авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 9 |

«База нормативной документации: А.А. Афанасьев, Е.П. Матвеев РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ Часть I Технологии восстановления эксплуатационной надежности жилых зданий ...»

-- [ Страница 4 ] --

Следующие из основных понятий теории надежности - отказ и безотказность. Под безотказностью понимается способность изделия сохранять работоспособность в течение определенного интервала времени в определенных условиях эксплуатации. Отказ - это частичная или полная утрата или видоизменение таких свойств изделия, которые существенным образом снижают или приводят к полной потере работоспособности. Несмотря на всю относительность, понятие отказа является полезной и содержательной характеристикой надежности, так как оно позволяет вводить различные численные характеристики надежности, а это, в свою очередь, позволяет сравнивать различные проекты реконструкции с позиции надежности будущего здания.

Для таких объектов, как здания и другие строительные сооружения, важнейшим понятием надежности является долговечность. Под долговечностью изделия понимают его способность к длительной эксплуатации при необходимом техническом обслуживании, в которое могут входить и различные виды ремонтов. В конце срока, определяющего долговечность, в изделии появляются такие процессы, связанные с износом или старением, устранение которых либо невозможно, либо экономически нецелесообразно.

Для тех изделий, в которых работоспособность поддерживается с помощью ремонтов, важным показателем является ремонтопригодность. Ремонтопригодностью изделия называется его приспособленность к предупреждению, обнаружению и устранению отказов. К показателям ремонтопригодности относятся вероятность восстановления в заданное время, среднее время ремонта, удельная трудоемкость ремонтов, стоимость и т.п.

Рассмотрим, как работают введенные понятия в такой системе, как здание. В настоящее время жилые и общественные здания, как и другие промышленные изделия, переживают значительное изменение масштабов сложности. Современное здание с полной уверенностью можно отнести к большим системам. Большие База нормативной документации: www.complexdoc.ru технические системы - это соединение значительного числа разнообразных компонент, имеющих сложную переплетающуюся связь и переменные изменяющиеся нагрузки. Среди части инженеров и ученых, занимающихся проектированием сложных систем, распространено мнение, что понятие теории надежности неприемлемо для сложных систем. Утверждается тезис, что понятие надежности сложной системы лишено смысла и надо говорить только об эффективности таких систем.

Действительно, понятие качества сложной системы (например, здания), созданной для работы в меняющейся обстановке, включает в себя совокупность многих десятков, а иногда и сотен свойств, определяющих качество. Потому понятие отказа, связанное с полной или существенной потерей работоспособности системы, выглядит весьма искусственно. Более приемлемым является введение сводного показателя качества - эффективности, являющейся мерой производительности системы с учетом внешней обстановки и способа применения. На самом деле понятие эффективности не зависит от понятия надежности. Можно говорить об эффективности абсолютно надежных систем. Однако если составные части системы не являются абсолютно надежными, то их качество существенным образом сказывается на эффективности. Другое возражение применению методов теории надежности при проектировании новых и реконструировании старых зданий состоит в следующем. Каждое здание - сложная система, состоящая из большого числа элементов, скажем п. Если Pi - надежность i-го элемента, т.е. вероятность того, что в течение данного промежутка времени элемент не выйдет из строя, то надежность здания определяется как.

Если п велико, то даже при Pi » 1, Pi 1 надежность всего здания Р 1, что противоречит практике домостроения. В этих рассуждениях много погрешностей. Во-первых, предлагается слишком упрощенная математическая модель. Во-вторых, формула (4.1) верна, если только элементы сложной системы выходят из строя независимо друг от друга. Это предположение абсолютно неприемлемо для строительных сооружений. Следовательно, проблема состоит не в неприемлемости идей теории надежности, а в трудностях построения адекватной математической модели.

База нормативной документации: www.complexdoc.ru Обычно она оказывается чрезвычайно сложной, и возникают новые трудности - в получении решения с помощью модели. Есть еще один круг проблем, которого мы не будем касаться в данной работе. Это - сбор и обработка статистического материала, необходимого для оценки параметров модели.

В заключение параграфа заметим, что часто применительно к зданиям под надежностью понимают только прочностные свойства. Это не совсем верно. Например, наружные ограждающие конструкции чаще оказываются ненадежными при выполнении ограждающих функций, чем прочностных.

§ 4.3. Основная математическая модель для изучения надежности зданий До сих пор мы говорили о понятиях надежности в самом общем плане. Однако если мы попытаемся ввести количественные показатели, то неизбежно приходим к вероятностной трактовке этих понятий.

Обычно под надежностью понимается вероятность безотказной работы в течение заданного промежутка времени. Наряду с этим встречаются и другие толкования этого термина. Вообще говоря, количественных характеристик надежности много, в каждом конкретном случае решающую роль могут играть различные показатели надежности.

В отличие от простых систем, где имеются только два возможных состояния - нормальное эксплуатационное и отказ, в зданиях большая часть конструкций и элементов может иметь несколько состояний, соответствующих частичным отказам и неисправностям. В связи с этим иногда- отказы классифицируют:

частичный отказ узла или элемента, восстановление или усиление которого приводит к полному восстановлению надежности сооружений;

отказ наиболее ответственных элементов сооружений (основания, фундаментов, колонн, ригелей и т.п.), приводящий к полному отказу всего сооружения. Отказы второй группы могут быть внезапными, а усиление этих элементов порой связано с большими объемами работ и экономическими затратами.

Таким образом, характеристики отказов должны отображать различные категории несущей способности здания или его частей.

Предельно допустимую вероятность отказа, о которой мы еще База нормативной документации: www.complexdoc.ru будем говорить далее, следует определить в зависимости от тяжести последствий, как это всегда и делается в теории принятия решений. Обычно более надежным является изделие, работающее в мягких (благополучных) условиях эксплуатации, чем в жестких (предельных). Поэтому одним из способов повышения надежности, например в станкостроении, радиоэлектронике и т.п., является создание облегченных условий для работы изделий.

Специфика здания как изделия состоит: в невозможности создания облегченных условий для работы здания в целом, хотя для отдельных узлов и элементов такая возможность имеется;

в трудности (или невозможности для некоторых элементов) использования резервирования.

