоторое улучшение архитектурно планировочных решений за счет применения строительных систем с более широким шагом внутренних стен. Это позволило формировать квартиры с большей площадью, однако размеры подсобных помещений, кухонь и прихожих получили незначительное увеличение, не обеспечивающее размещение современного оборудования (посудомоечные и стиральные машины, встроенные холодильники и др.).

База нормативной документации: www.complexdoc.ru § 2.3. Методы обследования состояния зданий и конструкций Обследование зданий является важнейшей частью комплекса работ по оценке их технического состояния с целью принятия решений по их реконструкции, модернизации или ремонту.

Основная цель диагностики технического состояния зданий заключается в установлении фактической несущей способности и эксплуатационной надежности строительных конструкций.

Полученные данные используются при разработке проектов реконструкции.

Оценка физико-механических и технических характеристик конструктивных элементов и здания в целом как сложной строительной системы включает: оценку общих и местных деформаций, состояние основания, фундаментов, несущих и ограждающих конструкций, кровли и т.д.

Конечным результатом обследования является оценка физического состояния конструкций и здания в целом.

Немаловажная роль при этом отводится ликвидации причинных факторов износа конструкций.

Работа по обследованию выполняется в два этапа.

I - предварительное, или общее обследование. Осуществляется путем визуального осмотра здания и его конструкций, ознакомления с технической документацией и другими материалами, помогающими составить более полное представление об объекте. Осмотром должны быть выявлены участки и отдельные конструкции, имеющие максимальные повреждения. На этом этапе должны быть приняты меры по временному усилению конструкций.

В результате изучения проектной документации должны быть установлены: период строительства, время проведения капитальных ремонтов, изменения режимов эксплуатации, даты возможных аварий, связанных с затоплением фундаментов или подвальной части, подъемом уровня грунтовых вод и т.п. Изучение архитектурно-строительных, конструкторских, инженерных сетей и коммуникаций и других рабочих чертежей позволит сделать предварительный вывод о расчетных и фактических нагрузках и База нормативной документации: www.complexdoc.ru воздействиях, инженерно-геологических условиях строительства и особенностях эксплуатации зданий.

Для более полного представления о состоянии объекта должны быть использованы дополнительные материалы: акты сдачи объекта в эксплуатацию, акты на скрытые работы, журналы производства работ, документация о проведенных ремонтно восстановительных работах и т.п.

В случае частичного или полного отсутствия проектной документации необходимо выполнить натурные обмеры конструкций и восстановить чертежи здания. При этом в процессе обмерочных работ устанавливаются конструктивная схема, размеры сечений несущих и ограждающих конструкций, положение конструкций в пространстве с привязкой к координатным осям и отметкам. При этом необходимо определить деформации конструкций, условия опирания, конструкции узлов и их состояние, имеющиеся дефекты несущих и ограждающих конструкций.

По результатам предварительного обследования проводится ориентировочная оценка технического состояния здания и намечается программа детального обследования.

II - детальное обследование. Проводится с целью сбора достоверных сведений для оценки технического состояния конструкций. В результате обследования устанавливают их положение в плане и по высоте, определяют сечение несущих элементов, осадок, смещений и других отклонений от проекта.

Систематизируются дефекты и повреждения конструкций, узлов и сопряжений. Уточняются сведения об эксплуатационной среде, устанавливается величина статических и динамических нагрузок, действующих на основание фундамента, основные несущие конструкции. Уточняются расчетные схемы несущих конструкций для выполнения поверочностных расчетов.

Детальное обследование конструкций следует выполнять выборочно или сплошным. Сплошное обследование предполагает проверку всех конструкций, а выборочное - отдельных элементов.

Сплошное обследование осуществляется во всех случаях, когда:

отсутствует техническая документация, обнаружены дефекты конструкций, снижающие их несущую способность, неоднородные свойства материалов конструкций, различные условия нагружения при воздействии неблагоприятных условий эксплуатации.

База нормативной документации: www.complexdoc.ru Если в процессе сплошного обследования обнаружится, что не менее 20 % однотипных конструкций находится в удовлетворительном техническом состоянии, то допускается оставшиеся конструкции обследовать выборочно. Объем выборочно обследуемых элементов должен составлять не менее % однотипных конструкций, но не менее трех.

Особое внимание при детальном обследовании уделяется оценке значений физико-механических характеристик материала ограждающих и несущих конструкций. Она производится методом отбора проб с последующими испытаниями, а также неразрушающими методами.

При проведении детальных обследований должны быть установлены вид и степень агрессивности окружающей среды, колебания уровня грунтовых вод, характер динамических воздействий и природа их возникновения.

На этапе детальных обследований проводятся инженерно геологические изыскания с целью получения более достоверных сведений о состоянии и характере залегающих грунтов, в том числе под подошвой фундаментов, о размерах фундаментов, способах и схемах передачи нагрузок на основание, точности геометрических осей несущих конструкций. Особое внимание уделяется характеру изменения свойств грунтов за период эксплуатации.

Результатом обследования являются: тип фундамента, его форма в плане, размеры и глубина заложения, материал фундамента и его физико-механические характеристики, наличие и состояние гидроизоляции.

Инженерно-геологические изыскания проводят при отсутствии рабочих чертежей фундаментов зданий, исполнительных документов по их возведению, при размещении объектов в сложных инженерно-геологических условиях (на подрабатываемых и подтопляемых территориях, на площадках с большим перепадом высот, при длительной эксплуатации зданий).

Детальное обследование - весьма продолжительный и трудоемкий процесс, поэтому необходимость его проведения должна быть доказана на этапе предварительного обследования.

При выполнении всех видов работ по обследованию конструкций необходима четкая регистрация полученных данных с База нормативной документации: www.complexdoc.ru оформлением актов технического состояния конструкций, материалов, инженерного оборудования.

§ 2.4. Инструментальные средства контроля технического состояния зданий Техническое обследование зданий имеет целью определить физическое состояние конструкций, степень изменения свойств материалов, дефекты конструкций. Оно производится перед реконструкцией, учитывает будущую перепланировку помещений, возможную замену перекрытий, надстройку и другие решения. Это приводит к увеличению постоянных и временных нагрузок.

Поэтому получение наиболее полных данных о фактическом состоянии несущих и ограждающих конструкций с учетом изменения их во времени служит исходным материалом для проектирования реконструктивных работ.

В процессе диагностики и освидетельствования строительных конструкций зданий, для определения физико-механических свойств материалов, геометрических характеристик, прогибов и перемещений, дефектоскопии и т.п. применяют самые разнообразные приборы и оборудование.

Для определения соответствия проектному положению строительных конструкций, включая деформации всех видов, применяются геодезические приборы и приспособления (теодолиты, нивелиры). Для измерения кренов и колебаний зданий применяют оптические лазерные приборы вертикального проецирования.

При обследовании конструкций применяют теодолиты Т2, 2Т5К, нивелиры H1, H05, КОН-007, оптические центровочные приборы ОЦП-2, «Зенит-ОЦГТ», «Зенит-ЛОТ» и др.

Широко используются фототеодолиты различных марок с приспособлениями для обработки данных измерений в виде стереофотограмметрических камер, инженерных фотограмметров, стереокомпараторов и др. Для повышения точности геодезических измерений используются лазерные приборы.

Определение прочностных и деформативных свойств материалов, из которых изготовлены и возведены конструкции База нормативной документации: www.complexdoc.ru зданий, осуществляется методами прямых испытаний образцов.

Несмотря на достаточно высокую трудоемкость этих работ, данный метод позволяет получить более достоверные результаты.

Для извлечения образцов широко используются универсальные кернообразователи с алмазными коронками. Они позволяют получать образцы материала в виде цилиндров при различном расположении конструкций. В результате механических испытаний определяются: прочность, плотность, водонепроницаемость и другие физико-механические характеристики.

Для получения требуемой достоверности испытаний используются вероятностно-статистические методы, учитывающие случайный характер распределения свойств материала.

Извлечение опытных образцов из конструкции часто затруднительно. Поэтому при обследовании зданий широко используются неразрушающие методы испытаний.

Приборы для определения прочностных и деформативных свойств материалов конструкций базируются на применении:

I. механических методов - методы пластических деформаций, основанные на вдавливании штампа в поверхность материала (молоток Кашкарова, склерометр Шмидта, прибор КМ, молоток Физделя и др.);

методы испытаний на отрыв и скалывание, основанные на отделении бетона путем отрыва со скалыванием (гидравлические пресс-насосы);

метод упругого отскока - прибор КМ и др.;

II. физических методов - ультразвуковые методы, основанные на измерении скорости распространения упругих волн.

Ультразвуковые дефектоскопы Пульсар, Tico, Бетон 12М, УК-12М (рис. 2.4), измерители прочности бетона, кирпича и других материалов конструкций ОНИКС-2.3, Digi Schmidt (рис. 2.5);

ПИК- и т.п.;

радиоизотопные, основанные на определении плотности по изменению интенсивности гамма-излучения;

магнитный для определения толщины защитного слоя арматуры ИЗC-10Н и др.

База нормативной документации: www.complexdoc.ru Рис. 2.4. Ультразвуковые дефектоскопы отечественного (Пульсар) (а) и зарубежного производства (Tico) (б) Рис. 2.5. Измерители прочности бетона а - Оникс-2.3 производства фирмы «Карат» (РФ);

б - молоток Шмидта (Германия) Для определения динамических характеристик используются виброметры ВИСТ-2, измеритель механических напряжений и колебаний ИНК-2, амплитудомеры, вибромарки, электронная виброизмерительная и записывающая аппаратура в составе:

пьезодатчиков ускорения или перемещений, усилителя и записывающего прибора. При этом запись динамических База нормативной документации: www.complexdoc.ru параметров производится как на ленте с помощью механических или световых систем, так и на компьютере с программным обеспечением расшифровки динамических параметров амплитуды, частоты колебаний, ускорения, а также амплитудно частотных спектров. По данным тарировочных испытаний определяются динамические параметры строительных систем.

Современные приборы диагностики обеспечивают не только достаточно высокую точность измерений с пределом погрешностей 3-5 %, но и имеют малые габариты, графический дисплей с подсветкой, оптоинтерфейс - канал информационной связи с компьютером и программы компьютерного анализа.

Для измерения усилий, передаваемых на конструкции лебедками, домкратами и др., применяют гидравлические и пружинные динамометры, прогибомеры типа ПМ-3, ПАО-5, электронные измерители деформации ЭИД, ТЦМ с использованием тензорезисторов различного типа. Для определения углов поворота конструкций используют клинометры.

Широкое распространение для оценки состояния конструкций получили неразрушающие методы натурных испытаний. Их применяют для установления прочности на сжатие R, которая определяется как функция R = f(х1) механической или физической характеристики материала, полученной опытным путем.

Особое место в определении дефектов бетонных, железобетонных и каменных конструкций отводится ультразвуковому методу испытаний. С его помощью определяются дефекты конструкций (полости и пустоты, глубина трещин, толщина поврежденного слоя и т.п.).

Определение прочности бетона по скорости прохождения ультразвука осуществляется при сквозном, диагональном и поверхностном прозвучивании (рис. 2.6).

База нормативной документации: www.complexdoc.ru Рис. 2.6. Принципиальная схема дефектоскопа (а), схемы определения прочности бетона сквозным (б), диагональным (в) и поверхностным (г) прозвучиванием, (д) - градуированная кривая «прочность - скорость ультразвука»

1,2 - точки установки преобразователей;

3 - испытываемая конструкция;

4 - кабели;

5 - источник ультразвука;

6 - цифровой индикатор Используя градуировочную зависимость «прочность бетона скорость ультразвука», производится оценка прочностных характеристик конструкций.