Современные методы расчетов узлов и конструкций зданий (в частности, метод предельных состояний) сосредоточивают внимание на границах качества, хотя для многих характеристик (тепло-, звукоизоляция и др.) важно не только предельное состояние, но и распределение качества. Статистика показывает, что большая часть отказов и аварий происходит из-за так называемых мелочей: невыполнения всех поверочных расчетов конструкций, особенно при проектировании и при работе нескольких авторов, неаккуратности рабочих при изготовлении изделий и монтаже, отклонений от технологических режимов, неподготовленности обслуживающего эксплуатационного персонала и т.п.

Основной недостаток расчетов конструкций по предельным состояниям в том, что отсутствует фактор времени.

Статистическую изменчивость нагрузок и механических свойств материалов конструкций указывают соответствующими коэффициентами запаса.

К сожалению, зависимость свойств материалов от времени невозможно прогнозировать с достаточной точностью на длительный промежуток времени. Разумеется, есть параметры, характеризующие свойства материалов, для которых тем или другим статистическим методом удается найти явные временные зависимости. Тем не менее следует отдавать отчет, что все эти параметры являются на самом деле случайными процессами и в лучшем случае мы получаем с помощью статистических исследований среднее их значение. Между тем надежность системы самым существенным образом зависит от статистических свойств этих случайных процессов.

База нормативной документации: www.complexdoc.ru В связи с этим предлагается достаточно общая математическая модель для оценки надежности сложной системы, работоспособность которой будет проиллюстрирована при оценке надежности реконструированных зданий.

Первый шаг состоит в разбиении сложной системы на ее составляющие - элементы. Способ разбиения определяется задачами, которые ставит перед собой исследователь, а также совокупностью статистического материала, которым он располагает.

В качестве примера рассмотрим здание, подлежащее реконструкции. На первом этапе исследования можно выделить следующие основные элементы: грунтовое основание;

фундаментная часть;

перекрытия;

несущие стены продольные и поперечные;

кровля.

Для описания состояния здания в каждый момент времени мы рассматриваем многомерный процесс X(t) = (x1(t),..., Xn(t)),n, так что в момент t состояние процесса описывается n-мерным (в нашем примере пятимерным) вектором. Каждая из компонент вектора X(t) может, в свою очередь, находиться в различных состояниях, так что компоненты принимают различные значения. Для практических расчетов достаточно предположить, что число этих значений конечно. Пусть еi1,..., eik - возможные значения i-й компоненты.

Совокупность всех значений процесса X(t) принято называть фазовым пространством. Обозначим его X. В нашем случае X представляет собой конечное множество, состоящее из К1 К2,..., Кп точек. Если X(t) в момент t находится в точке (е1,j1, е2,j2,..., еп,jn), это означает, что его первая координата принимает значение е1,j1, вторая е2,j2 и т.д. С позиции теории надежности в фазовом пространстве X выделяется некоторое подмножество состояний Q, попадание в которое процесса X(t) означает аварию (отказ). Тогда надежность системы Р(Т) за время Т есть вероятность того, что процесс X(t) за время Т, выйдя из некоторой фиксированной точки, не попадет во множество Q, т.е.

.

База нормативной документации: www.complexdoc.ru Чтобы сделать это понятие содержательным, необходимо задать вероятностно-статистические характеристики процесса X{t). Это второй шаг построения математической модели.

Мы будем строить это описание исходя из следующих предположений, которые в плане будущих применений к оценке надежности реконструированных зданий представляются достаточно естественными:

за малое время Dt возможно изменение лишь одной из координат процесса;

за малое время Dt возможен переход только в соседнее состояние.

Это означает, что возможные значения координаты перенумерованы таким образом, что возможны только переходы типа i ® i + 1. Позднее мы проиллюстрируем это обстоятельство на примере.

Пусть теперь ai,(x)Dt - вероятность того, что система за время Dt из состояния х(х1,..., хn) перейдет в состояние Если предположить, что переходы из одного состояния в другое зависят только от текущего состояния процесса, то совокупность функций {ai(x), i = 1,2,...,п} полностью определяет вероятностные свойства процесса и, таким образом, математическая задача поставлена.

При этом возникают две основные проблемы:

- как на основании экспериментальных данных получить функцию ai(x);

- как найти вероятность Р(Т), если ai(x) ( i = 1,...,п) дана.

Первая проблема - из области математической статистики, но она самым тесным образом связана с предметной стороной исследования. Вторая проблема - очень трудная математическая задача, решенная к настоящему времени лишь для некоторых частных случаев.

База нормативной документации: www.complexdoc.ru Тем не менее есть математические идеи, позволяющие получить приближенное значение Р(Т). Они базируются на ряде математических теорем [95], утверждающих, что время достижения критического множества Q в достаточно общих предположениях, выполненных для широкого класса практических задач, имеет экспоненциальное распределение, так что, где t - среднее время достижения критического уровня.

Проблема отыскания среднего времени t достижения несравненно проще отыскания распределения. Более того, она может быть получена по результатам прошлых наблюдений за идентичными объектами.

Прежде чем переходить к моделям, связанным с надежностью зданий при их реконструкции, поясним сказанное на простом примере.

Пример 1. Рассмотрим систему, состоящую из двух элементов (например, элемент 1 - грунтовое основание здания, а элемент 2 его фундаментная часть), так что фазовое пространство X является двумерным с точками (х1, х2).

Зададим различные состояния грунтов, т.е. первой координаты, следующим образом:

состояние 1 - уплотненные фунты с допустимой осадкой и равномерной осадкой здания;

состояние 2 - грунты с нарушением их физико-механических свойств, однако не вызывающим опасения неравномерных осадок здания;

состояние 3 - грунты с таким нарушением их свойств, которое вызывает опасения относительно целостности здания;

состояние 4 - грунты с таким нарушением свойств, которое обычно вызывает неравномерную осадку здания и приводит к частичному разрушению фундамента;

состояние 5 - грунты с нарушением физико-механических свойств, обычно приводящим к полной потере несущей способности фундамента.