На рис. 2.7 приведены некоторые примеры определения дефектов железобетонных конструкций. Для обнаружения пустот и каверн в теле бетонных и железобетонных конструкций используется сквозное ультразвуковое прозвучивание. Зона дефекта оценивается как область с резким снижением скорости ультразвука (рис. 2.7,а).

Для обнаружения и оценки глубины трещин в бетонных и железобетонных конструкциях используются известные в строительстве импульсные ультразвуковые приборы. Применяют поверхностное прозвучивание. Расстояние между ультразвуковыми датчиками составляет 120-400 мм. О наличии трещины свидетельствует изменение времени распространения ультразвуковых колебаний на базе измерения. Для обнаружения База нормативной документации: www.complexdoc.ru трещин удобнее использовать приборы с датчиками на фиксированной базе и сухим контактом (рис. 2.7,б).

При заметном увеличении времени распространения ультразвукового сигнала, свидетельствующего о трещине, может быть установлена ее глубина. Для этого трещина должна располагаться под центром базы установки датчиков. Глубину трещины определяют по соотношению где l - база установки датчиков;

ts, t0 - время распространения ультразвуковых колебаний в бетоне на базе l при наличии и отсутствии трещины.

Толщина поврежденного бетонного слоя (рис. 2.7,в) определяется по характеру падения скорости прохождения ультразвука (v1, v2) по следующей зависимости где v1, v2 - соответственно скорости распространения импульсов в слое с нарушенной и ненарушенной структурой.

База нормативной документации: www.complexdoc.ru Рис. 2.7. Определение дефектов железобетонной конструкции ультразвуком а - определение пустот;

б - определение трещин;

в ультразвуковой прибор;

г - определение зон отслоившегося и разрушенного бетона;

д - график распространения скорости ультразвука;

1,2 - преобразователи ультразвука;

3 - испытываемая конструкция;

4 - зона дефектов;

5 - график изменения скорости ультразвука Сопоставительный анализ неразрушающих методов испытания бетона конструкций показал правомочность и достаточно высокую однородность результатов, полученных прибором упругого отскока КМ, эталонным молотком Кашкарова, ультразвуковым способом и методом непосредственных испытаний образцов, выбуренных из тела конструкций. Коэффициенты вариации по прочности соответственно составили при испытании колонн - 10,3;

10,4;

10, и 12,6 %;

при испытании плит перекрытий - 12,6;

11,8;

12,9 и 13, %;

при испытании блоков фундаментов - 16,8;

20,4;

19,6 и 20,8 %.

Для полной оценки железобетонных конструкций необходимо знать состояние арматуры и величины защитного слоя бетона.

Наиболее эффективным и достаточно универсальным является База нормативной документации: www.complexdoc.ru магнитный способ, а также вскрытие арматуры на наименее напряженных участках конструкций с последующим восстановлением.

Магнитный способ определения защитного слоя арматуры достаточно прост в обращении, имеет высокую степень точности измерения. Переносной прибор ИЗС-10Н позволяет проводить измерения в стесненных условиях и не требует высококвалифицированного персонала. Он обеспечивает обнаружение арматуры с определением ее диаметра от 4 до мм. Диапазон измерения толщины защитного слоя - от 5 до мм. Допустимая погрешность измерения составляет 5 %. Прибор удобен в эксплуатации, имеет малые габаритные размеры и массу в пределах 4,5 кг.

Новое поколение электронных приборов-измерителей защитного слоя типа ПОИСК-2.2, Profometr и др. (рис. 2.8) имеет автоматизированную систему оценки диаметра арматуры. Поиск арматуры и определение проекций стержней осуществляются по цифровой, тонально-звуковой и мнемонической информации.

Прибор имеет габариты 1454025 мм, потребляет мощность 0, Вт, обеспечивает диапазон толщин защитного слоя до 120 мм при диаметре арматуры 3-50 мм.

Рис. 2.8. Прибор для измерения и регистрации защитного слоя бетона Вскрытие арматуры для оценки ее состояния является приемом, когда отсутствуют инструментальные средства контроля требуемых параметров, и широко используется в практике диагностирования железобетонных конструкций.

База нормативной документации: www.complexdoc.ru Для оценки и наблюдения за раскрытием трещин в бетонных, железобетонных и каменных конструкциях используются различные системы маяков, микроскопов и индикаторов часового типа.

Помимо физико-механических характеристик и дефектов несущих конструкций весьма важно произвести оценку следующих параметров, существенно влияющих на комфортность проживания, санитарно-гигиенические условия и эксплуатационные качества жилища, таких, как: воздухопроницаемость стыков панелей;

влажность утеплителя стен;

состояние герметика стыков;

теплозащитные свойства ограждений;

звукоизоляция ограждений;

газовый состав воздуха в помещениях;

воздухообмен, влажность воздуха, температура, освещенность помещений;

скорость движения воздуха в помещениях и другие параметры.

Следует отметить, что в последнее время разработан ряд приборов, обеспечивающих контактное и бесконтактное измерение параметров с цифровой или магнитной записью процессов. Наиболее эффективными следует считать тепловизоры, с помощью которых производится инструментальная съемка динамики теплопередачи ограждающих конструкций, лазерные системы термощупов, электронные газоанализаторы и др.

На рис.2.9 приведен пример регистрации температурных полей фасада здания с помощью тепловизора. Для оценки температур различных участков используется цветовая шкала, с помощью которой возможно оценить температурные параметры отдельных участков и фасадной поверхности в целом.

База нормативной документации: www.complexdoc.ru Рис. 2.9. Температурные поля фасада здания, зарегистрированные тепловизором Для количественной оценки теплопотерь и тепловых полей при неоднородности стенового ограждения и примыкания светопрозрачных конструкций (окна, балконные двери и т.п.) очень важен выбор приборов, оптимально решающих задачу бесконтактной регистрации тепловых полей, с учетом разрешающей способности и с учетом критерия «цена - качество».