База нормативной документации: www.complexdoc.ru Итак, первая координата имеет 5 возможных состояний. При этом если не производятся работы, направленные на упрочнение и укрепление оснований, такие как поверхностное и глубинное уплотнение и инъецирование, закрепление силикатизацией, цементацией и другими техническими приемами, движение процесса по первой координате возможно только в одном направлении, т.е. схематически мы можем иметь только траекторию, представленную на рис. 4.4. Если, например, при достижении состояния 3 проводятся работы по упрочнению и укреплению основания, то возможен переход из состояния 3 в или 1.

Рис. 4.4. Траектория процессов для примера Мы предполагаем, что время выполнения работ по укреплению грунтов весьма мало по сравнению со временем функционирования системы и даже по сравнению со средним временем движения системы из одного состояния в другое. Это позволяет не вводить дополнительную переменную в наш случайный процесс X(t), которая фиксировала бы, на какой стадии находятся реконструктивные работы в данный момент. Итак, реконструктивные работы могут быть заданы такими вероятностями:

- вероятность осуществления восстановительных работ, если первая координата находится в состоянии i;

- вероятность перехода первой координаты из состояния i в состояние j i, если осуществляются восстановительные работы.

Переходим к определению возможных значений второй координаты (фундаменты) по состояниям: 1 - нормальное без видимых нарушений;

2 - локальные нарушения сцепления с кладочным раствором;

3 - повсеместное нарушение сцепления с База нормативной документации: www.complexdoc.ru кладочным раствором;

4 - сквозные трещины;

5 - потеря несущей способности (разрушение).

Итак, вторая координата нашего процесса также имеет пять возможных значений, и если не производятся работы по усилению, восстановлению или защите фундаментов от агрессивных воздействий, движение второй координаты возможно только в одном направлении, т.е. из состояния i в состояние i + 1. Учет восстановительных работ можно проводить так же, как для координаты х, вводя соответствующие вероятности и.

Критическое множество фазового пространства состоит из точек вида (i, 5), т.е. содержит все точки, в которых фундамент потерял несущую способность: Q = {( i,5), i = 1,2,3,4,5}.

Фазовое пространство X(t) состоит из 25 точек. Критическое множество содержит 5 точек.

На рис. 4.5 изображена одна из возможных траекторий процессов.

База нормативной документации: www.complexdoc.ru Рис. 4.5. Пример траектории процессов Эта траектория соответствует такой ситуации: из нормального состояния грунта и фундамента (1,1) осуществляется переход в состояние, когда в грунте возникают первичные нарушения физико-механических свойств (состояние (2,1)), что приводит к локальным нарушениям сцепления с кладочным раствором в фундаменте (состояние (2,2)), далее в грунте происходят более глубокие нарушения физико-механических свойств (состояние (3,2)), что приводит к повсеместным нарушениям сцепления с кладочным раствором фундамента (состояние (3,3)) и т.д.

Математическая модель будет полностью определена, если будут заданы вероятностные характеристики, описывающие случайный процесс X(t). Наиболее простая модель получается при предположении экспоненциальности.

Времена пребывания случайного процесса X(t) в состоянии (il,i2), коль скоро он туда попал, имеют экспоненциальное распределение с параметром a(il,i2), по истечении этого времени процесс с вероятностью р(jl,j2/il,i2) переходит в состояние (jl,j2).

Математически это предположение означает, что процесс X(t) является цепью Маркова с конечным множеством состояний и поглощающим множеством состояний Q. Задача вероятности поглощения за определенное время, т.е. по существу надежности системы, может быть решена достаточно стандартными приемами, по крайней мере численно.

База нормативной документации: www.complexdoc.ru Физически предположение об экспоненциальности означает, что мы рассматриваем только так называемые внезапные отказы, не связанные со старением здания, а вызванные скорее нежелательными флуктуациями внешней среды. Безусловно, такие отказы могут иметь место при эксплуатации зданий, но с точки зрения надежности реконструируемых зданий наибольший интерес представляют так называемые постепенные отказы, связанные с изменением свойств материалов при длительной эксплуатации, постепенной неравномерной осадкой здания, разрушениями кирпичной кладки, потерей несущей способности перекрытия из-за коррозии опорных частей, балок и т.п.

Некоторые исследователи считают, что распределение времени пребывания в любом состоянии близко к нормальному. Тем не менее этот вопрос требует глубокого анализа, который выходит за рамки данной работы, кроме того, в дальнейшем мы укажем приемы для оценки надежности реконструированных зданий, позволяющие обойти предположение об экспоненциальности.

Одним из таких приемов служит предположение о том, что интенсивности изменения состояния системы a(t, x) являются функциями не только состояния, но и времени. Это в значительной мере позволяет учесть старение материалов и конструкций, и такая модель хорошо описывает поведение системы в промежутках между ремонтами, возвращающими систему в начальное нормальное или близкое к нему состояние.

§ 4.4. Методы оценки надежности зданий с помощью математических моделей Простейшая модель в предположении экспоненциальности Рассматриваем n-мерный случайный процесс X(t) = xx(t),...,xn(t) с конечным множеством значений X и критическим множеством Q, попадание в которое интерпретируется как отказ всей системы.

Считаются заданными следующие характеристики: a(х) интенсивность выхода из состояния х;

Р(у/х) - вероятность перехода из состояния х в состояние База нормативной документации: www.complexdoc.ru, если выход из состояния х состоялся.

Пусть - вероятность того, что за время t процесс не попал в критическое множество Q и в момент t он находится в точке х при условии, что в начальный момент процесс находился в точке х0.

Обычными методами для функций мы получаем следующую систему дифференциальных уравнений (4.1) для и Px(t,x) = Q.

(4.2) Начальные условия для системы База нормативной документации: www.complexdoc.ru если х x0. Поскольку множество X конечно, система (4.2) имеет единственное решение и может быть решена, по крайней мере численно. Заметим, что число уравнений равно числу точек вне множества Q.

Функция надежности выражается через решение системы (4.2) с помощью соотношения где суммирование ведется по всем состояниям вне множества Q.

Полученная система кажется слишком сложной для практического использования. Чтобы убедиться, что это не так, рассмотрим численный пример.

Пример 2. Предположим, что система состоит из двух элементов и имеет три состояния с переходами и интенсивностями, изображенными на рис. 4.6.

Рис. 4.6. Граф переходов из состояний для примера При этом критическое множество состоит из одного состояния 3. В начальный момент система находится в состоянии 1. Нас интересует надежность системы, т.е. время до попадания в состояние 3. Система (4.1) принимает вид (4.3) с начальными условиями Р(0,1)=1, Р(0,2)=0. (Здесь для удобства опущен нижний индекс 1). Наиболее короткий метод решения системы (4.3) - использование преобразований Лапласа, т.е.

функций вида База нормативной документации: www.complexdoc.ru Для преобразований Лапласа вместо системы дифференциальных уравнений мы получаем систему алгебраических уравнений, интегрирование по частям дает Итак, вместо (4.3) мы имеем (4.4) откуда (4.5) Теперь необходимо обратить преобразование Лапласа для P(s,1).

Обозначим s1 и s2 корни знаменателя в выражении (4.5) для P(s,1).

Нетрудно проверить, что оба они отрицательны и База нормативной документации: www.complexdoc.ru Значения s1,2 определяют из соотношения Для обращения преобразований Лапласа воспользуемся справочными данными и получим а надежность системы, т.е. вероятность того, что за время t не будет отказа P(t) = P(t,1) + P(t,2).

(4.6) На этом элементарном примере мы замечаем одно важное обстоятельство: функция надежности имеет экспоненциальный характер. Посмотрим, как ведет себя эта функция при большом t.

Для определенности выберем s2 s1, тогда при t ® База нормативной документации: www.complexdoc.ru (4.7) В дальнейшем убедимся, что экспоненциальный характер функции надежности очень часто возникает в приложениях и объясняется целым рядом причин, коренящихся в характере случайных процессов, описывающих соответствующие объекты.

Пример 3. Рассмотрим с этих позиций пример, приведенный в § 4.2. Для простоты предположим, что грунт может находиться в двух состояниях: нормальное, без нарушения структуры, с несущей способностью, обеспечивающей нормальную эксплуатацию здания;

нарушены физико-механические свойства, что может привести к неоднородным осадкам, просадкам фундамента и его разрушению.

Фундамент также может находиться в двух состояниях:

нормальном, без видимых нарушений, с однородной допустимой осадкой;

с потерянной несущей способностью вследствие разрушения полностью или части фундамента.

Вся система будет иметь четыре варианта состояний: 1 нормальное состояние грунта и фундамента;

2 - нарушены физико механические свойства грунта и несущая способность фундамента;

3 - нормальное состояние грунта, но фундамент разрушен и потерял несущую способность;

4 - нарушены физико-механические свойства грунта, и фундамент утратил несущую способность.

Критическое множество Q в этом случае содержит два состояния: (4.3) и (4.4). Граф переходов из состояния в состояние выглядит, как показано на рис. 4.7.

База нормативной документации: www.complexdoc.ru Рис. 4.7. Граф переходов Состояния 3 и 4 образуют критическое множество Пусть t1 - время, в течение которого в грунте не возникает опасных изменений;

t2 - время между возникновением опасных нарушений физико-механических свойств грунта и потерей несущей способности фундамента;

- среднее значение ti (i = 1,2).

Переход из состояния 1 в состояние 3 означает разрушение фундамента, не связанное с изменениями состояния грунтового основания.

Обозначим t3 - продолжительность нормального функционирования фундамента при условии, что грунт не подвергался никаким нарушениям.

В соответствии с развитой ранее техникой получим следующие значения для интенсивностей переходов База нормативной документации: www.complexdoc.ru (4.8) Система уравнений с начальными условиями Р1(0) = 1, Р2(0) = 0.

Решение:

и вероятность отсутствия отказа до t (4.9) Мы видим, что полученная зависимость (4.9) также носит экспоненциальный характер.

Небольшое усложнение модели позволяет учесть большое число состояний.

База нормативной документации: www.complexdoc.ru Основные трудности в применении предложенного метода состоят не в объеме вычислений, а в получении необходимых исходных данных.

Если имеется достаточное число наблюдений за поведением однотипных объектов, то величины, обратные интенсивности переходов, не что иное, как среднее время пребывания объекта в соответствующем состоянии.

Оценка среднего значения случайной величины по наблюдениям - это достаточно элементарная задача математической статистики.

Если объект уникален или нет достаточного числа наблюдений, математическая статистика помочь не может. Здесь можно использовать физико-механические методы.

Пусть, например, выход системы из данного состояния определяется значением некоторого числового параметра x(t) (осадка фундамента, степень уплотненности грунта, деформация конструкций и т.п.). Обычно x(t) - случайный процесс. Например, на конструкцию здания воздействуют следующие факторы: 1 нагрузки (постоянные, временные, динамические, аварийные);

- окружающая среда (ветер, атмосферные осадки, солнечная радиация, неравномерные осадки оснований, землетрясения);

3 внутренние источники напряжений (температура, усадки, ползучесть, перераспределение нагрузок).

Наличие большого числа факторов свидетельствует о том, что x(t) гауссовский процесс. Выход системы из состояния возникает тогда, когда значение характеристики x(t) превышает некоторый заданный уровень (например, нагрузка на несущие конструкции становится больше допустимой). Тогда нам нужно найти среднее время, за которое процесс x(t), выйдя из точки т, впервые пересечет уровень R. Эта задача имеет решение для целого ряда процессов.

§ 4.5. Асимптотические методы в оценке надежности сложных систем Оценка надежности сложной системы не только представляет значительные вычислительные трудности, но и требует большого числа данных, сбор которых сопряжен с большими затратами, а База нормативной документации: www.complexdoc.ru иногда просто невозможен. Однако есть широкий класс сложных систем, очень часто встречающихся в практике, для которых работают достаточно точные приближенные оценки.

Математические утверждения, в которых изучается предельное поведение объекта в предположении, что какой-то из параметров, описывающих его функционирование, мал (велик), носят название асимптотических. Необходимо изучать надежность сложной системы в предположении малости вероятности отказа за конечный промежуток времени. Более точное описание ситуации следующее.

Пусть X(t) = (x1(t),...,xn(t)) - процесс, описывающий функционирование изучаемого объекта, как и ранее Q критическое подмножество в фазовом пространстве. Мы предполагаем, что процесс X(t) обладает так называемым свойством регенерации (восстановления). Описательно это означает следующее: существует неубывающая последовательность случайных моментов времени 0 = t0 t1 t2,... такая, что в момент tп все стохастические свойства процесса X(t) такие же, как и в момент t0, а значения процесса до момента tп не влияют на его будущие значения. Очень часто случайные моменты tп - это моменты попадания X(t) в какое-то состояние.