Известно, что одними из основных факторов, определяемых при регистрации тепловых сетей и влияющих на погрешность оценки термического сопротивления и обнаружения дефектов строительных конструкций, являются пространственная разрешающая способность и температурная погрешность регистрации, а также и временной интервал процесса проведения контроля.

С точки зрения получения реальной картины тепловых полей и источников теплопотерь целесообразно использовать приборы с более высокой разрешающей способностью.

Исследования и анализ аномальных температурных участков ограждающих конструкций, проведенные О.Н. Будадиным, и их оптимизация показали, что пространственный шаг регистрации должен находиться в пределах 120 мм. С учетом изложенного следует применять приборы, обеспечивающие не только требуемую разрешающую способность, но и их быстродействие.

В таблице 2.3 приведены зарубежные и отечественные приборы и их разрешающая способность.

Таблица 2. Характеристики тепловизоров № Наименование Пространственное Частота Время Погрешность Цена п.п. прибора (тип разрешение кадров, Гц контроля измерения (базовый прибора, (пиксели), МN поверхности температуры комплект), 1000 м страна- тыс. долл.


Время производитель) (разрешение регистрации - 120 мм), с одного База нормативной документации: www.complexdoc.ru измерения, с 1 2 3 4 5 6 1 Thermacan PM 320240 60 3 ±2°С 85, (тепловизор, США) 2 TVS-100 320240 10 3 ±2% 35, (тепловизор, Япония) 3 Varioscan-3022 180120 0,8 10 ±2°С 50, (тепловизор, Германия) 4 ИРТИС 220175 0,5 20 ±2 % 19, (тепловизор, Россия) 5 Aurora 11060 0,6 100 ±1°С 19, (тепловизор сканер, Россия) Для достоверной оценки теплотехнических характеристик необходимо учитывать их тепловое состояние с периодом 1-3 часа.

Из этого критерия следует осуществлять выбор прибора, обеспечивающего получение реального состояния тепловых полей.

Так, время контроля поверхности стен с разрешением мм составляет от 3 минут до одного часа с уровнем погрешности ± 2 °С.

Кроме контрольных функций целесообразно использовать тепловизоры при назначении технологии производства работ с База нормативной документации: www.complexdoc.ru использованием энергоэффективных блоков стенового ограждения, где материал швов определяет уровень теплопотерь (рис. 2.10).

Рис. 2.10. Термограмма стены крупнопанельного здания (а) и гистограмма (б), построенная с шагом 160160 мм Использование экспериментальных участков с различными материалами швов позволит оптимизировать технологию работ с позиций теплотехнической однородности.

Применение тепловизоров при заводском изготовлении наружных стеновых панелей является эффективным средством выбраковки, определения мостиков холода, зон более высокой плотности бетона и др. технологических нарушений.

Отклонение указанных параметров от нормативных значений приводит к разной потере эксплуатационных качеств, повышению расхода тепла на обогрев помещений, изменению микроклимата квартир и другим негативным моментам.

Так, постоянное увлажнение помещений и высокие теплопотери в результате продуваемости стыков приводят к частому заболеванию жильцов. Эти же параметры существенно влияют и на долговечность конструкций.

Слабая звукоизоляция внутренних стен, перекрытий, лестничных площадок и лифтовых шахт, характерная для крупнопанельных жилых зданий, приводит к дискомфорту проживания, а повышенные вибрационные нагрузки - к нарушению герметичности стыков и их преждевременному разрушению.

Существенное влияние на условия проживания оказывают химический состав воздуха и наличие агрессивных компонентов, что может являться результатом внешнего воздействия, а также База нормативной документации: www.complexdoc.ru реакцией материала конструкций и отделочных покрытий при взаимодействии с атмосферой.

Наличие блуждающих токов и других электромагнитных явлений в конструкциях жилых зданий также приводит к нарушению комфортности проживания.

Использование строительных материалов, не проверенных на радиоактивность, приводит в некоторых случаях к повышенному радиационному фону помещений. Это относится прежде всего к стеновым материалам из шлака и золы гидроудаления. Поэтому постоянный контроль за присутствием радиоактивности в щебне и других материалах обязателен при выполнении реконструктивных работ.

Одним из критериев, существенно влияющих на комфортность проживания, является воздухообмен помещений. Требования СНиП нормируют расход воздуха для различных помещений, что достигается методами принудительной и естественной вентиляции. Особое место при этом отводится оценке воздухопроницаемости ограждающих конструкций и их влиянию на микроклимат помещений.

Этими требованиями обеспечивается поддержка чистоты воздуха в помещениях, которая достигается не только кратностью воздухообмена, но и требованиями к элементам зданий и отделочным материалам по их способности выделять вредные вещества.

Экологическая чистота жилых помещений и зданий в целом формирует условия безопасного проживания граждан, обеспечивающие минимально необходимые санитарно гигиенические условия, образующие внутренний микроклимат:

температурный режим;

влажностный и подвижный режимы воздуха;

приемлемые уровни шума и вибраций;

концентрации вредных химических веществ в воздухе;

освещенность и инсоляция;

уровни электромагнитного и ионообразующего излучения;

уровень статического электричества.

Комплекс минимально допустимых параметров дает представление о критериях экологически чистого жилья и экологической безопасности. Каждая квартира или жилой дом должны иметь санитарно-гигиенический паспорт, составленный на основе инструментальной проверки физического состояния.

База нормативной документации: www.complexdoc.ru Особое значение данный документ приобретает при выполнении реконструктивных работ, объемы которых ежегодно возрастают.

§ 2.5. Определение деформаций зданий Под воздействием постоянных и переменных нагрузок в зданиях могут возникать деформации. Они подразделяются на местные, когда перемещения, прогибы или повороты происходят в узлах и конструкциях, и общие, когда перемещается и деформируется здание в целом. В свою очередь, деформации могут быть остаточными и упругими, исчезающими при снятии нагрузки.