Например, если мы предполагаем, что капитальный ремонт здания переводит его с точки зрения надежности в некое первоначальное состояние, то моменты окончания ремонтов - это точки регенерации. Следовательно, развитая далее теория применима для ремонтируемых объектов, которые на протяжении их эксплуатации неоднократно восстанавливают свои надежностные характеристики. Можем считать, что траектория процесса X(t) разбивается на циклы (их называют периодами регенерации), после каждого цикла стохастический процесс X(t) как бы начинается заново. Наглядно это можно изобразить, как показано на рис. 4.8.

Рис. 4.8. Периоды регенерации объекта в результате ремонтно восстановительных работ База нормативной документации: www.complexdoc.ru На каждом периоде регенерации (в нашем случае между ремонтами) возможен отказ системы (например, снижение несущей способности фундамента). Обозначим вероятность этого события q. Асимптотические результаты для сложной системы верны, когда q мало (математически q ® 0). Тогда в достаточно широких предположениях асимптотика вероятности отсутствия отказов в течение времени t имеет вид (4.10) где t - средняя длина периода регенерации (у нас - среднее время между капитальными ремонтами). Заметим, что среднее время эксплуатации системы Т » t/q, так что в формуле (4.10) можно записать (4.11) Основное достоинство этого результата в том, что требуется ограниченное число параметров. В самом деле, среднее время эксплуатации строительного объекта Т до того, как он придет в полную негодность, для серийных объектов можно оценить. Для уникальных объектов следует пользоваться формулой (4.10). Здесь требуются два параметра: t и q, причем t - среднее время между ремонтами - обычно легко оценивается. Трудность - в оценке параметра q. Это достаточно сложная математическая проблема, далеко выходящая за рамки настоящей работы, тем не менее далее предложим один прием для вычисления Т.

База нормативной документации: www.complexdoc.ru Другое достоинство асимптотического подхода в том, что формулы (4.10) и (4.11) дают хорошее приближение для гораздо более широкого класса процессов, чем указано ранее.

В качестве примера 4 рассмотрим систему «основание фундамент» (рис 4.9). Интерпретируя модель «основание фундамент», будем учитывать три состояния системы: 1 нормальное состояние для грунта и фундамента;

2 - нарушение свойств грунта и нормальное состояние фундамента;

3 - потеря несущей способности фундамента (критическое состояние).

Мы несколько изменим граф переходов (рис. 4.10).

Рис. 4.9. График функции надежности для различных времен Т эксплуатации объекта до его разрушения для примера Рис. 4.10. Граф переходов для примера Состояние 3 является критическим множеством Если b2 0, то это означает, что при нарушении свойств грунта с вероятностью База нормативной документации: www.complexdoc.ru происходит его успешное восстановление. Так же, как в примере 1, (4.12) (4.13) только из-за наличия g1, корни s1 и s2 вычисляются по следующей зависимости Формулы (4.12) и (4.13) дают точное решение для модели. Мы имеем дело с восстанавливаемой системой, и асимптотическое выражение должно получаться в предположении g1 ® 0, a2 ® 0.

Чтобы упростить выражение, положим g1 = 0, а a2 ® 0. Понятно, что предположение g1 0 вносит не принципиальные, а чисто технические трудности. Итак, при a2 ® 0 имеем асимптотику корней База нормативной документации: www.complexdoc.ru Отсюда и поэтому и функция надежности системы может быть описана в следующем виде (4.14) Мы получили результат, вытекающий из общих математических теорем. Одновременно можно оценить среднее время эксплуатации системы как База нормативной документации: www.complexdoc.ru Напомним смысл параметров:

- среднее время до возникновения в грунте опасных нарушений физико-механических свойств;

(a2 + b2)-1 = q - среднее время существования грунта в таком состоянии либо до разрушения фундамента, либо до начала восстановительных работ;

- вероятность того, что восстановительные работы начнутся раньше, чем разрушится фундамент, и они будут успешными.

В терминах, q, р формула (4.14) примет вид (4.16) В заключение этого параграфа заметим, что основное достоинство асимптотического метода состоит в том, что на процесс не накладывается никаких условий, кроме наличия восстановления (или регенерации), что характерно для большинства строительных объектов.

§ 4.6. Оценка среднего времени до возникновения отказа Для многих практически важных случаев функция надежности может быть оценена, если известно среднее время достижения критического множества, т.е. среднее время эксплуатации объекта до полной потери несущей способности. Вернемся к модели, описанной в § 4.1.

База нормативной документации: www.complexdoc.ru Пусть т(х) - среднее время до попадания в множество Q из состояния. Для функций т(х) выполняется система уравнений (4.17) Эта система линейных алгебраических уравнений состоит из конечного множества уравнений, так что ее решение не представляет собой значительных трудностей.

Пример 5. Для наглядности рассмотрим объект, описанный ранее, с графом переходов (рис. 4.11).

Рис. 4.11. Граф переходов для примера Здесь База нормативной документации: www.complexdoc.ru Система (4.17) принимает вид откуда (4.18) Если g1 = 0, a2 ® 0, как это было в предыдущем параграфе, то асимптотика среднего времени эксплуатации (4.19) что совпадает с зависимостью (4.15).

§ 4.7. Иерархические модели надежности Метод наиболее вероятных траекторий Асимптотические методы при оценке надежности объектов применимы, когда имеются неоднократные восстановления (регенерации) объекта.

База нормативной документации: www.complexdoc.ru Если предположить, что объект не ремонтируется или ремонты не возвращают его в первоначальное состояние, а только задерживают в том, в котором он уже находился, то состояния координат процесса могут быть перенумерованы таким образом, что с течением времени их значения только увеличиваются.

На рис. 4.12 показана типичная траектория такого процесса.

Рис. 4.12. Пример траектории иерархического процесса По каждой координате возможно только увеличение. На рис.

4.12 показано движение вправо и вверх, но не вниз и влево.

Процессы такого рода никогда не возвращаются в состояние, в котором они уже были.

Граф переходов таких процессов не имеет петель и выглядит, как показано на рис. 4.13.

База нормативной документации: www.complexdoc.ru Рис. 4.13. Граф переходов в различные состояния Такие процессы можно назвать иерархическими, поскольку все множество состояний разбивается на классы К1, К2,..., Ki и движение возможно только из одного класса в другой или в критическое множество (рис. 4.14).

Рис. 4.14. Иерархический процесс К - классы состояний Задачи теории надежности для таких процессов весьма своеобразны, и для них не работает асимптотическая теория.

Сразу заметим, что система (4.1) может быть решена рекуррентно.

В самом деле, введем двойную нумерацию для состояний, перенумеровав классы и состояния внутри класса, так что состояние (i,j) означает i-е состояние j-го класса. При такой нумерации вместо рис. 4.13 будем иметь схему, представленную на рис. 4.15.

Рис. 4.15. Пример разбиения на классы для иерархической системы Пусть База нормативной документации: www.complexdoc.ru - среднее время пребывания процесса в состоянии (i,j), a вероятность перехода из состояния (l,j-1) в состояние (i,j), т.е. из состояния l класса j-1 в состояние i класса j.

Обозначим Pi,j(t) - вероятность того, что до момента t не было попадания в Q и в момент t процесс находился в состоянии i класса j. Тогда вместо системы (4.1) получаем (4.20) С начальным условием Р11(0) = 1, Рij(0) = 0, ij 1. Мы считаем, что класс К1 состоит из одного состояния и движение начинается из него.

Система (4.20) может быть решена последовательно, так как справедлива рекуррентная формула (4.21) С самого начала мы знаем вероятность P11(t), затем по формуле (4.21) находим вероятности состояний второго класса, потом третьего, пока не переберем все классы. Функция надежности в этом случае может быть оценена следующей зависимостью База нормативной документации: www.complexdoc.ru (4.22) Формула (4.21) показывает также, что P(t) будет представлять линейную комбинацию экспонент.

Отметим также, что для объектов описанного рода можно рассматривать aij как функции от t, что значительно расширяет круг приложений этой модели.

Значительно упрощается для данных моделей и вычисление среднего времени достижения критического множества, т.е.

времени безаварийной эксплуатации. Пусть m(i,j) - среднее время достижения критического множества из состояния i класса j. Тогда (4.23) где l - номер последнего класса. Для других классов имеем рекуррентное соотношение (4.24) Формулы (4.23) и (4.24) позволяют последовательно вычислить m(i,j). Пример 1 превращается в иерархическую модель, если b2 = 0, т.е. имеет граф переходов (рис. 4.16).

База нормативной документации: www.complexdoc.ru Рис. 4.16. Граф переходов для иерархических систем В этой простейшей модели имеются два класса К1 и К2, каждый из которых содержит по одному состоянию. Тогда (4.25) и надежность системы P(t) = P1(t) + P2(t).

(4.26) Среднее время достижения критического множества из состояния i Иерархическая модель позволяет получить оценки для среднего времени достижения уровня и в более сложных случаях, когда имеются системы с регенерацией. Мы знаем, что для оценки этого времени необходимо знание двух чисел: t - среднее время периода регенерации и q - вероятность достижения критического множества на периоде регенерации.

База нормативной документации: www.complexdoc.ru Первое из этих чисел обычно нетрудно найти. Вся проблема во втором. В ряде математических работ ясно и наглядно показано, что основной вклад в q вносят так называемые монотонные траектории, грубо говоря, траектории без петель. Но это и означает иерархичность системы. Более подробно с этим методом можно познакомиться в указанной литературе. Мы же продемонстрируем его применение на следующих примерах.

Система с графом переходов (рис. 4.17). Здесь q удается найти в явном виде (4.26) Более сложная система с графом переходов (рис. 4.18). Точки регенерации - моменты возвращения в первое состояние.

Рис. 4.17. Граф переходов из состояния для примера Рис. 4.18. Граф переходов из состояния для примера В качестве оценки для q берем траектории, не имеющие петель.

Перечислим их:

1 ® 4, 1®2® 4, 1®2® 3®4.

I II III База нормативной документации: www.complexdoc.ru Вероятности этих траекторий так что q » P(I) + P(II) + P(III).

(4.28) На самом деле есть еще траектория типа 1 ® 2 ® 3 ® 4, но ее вероятность существенно меньше вероятностей уже указанных траекторий.

Результаты аналитических исследований позволили по-новому подойти к оценке надежности зданий за период длительной эксплуатации. При этом здание рассматривается как сложная взаимосвязанная система. Рассмотренные математические модели могут использоваться не только для прогнозирования надежности зданий в период эксплуатации, но и в случаях, когда требуется осуществить комплекс реконструктивных работ различной степени сложности. Установлены способы оценки входящих в модели параметров, которые преимущественно базируются на результатах статистической обработки наблюдений в сочетании с методами строительной механики и теории случайных процессов.

Установлены области рационального применения исследуемых моделей с учетом старения материала конструктивных элементов, наличия восстановленных свойств объекта после ремонтов с постоянно ухудшающимися свойствами конструктивных элементов и т.п.

Методический подход к оценке функции надежности представлен материалами в таблице 4.1.

Таблица 4. Методики оценки функции надежности P(t) реконструированных зданий База нормативной документации: www.complexdoc.ru Способы оценки входящих в Предположения Модели и методы модель параметров I. Предложение 1. Цепь Маркова. Метод 1.

экспоненциальности дифференциальных уравнений Статистическая распределения всех обработка случайных величин результатов наблюдений за аналогичными объектами.

2. Методы строительной механики в сочетании с теорией случайных процессов II. Учет старения 2. Цепь Маркова с параметрами, 1.

элементов в зависящими от времени. Метод Статистическая предположении дифференциальных уравнений обработка экспоненциальности результатов наблюдений за аналогичными объектами.

2. Методы строительной механики в сочетании с теорией случайных процессов.

3. Метод наименьших квадратов База нормативной документации: www.complexdoc.ru III. Наличие Модель - регенерирующий процесс. 1. Оценка восстановленных Асимметрические методы среднего свойств объекта времени после ремонтов. эксплуатации Малая вероятность объекта по аварии между наблюдениям за ремонтами однотипными объектами.