Для измерения местных деформаций используются различные системы прогибомеров и индикаторы часового типа.

Общие деформации здания являются следствием просчетов в подборе фундаментов, что приводит к неравномерной осадке различных частей здания, а также к нарушениям эксплуатационного режима - замачиванию грунтов вследствие аварии сетей водо- и теплоснабжения, изменению гидрогеологических условий.

Для измерения осадок, кренов, смещений зданий используют методы инженерной геодезии. Смысл диагностики заключается в сопоставлении отметок реперов и осадочных марок. Реперы закладываются на такую глубину, чтобы их основанием служили практически несжимаемые грунты. Их располагают вокруг здания на расстоянии 30-100 м.

Осадочные марки устанавливают в фундаменты по периметру здания. Положение их осей выносят на стены и фиксируют несмываемой краской. С помощью нивелирования определяют характер общих осадок для различных участков здания (рис. 2.11).

База нормативной документации: www.complexdoc.ru Рис. 2.11. Схемы определения осадки зданий и кренов а - схема регистрации осадки здания: Роп - опорные репера;

ОМ осадочные марки;

б, в - определение крена здания методом измерения горизонтальных углов: А, А1 - центры знаков на расстоянии 30-50 м от здания;

С, С1 - удаленные знаки;

В - марка на верхней части здания;

g, g1 - измеряемые углы Крены зданий фиксируют боковым нивелированием или измерением горизонтальных углов. Использование клинометров и кренометров позволяет получить более точные характеристики деформаций. Для измерения наклонов используют точные уровни с измерительным винтом.

Линейная величина частных кренов, мм, определяется по зависимостям (рис. 2.8,б) где g, g1 - приращение угла в одну сторону;

L, L1 - расстояние от сооружения до знака;

r - коэффициент перевода углов в линейное значение.

Измерение сдвигов зданий осуществляется с помощью теодолита. При этом боковое смещение измеряют от прямых База нормативной документации: www.complexdoc.ru линий, фиксируемых вдоль периметра здания. В качестве линии отсчета используют струну или лазерный луч.

Более точным средством регистрации деформаций является метод фотограмметрии, который позволяет получать графическое изображение объекта с параметрами отклонений различных его точек.

Особое внимание при диагностике технического состояния зданий отводится оценке геометрического положения несущих и ограждающих конструкций, узлов и сопряжений, деформаций в виде прогибов, угловых смещений и т.п. Эти параметры измеряются традиционными методами и сравниваются с допустимыми значениями.

В местах, неудобных для геометрического нивелирования из за стесненности условий работ, используется гидростатическое нивелирование. Гидростатический прибор подвешивается к высотным маркам и по разности отсчетов по соседним трубкам определяется величина превышений. Точность измерений составляет 0,1 мм.

После регистрации деформаций отдельных конструкций производят сравнение с допустимыми значениями (табл. 2.4).

Таблица 2. Значение предельно допустимых прогибов № Элементы конструкций Предельно допустимые п.п. прогибы 1 Железобетонные перекрытия с плоским потолком при пролете, м:

l6 1/ 6 l 7,5 3 см База нормативной документации: www.complexdoc.ru l 7,5 1/ 2 Перекрытия с ребристым потолком, м:

l5 1/ 5 l 10 2,5 см l 10 1/ 3 Металлические балки перекрытий при пролете, м:

l6 1/ 6 l 7,5 2 см 7,5 l 10 1/ 4 Стеновые панели самонесущие при пролете, м:

l6 1/ 6 l 7,5 3 см l 7,5 1/ Данные измерений деформаций представляют в виде исполнительной схемы и журнала изменений. Они используются для составления заключения о техническом состоянии здания.

База нормативной документации: www.complexdoc.ru § 2.6. Дефектоскопия конструкций Обследование оснований и фундаментов Для зданий, подлежащих реконструкции, требуется в первую очередь установить несущую способность оснований и фундаментов, их техническое состояние. Работы по обследованию предусматривают выполнение инженерно-геологических, гидрогеологических и инженерных работ. Обследование оснований выполняется в соответствии с требованиями СНиП 2.02.01-83*.

Основная цель обследований состоит в оценке инженерно геологического состояния грунтов, залегающих под подошвой фундамента, а также состояния фундаментов, их целостности, деформативности, устойчивости и прочности материала.

Обследования производят с помощью открытых шурфов, количество и месторасположение которых определяются в каждом конкретном случае. Проходку шурфов осуществляют в наиболее нагруженных и ненагруженных участках, у наружных и внутренних стен, колонн, столбов и т.п. Число закладываемых шурфов принимают по одному у каждого вида конструкции в наиболее нагруженном и ненагруженном местах, при наличии повторяющихся секций - в одной секции отрывают все необходимые шурфы, а в остальных по 2-3 шурфа в наиболее нагруженных местах, в местах, где предполагается установка промежуточных опор или пристройка дополнительных объемов.


Получение достоверных результатов о состоянии основания и фундаментов исключительно важно при увеличении или изменении характера нагрузки, при надстройке, устройстве заглубленных помещений вблизи существующих зданий и в других случаях.

Шурфы отрывают вблизи участков, имеющих значительные деформации, а также в зонах, где предусматриваются надстройка, пристройка и другое повышение нагрузок.

При отсутствии рабочей документации на основания и фундаменты количество, глубина и расположение шурфов в плане должны быть достаточными для восстановления планов и разрезов фундаментов и установления несущей способности основания.

База нормативной документации: www.complexdoc.ru Обработка результатов исследований позволяет сделать вывод о состоянии основания фундаментов, их несущей способности, степени износа конструкций, фактическом сопротивлении грунтов.

Устанавливаются зоны, где необходимо укрепление грунтов с целью повышения их несущей способности.

При оценке состояния фундаментов более поздних построек, выполненных из элементов сборного бетона и железобетона, процесс дефектоскопии существенно упрощается.

При наличии технической документации возможно частичное обследование, что существенно снижает трудоемкость и стоимость работ.

В таблице 2.5 приведены характерные повреждения и их причины для фундаментов: свайных, ленточных крупноблочных и сборно-монолитных фундаментов жилых зданий первых массовых серий (кирпичных и крупнопанельных). Причинами дефектов и повреждений служат, как правило, нарушения в технологии производства работ, эксплуатационные условия, отклонения в изготовлении конструкций и др.

Таблица 2. Повреждения и дефекты фундаментов и грунтов основания Конструктивный Основные причины элемент или его Повреждения повреждения часть Естественные основания Грунт основания Уменьшение расчетного Эксплуатационные факторы:

фундамента сопротивления грунта, увлажнение, увеличение увеличение агрессивности нагрузки и ошибки при среды проектировании Свайные фундаменты База нормативной документации: www.complexdoc.ru Сваи Сваи не объединены в Нарушение условий забивки ростверк свай или устройства ростверка Смещение в плане от Нарушение проекта в проектного расположения процессе устройства свай свайного фундамента Несоответствие класса То же бетона примененных свай проектному Сваи не забиты до проектной Нарушение в процессе отметки устройства свайного фундамента Стальная Коррозионные следы на Коррозия арматуры, арматура, поверхности конструктивных закладных деталей закладные и элементов соединительные детали Коррозия арматуры, Эксплуатационные факторы, закладных деталей, нарушения в процессе соединительных накладок изготовления База нормативной документации: www.complexdoc.ru Ростверк Общие деформации ростверка Нарушения в технологии в вертикальной или устройства;

горизонтальной плоскости эксплуатационные факторы;

ошибки при проектировании Трещины шириной более 0,3 Нарушение технологии мм в бетоне ростверка, производства работ.

распространение отдельных Эксплуатационные факторы;

из них на цокольные панели ошибка при проектировании Местные деформации Нарушение технологии (смятие, сколы и др.) бетона производства работ в ростверка, в том числе в процессе возведения;

местах опирания панелей неправильная установка панелей Гидроизоляция Полное или частичное Нарушения в процессе отсутствие вертикальной и возведения зданий горизонтальной гидроизоляции ростверка Защитные и Полное или частичное Нарушения при защитно- отсутствие защитного изготовлении свай декоративные покрытия на сваях покрытия (ростверке) Фундаменты ленточные крупноблочные сборно-монолитные, фундаменты отдельно стоящих стен технических подполий Горизонтальные и Общие деформации в Эксплуатационные факторы;

вертикальные вертикальной или (и) неравномерная осадка;

поверхности горизонтальной плоскости пучение грунта;

уменьшение (искривления, перекосы, устойчивости грунта и др.

прогибы, выпучивания и др.) База нормативной документации: www.complexdoc.ru Бетон Разломы или трещины То же фундаментов, шириной более 0,3 мм стен Высолы и следы сырости на Нарушение в технологии стенах технического производства работ и подполья изготовлении цокольных панелей, устройстве фундаментов и стен Стыки блоков и Трещины в растворе швов Отклонения от технологии цокольных стыков производства работ.

панелей Эксплуатационные факторы Выпадение раствора из То же стыков и мест сопряжений;

разрушение бетона в зоне стыков по краям панелей и мест сопряжений Увлажнение бетона в зоне Эксплуатационные факторы:

стыков блоков и панелей повреждения гидроизоляции;

повышение уровня грунтовых вод и др.

Диагностика каменных и армокаменных конструкций При обследовании каменных и армокаменных конструкций прежде всего выделяются наиболее ответственные несущие конструкции. С помощью приборов устанавливают степень отклонения от проектного положения. Особое внимание уделяется местам опирания перемычек, балок, плит перекрытия и покрытия, характеру сопряжения стен между собой.

Среди причин возникновения дефектов следует выделить:

механические, динамические, температурно-влажностные воздействия, а также дефекты, обусловленные неравномерностью осадок основания. Последние, как правило, приводят к наиболее значительным дефектам.

База нормативной документации: www.complexdoc.ru В зависимости от характера изменения осадки фундаментов вследствие технической эксплуатации зданий и других техногенных процессов возможно развитие растягивающих напряжений в кладке, приводящих к образованию трещин.

Основные варианты развития трещин состоят в (рис. 2.12):

1 - осадке средней части здания за счет просадочных явлений в грунтах основания. Она вызывает параболические кривые, образованные сетью трещин, расширяющихся книзу и наклоненных к центральной оси здания;

2 - осадке крайних частей здания, что вызывает параболические кривые, образованные сетью трещин, расширяющихся кверху и наклоненных к краям здания;

3 - разломе здания вследствие максимальных осадок крайних частей здания и минимальной осадки в центральной части.

Образуется сквозная вертикальная, расширяющаяся кверху трещина. Причиной может служить местная подпирающая опора в грунте основания центральной части здания;

4 - просадке части здания, приводящей к образованию вертикальной извилистой трещины одинаковой толщины раскрытия.

Рис. 2.12. Вид трещин в каменных стенах зданий при основных видах осадки грунта оснований а - осадка средней части здания;

б - осадка крайних частей здания;

в - разлом здания;

г - просадка части здания;

R сопротивление грунта основания База нормативной документации: www.complexdoc.ru Вторая группа воздействий, приводящая к трещинообразованию кирпичной кладки, относится к конструктивным деформациям и включает три стадии напряженно-деформированного состояния.

1-я стадия - начало трещинообразования происходит при нагрузках, составляющих 40-60 % разрушающих, при кладке на слабых растворах (менее 1 МПа), 50-70 % - при кладках на растворах средней прочности (1-2,5 МПа), 70-90 % - на прочных растворах (более 5 МПа). Эта стадия включает появление трещин, распространяемых на высоту 2-3 рядов кладки, совпадающих с вертикальными швами кладки. Появление трещин свидетельствует о превышении нагрузки несущей способности кладки;

2-я стадия - при возникновении значительных напряжений в кладке. Она характеризуется появлением вертикальных трещин в нескольких рядах кладки;

3-я стадия трещинообразования соответствует аварийному состоянию.