2. Оценка среднего времени до аварии с помощью алгебраических уравнений.

3. Метод наиболее вероятностных траекторий IV. Движение только Иерархическая модель. Рекуррентная 1.

по монотонным формула для вычисления вероятностей Статистическая траекториям, т.е. состояния обработка нет регенерации, результатов свойства объекта наблюдений за постоянно аналогичными ухудшаются объектами.

2. Методы строительной механики в сочетании с теорией случайных процессов.

3. Метод средних значений с помощью База нормативной документации: www.complexdoc.ru решения системы алгебраических уравнений Она включает:

раздел предположений, которые позволяют учитывать различный характер случайных величин воздействия и изменения свойств реконструируемого объекта;

математические модели и методы, приемлемые для каждого конкретного случая;

способы оценки входящих в модель параметров.

Как будет показано ниже, исследованные модели и методы решения адекватно описывают процессы снижения надежности систем как в период длительной эксплуатации, так и после проведения восстановительных работ (реконструкции).

§ 4.8. Пример оценки надежности реконструируемого здания Анализ надежности реконструируемых зданий рационально проводить с применением численных методов решения уравнений.

Наиболее простой является двухэлементная система «основание - фундамент», на примере которой покажем ее количественные характеристики надежности в зависимости от времени эксплуатации и состояния элементов. Выбор данной системы неслучаен, так как она определяет прежде всего необходимость и объем проведения восстановительных работ для обеспечения заданного уровня надежности здания в целом, а также позволяет прогнозировать поведение системы во времени. В то же время эта система является наиболее ответственным элементом здания, определяющим его эксплуатационную надежность и долговечность. Зависимость (4.9) может быть распространена на многоэлементные системы, включающие стены перекрытия и другие несущие конструкции. При этом учитываются соответствующие графы переходов.

База нормативной документации: www.complexdoc.ru В качестве исходных данных берутся следующие параметры: t - среднее время от момента постройки до момента, когда в грунте возникают опасные физико-механические изменения;

t2 - среднее время между возникновением опасных нарушений физико механических свойств грунта и потерей несущей способности фундамента;

t3 - средняя продолжительность функционирования фундамента при условии, что грунт не подвергается никаким нарушениям. Для расчетов брались следующие значения параметров (в годах) t1 = 20;

30;

40;

50;

t2 = 10;

20;

50;

t3 = 50;

100.

Таким образом, получены 24 кривые, приведенные на рис. 4.19.

База нормативной документации: www.complexdoc.ru Рис. 4.19. Графики функций надежности в Р-мерном пространстве Анализ показывает, что функция надежности монотонно убывает со временем. Кроме того, все кривые в промежутке между 30 и 50 годами меняются медленно, а после 60 лет ведут себя как экспоненты.

База нормативной документации: www.complexdoc.ru При выполнении реконструктивных работ без изменения объема здания и технологических нагрузок, т.е. когда сохраняется прежняя расчетная схема, оценка надежности производится по зависимости (4.9) с введением временных параметров, отвечающих уровню конструктивно-технологических решений.

Пусть, например, в возрасте t лет здание подвергается реконструкции, и при этом проводятся работы по укреплению фундаментов и грунтов основания. Результат этих работ таков, что параметры t1, t2, t3 принимают значения. Тогда функция надежности реконструируемой системы получается в результате склеивания двух кривых где a1, a2, Р12 находятся по формулам (4.8), а - по тем же формулам с заменой ti на (i = 1,2,3).

На рис. 4.20,а приведены графики функции надежности здания до реконструкции и после проведения реконструктивных работ.

База нормативной документации: www.complexdoc.ru Реконструкция проводится в возрасте 100 лет, и значения после реконструкции приближаются к первоначальным.

Рис. 4.20. Графики изменения показателя надежности зданий до и после реконструкции а - при сохранении конструктивной схемы без изменений строительного объема;

б - то же, при усилении конструктивных элементов и использовании встроенных строительных систем Анализ графиков функций надежности показывает, что в целом система при начальной функции надежности, равной единице, База нормативной документации: www.complexdoc.ru постепенно снижает этот показатель до определенного минимума, который является предельным и служит основанием для проведения восстановительных (реконструктивных) работ.

Продолжительность реконструкции обеспечивает восстановление первоначальных характеристик, но с некоторым снижением надежности, которое является следствием длительной эксплуатации некоторых невосстанавливаемых элементов здания.

Изменение надежности после реконструктивного периода с незначительными отклонениями повторяет характер кривых дореконструктивного периода эксплуатации здания.

Более низкая степень снижения показателя надежности (рис.

4.20,б) после реконструкции достигается в результате замены сменяемых конструкций на более долговечные, усиления фундаментов, стен, замены перекрытий и т.п. В совокупности комплекс реконструктивных работ повышает эксплуатационную надежность и продляет срок службы здания,обеспечивая менее интенсивное падение показателя надежности. Как правило, повышение капитальности конструктивных элементов способствует безотказной работе здания в достаточно большом промежутке времени.

Полученные зависимости при использовании достаточного количества статистических данных позволяют прогнозировать снижение надежности элементов и здания в целом, а при возникновении экстремальных условий - аварийные ситуации.

Таким образом, с учетом случайного характера воздействия на строительные конструкции предложена и изучена физическая модель надежности реконструируемых зданий. При этом необходимо учитывать две группы факторов: внутреннего характера, включая режимы эксплуатационного воздействия, а также внешнего, существенно влияющих на изменение физико механических характеристик конструктивных элементов.

Экспоненциальный характер снижения надежности во времени практически преобладает для всех типов зданий, дойдя до порогового значения (отказа), после предотвращения которого (восстановления) система приобретает требуемую надежность.

Характер возникновения отказов зависит от режимов эксплуатации зданий. Как правило, имеют место последовательные и постепенные отказы, и только в критических случаях наблюдаются внезапные отказы, вызванные потерей несущей способности конструктивных элементов в короткий срок База нормативной документации: www.complexdoc.ru эксплуатации. Они являются критическими и приводят к потере работоспособности элементов или в целом здания.

Анализ надежности и долговечности реконструируемых зданий должен опираться на описание функционирования объекта как сложной системы. Математически это означает рассмотрение многомерных случайных процессов. При этом отказ возникает при попадании этого процесса в некоторое критическое множество.