На рис. 2.13 приведена схема распределения нормальных и касательных напряжений в кирпичной кладке, моделируемой пластиной с прямоугольными отверстиями. При равномерно распределенной нагрузке максимальные нормальные напряжения концентрируются на границе отверстий, а касательные - в простенках. Примерное соотношение напряжений приведено на эпюрах по характерным сечениям.

База нормативной документации: www.complexdoc.ru Рис. 2.13. Распределение напряжений в стене-пластине с проемами и выпучивание кирпичных простенков а - нормальные напряжения;

б - касательные напряжения;

в схема деформаций;

г - расчетная схема Определяющее влияние на концентрацию напряжений оказывает процесс старения кладки (выветривание и разрушение швов) в результате влагомассопереноса и влияния цикличных процессов замораживания-оттаивания. В результате обжатия швов в определенной части кладки возникают напряжения, превышающие ее несущую способность.

Методом визуального наблюдения легко устанавливается наличие трещин, сколов. По характеру их расположения можно судить о причинах возникновения дефектов. Так, при увеличении нагрузки выше расчетной наблюдается образование вертикальных трещин различной степени раскрытия. Недостаточная длина опирания перемычек, неправильное выполнение кирпичной кладки над проемами, устройство перемычек над витринными проемами без устройства портала приводят к характерному База нормативной документации: www.complexdoc.ru образованию трещин. Причиной образования трещин в простенках могут служить: применение материалов, не отвечающих проектным требованиям;

некачественная перевязка швов в кладке;

неправильное выполнение температурных и деформационных швов;

нарушение технологии производства работ в зимнее время;

перегрузки при надстройке здания и др.

Появление наклонных трещин может иметь различные причины.

В первую очередь они вызваны неравномерностью осадок фундамента из-за недостатков в подготовке основания, смещения осей, наложения дополнительных нагрузок от пристраиваемых зданий. Нарушение эксплуатационного режима здания происходит в результате подтопления или вымывания основания атмосферными или техническими водами, увлажнения грунта из за протечек, понижения уровня грунтовых вод при производстве работ вблизи возведенного здания и др.

Деформации внутренних стен в местах примыкания к наружным вызваны более высокой нагрузкой и отсутствием в этих местах армирования кладки.

На рис. 2.14,в приведены характерные примеры образования трещин для рассмотренных случаев.

В процессе обследования очень важно знать динамику раскрытия трещин во времени. Для этой цели на трещины устанавливают гипсовые, стеклянные или металлические маяки.

Гипсовые и стеклянные маяки устанавливают на стене, предварительно очищенной от штукатурки. Используются цементные или гипсовые растворы. Металлические маяки изготавливают из кровельной стали и крепят к стене клеем или дюбелями. На маяках выставляются номер и дата установки.

Динамика развития деформаций регистрируется в журнале наблюдений. Глубину трещин определяют с помощью щупов и игл, а ширину раскрытия - с помощью микроскопов МПБ-2, Мир-2.

Пределы измерений МПБ-2 составляют до 6,5 мм, а Мир-2 - от 0,015 до 0,6 мм.

База нормативной документации: www.complexdoc.ru Рис. 2.14. Характерные примеры образования трещин в кирпичных стенах а - вертикальные трещины в простенках;

б - то же, в зоне заделки перемычек;

в - деформации внутренних стен в местах примыкания к наружным стенам Важным этапом обследований является процесс определения физико-механических характеристик кладки. Этому этапу предшествуют качественная оценка кладки и ее соответствие техническим требованиям: толщина швов и перевязка, соблюдение горизонтальности рядов, вертикальность стен и др. Для механических испытаний материала каменной кладки из База нормативной документации: www.complexdoc.ru малонагруженных элементов конструкций извлекаются образцы или выбуриваются керны, которые испытываются с использованием стандартного оборудования.

При зондировании отбирают пробы материала не менее чем через каждую четверть толщины стены. Число точек зондирования принимают в зависимости от размеров здания и его этажности (таблица 2.6).

Таблица 2. Число точек зондирования для различных зданий Несущие каменные стены Количество секций в здании Число этажей до 3 4-5 свыше 1-2 3 4 3-4 5 7 Более 4 7 9 Определение прочности камней производится в соответствии с ГОСТ 8462-85, раствора - ГОСТ 5802-86. Морозостойкость материалов каменной кладки испытывают в соответствии с ГОСТ 7025-91.

Условие, при котором поврежденные каменные и армокаменные конструкции подлежат усилению, имеет следующий вид КбпР NКТР где Кбп - коэффициент безопасности (Кбп - 1,7 для неармированной кладки, 1,5 - для кладки с сетчатым армированием);

Р - фактическая нагрузка в момент обследования;

N - несущая способность конструкции без повреждений;

КТР База нормативной документации: www.complexdoc.ru коэффициент, учитывающий снижение несущей способности (табл. 2.7) при наличии повреждений.

Таблица 2. Значения коэффициента К снижения несущей способности кладки в зависимости от характера повреждений К при кладке № Характер повреждения кладки стен, п.п. столбов и простенков неармированной армированной 1 Трещины в отдельных кирпичах, не 1,0 1, пересекающие растворные швы 2 Волосяные трещины, пересекающие не 0,9 1, более двух рядов кладки 3 То же, при пересечении не более 4 рядов 0,75 0, при числе трещин не более 4 на 1 м ширины стены, столба или простенка 4 Трещины с раскрытием до 2 мм, 0,5 0, пересекающие не более 8 рядов кладки, при числе трещин не более 4 на 1 м ширины стены, столба, простенка 5 То же, при пересечении более 8 рядов 0 0, При этом для расчета конструкций принимается средний предел прочности кладки, который при известных марках кирпича и раствора принимается равным удвоенной величине расчетного сопротивления кладки.

Для испытаний из различных участков каменной конструкции отбирают образцы. Предел прочности при сжатии кирпича определяется на образцах, состоящих из двух кирпичей или из двух База нормативной документации: www.complexdoc.ru половинок, а предел прочности при сжатии камней определяется на целом камне.

Предел прочности при сжатии Rсж (МПа) определяют по зависимости где Р - наибольшая нагрузка, кН;

А - площадь поперечного сечения, м2.

Предел прочности при изгибе Rизг (МПа) определяют согласно схеме испытания где Р - наибольшая нагрузка;

l - расстояние между осями опор;

b, h - ширина и высота сечения образца, м.

Полученные данные используются для определения предела прочности RКЛ кладки при сжатии по средней прочности камня и раствора База нормативной документации: www.complexdoc.ru где А - конструктивный коэффициент, зависящий от вида кладки и прочности камня т, п - коэффициенты, зависящие от вида кладки;

Rр, RK прочность раствора и камня.

Значения коэффициентов а, b, т, п приведены в таблице 2.8.

Таблица 2. Значения коэффициентов № Вид кладки п.п.

а b т п 1 Из кирпича, кирпичных блоков и камней правильной 0,2 0,3 1,25 3, формы с высотой ряда 50-150 мм 2 Из сплошных камней правильной формы с высотой 0,15 0,3 1,10 2, ряда 180- 360 мм 3 То же, из пустотелых камней 0,15 0,3 1,50 2, 4 Из сплошных крупных блоков с высотой ряда более 0,09 0,3 1,10 2, 150 мм 5 Из бутового камня 0,2 0,25 2,50 8, Коэффициент изменчивости прочности кирпичной кладки принимается С = 0,15, а условное нормативное сопротивление RН База нормативной документации: www.complexdoc.ru = RКЛ(1 - 2С) = 0,7RКЛ. Вероятностное понижение прочности кладки с учетом имеющихся ослаблений (пустошовка, гнезда, отклонения от вертикали) дает значение RКЛ = 0,5RН.

При наличии повреждений кладки стен, столбов и простенков вводится коэффициент снижения несущей способности КТР (таблица 2.7).

Диагностика и оценка остаточной несущей способности бетонных и железобетонных конструкций Обследование бетонных и железобетонных конструкций осуществляется в соответствии с требованием СНиП 2.03.01-84* «Бетонные и железобетонные конструкции». Обнаруженные при обследовании дефекты разделяются на следующие по степени важности группы: дефекты, приводящие к снижению и потере несущей способности;

частично снижающие несущую способность с изменением геометрических размеров;

отклонения в геометрических размерах при сохранении несущей способности, вызывающие непригодность к технической эксплуатации.

Одни и те же дефекты могут создавать условия непригодности как по несущей способности, так и по потере эксплуатационных качеств. Например, прогибы, превышающие допустимые значения, исключают нормальную эксплуатацию конструкций. В то же время снижение несущей способности приводит к аварийному состоянию. Ширина раскрытия трещин, нормальных к продольной оси изгибаемого элемента в растянутой зоне, более 0,4 мм свидетельствует о превышении требований по второй группе предельного состояния и одновременно указывает на возможность достижения предела текучести арматурной стали, что сопряжено с потерей несущей способности конструкции.

Наиболее характерными дефектами железобетонных и бетонных конструкций являются трещины. Следует различать трещины, появление которых вызвано напряжениями, возникающими в конструктивных элементах в процессе их изготовления, транспортирования и монтажа, а также обусловленные эксплуатационными нагрузками и воздействием окружающей среды.

К трещинам, появившимся в доэксплуатационный период, относятся: усадочные, вызванные нарушением технологического режима твердения бетона;

в результате резких температурных перепадов отдельных участков конструкции и напряжений, База нормативной документации: www.complexdoc.ru возникающих при этом;

трещины технологического происхождения, возникающие в элементах сборного железобетона при изготовлении;

в результате нарушений условий складирования, транспортирования и монтажа. Объем дефектов такого происхождения достаточно велик и составляет около 60 %.

Трещины, появившиеся в эксплуатационный период, имеют следующее происхождение: возникающие в результате температурных деформаций, неправильного устройства или отсутствия температурных и деформационных швов;

вызванные неравномерностью осадок грунтового основания, аварийным замачиванием грунтов, проведением земляных работ в непосредственной близости к фундаментам, динамическими нагружениями, связанными с забивкой свай, уплотнением грунта, близким расположением автотранспортных магистралей и т.п.;

обусловленные силовыми воздействиями, превышающими расчетные значения. Последнее обстоятельство связано с увеличением нагрузок от надстройки зданий.

Наиболее опасными являются дефекты, полученные при возведении монолитных конструкций и производстве работ при отрицательных температурах. В этом случае из-за неравномерностей температурных полей возникают дополнительные напряжения, приводящие не только к образованию трещин, но и к нарушениям структуры бетона, снижению физико-механических характеристик, адгезии арматуры с бетоном. Трудноисправимые дефекты возникают при ранней распалубке монолитных конструкций. Так, при распалубке перекрытий, не достигших прочности 70 % Rб, наблюдаются высокие деформации (прогибы), восстановление которых представляет достаточно большие трудности. Увеличение скорости нагружения стеновых конструкций, превышающей интенсивность набора прочности бетоном, приводит к возникновению опасных напряжений.

В каждом конкретном случае необходимо проведение анализа и расчета напряженно-деформированного состояния железобетонных конструкций.

В изгибаемых элементах, работающих по балочной схеме, возникают трещины, перпендикулярные продольной оси, вследствие появления растягивающих напряжений в зоне действия максимальных изгибающих моментов и трещины, наклонные к продольной оси, вызванные главными База нормативной документации: www.complexdoc.ru растягивающими напряжениями в зоне действия перерезывающих сил и изгибающих моментов.



Pages:     | 1 || 3 | 4 |   ...   | 9 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.