При наличии ремонтных работ, предполагающих полное восстановление объекта с точки зрения надежностных характеристик, функция надежности хорошо приближается к экспонентной. Для использования этого результата необходимо знать два параметра: среднее время между восстановительными работами и вероятность отказа в течение этого промежутка времени.

В случаях когда ремонтные работы либо не ведутся, либо не полностью восстанавливают объект с точки зрения его надежностных характеристик, эти параметры с течением времени только ухудшаются. В качестве модели, описывающей функционирование таких объектов, предлагаются иерархические процессы. Для них функция надежности вычисляется с помощью рекуррентной формулы.

Предложенные методики позволяют оценивать долговечность зданий до и после реконструкции при наличии довольно большого числа исходных данных. Часть из них может быть получена на основании статистических данных, а часть - с использованием результатов натурных обследований, расчетных методов строительной механики в сочетании с теорией случайных процессов. Оценка надежности и долговечности реконструированных зданий должна учитывать интенсивность различных воздействий внешнего и внутреннего характера.

База нормативной документации: www.complexdoc.ru ГЛАВА ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНОЛОГИИ И ОРГАНИЗАЦИИ РЕКОНСТРУКЦИИ ЗДАНИЙ § 5.1. Общая часть Долговечность зданий и их способность в полной мере отвечать назначению достигаются благодаря комплексу организационных и технических мероприятий по содержанию и своевременному восстановлению конструктивных элементов, инженерных систем и оборудования. Этот комплекс работ является системой планово предупредительных ремонтов. Существуют текущий и капитальный ремонты. Они подразделяются на планово предупредительный (профилактический), аварийный (непредвиденный), текущий ремонт, планово-предупредительный (комплексный) и выборочный капитальный ремонт.


Текущий ремонт состоит в систематически проводимых работах по предохранению частей здания и оборудования от преждевременного износа и ликвидации возникающих мелких повреждений и неисправностей.

Капитальный ремонт заключается в восстановлении эксплуатационной надежности всех конструкций, санитарно технических систем и инженерного оборудования в связи с их физическим или моральным износом.

При каждом очередном плановом капитальном ремонте состав восстанавливаемых элементов меняется, т.к. межремонтные сроки службы конструкций, инженерных систем и оборудования различны. В соответствии с действующими нормативами периодичность восстановительных работ различна и зависит от долговечности конструктивных элементов. Например, через девять лет с начала эксплуатации здания ремонтируют крышу, фасады, лестничные клетки, систему горячего водоснабжения и т.д.

База нормативной документации: www.complexdoc.ru Через очередные девять лет ремонтируются система отопления, водоснабжения и канализации, электрооборудования, элементы благоустройства.

Работы текущего и капитального ремонтов не предусматривают перепланировки помещений и изменения объема здания.

Модернизация зданий предусматривает его переустройство с частичным изменением планировочных решений, снижением уровня физического и морального износа как конструктивных элементов, так и инженерного оборудования. При модернизации зданий их габариты и объем остаются неизменными.

Основная цель модернизации состоит в повышении эксплуатационной надежности зданий и продлении жизненного цикла.

Санация зданий состоит из комплекса ремонтно восстановительных работ, отвечающих современным требованиям СНиП, без изменения планировочных решений. В состав работ данного цикла входят: повышение теплоизоляции наружных стен путем замены оконных и балконных заполнений, утепления стенового ограждения;

выполнение кровельных работ с утеплением чердачного пространства;

замена морально изношенного инженерного оборудования, сетей отопления и водоснабжения;

производство внутренних ремонтно восстановительных работ;

создание архитектурной выразительности фасадных поверхностей.

Реконструкция зданий представляет собой их переустройство с изменением планировочных решений, надстройкой и пристройкой дополнительных объемов, с изменением назначения, повышением эксплуатационной надежности и долговечности. При реконструкции достигаются продление жизненного цикла зданий, повышение энергоэффективности, ликвидация физического и морального износа.

Роль технологии в процессах реконструкции зданий достаточно велика. Она объединяет простые и сложные строительные процессы, различающиеся по основным элементам производства.

Эффективность технологий зависит от уровня взаимодействия процессов, современных средств механизации, использования новых материалов.

База нормативной документации: www.complexdoc.ru Производство строительно-монтажных работ по реконструкции основывается на ряде общих принципов, к числу которых относятся:

- технология отдельных строительных процессов должна соответствовать современному уровню производства и обеспечивать строительную продукцию, отвечающую требованиям норм и стандартов;

- ведущим строительным процессом является технологический процесс возведения или усиления несущих конструкций здания;

- возведение несущих конструкций должно обеспечивать геометрическую неизменяемость, пространственную устойчивость и прочность отдельных частей и здания в целом;

- ведущий строительный процесс осуществляется в полной технологической увязке с производством смежных видов работ;

- ведущие процессы осуществляются поточными методами производства работ, обеспечивающими максимальное совмещение сопутствующих процессов и сокращение сроков производства реконструктивных работ;

- каждый специализированный поток оснащается грузоподъемным механизмом, комплектом технологических средств, инструментом и инвентарем;

- материальные ресурсы, необходимые для производства работ, должны отвечать параметрам современных технологий;

- технологические процессы должны соответствовать экологическим требованиям и не наносить ущерб окружающей среде.

Технология реконструктивных работ, как правило, связана с усилением, разборкой ограждающих или несущих конструкций, надстройкой и обстройкой зданий. Это обстоятельство требует разработки методов и принятия прогрессивных технологий, снижающих возможность потери устойчивости отдельных элементов и здания в целом.

Фактор безопасности жильцов и рабочих существенно влияет на принятие технологий, уровень их механизации и методы База нормативной документации: www.complexdoc.ru производства работ, особенно при реконструкции зданий без отселения или с частичным отселением жильцов.

В первую очередь это относится к размещению кранов, подъемников, бетононасосов и др. технических средств, работа которых связана с перемещением грузов в определенном радиусе действия, и к наличию опасных зон.

Должны приниматься технические решения, снижающие затраты ручного труда, повышающие производительность и исключающие негативное влияние на проживающих:

производственного шума, вибраций, запыленности и т.п.

Фактор стесненности существенно влияет на принятие технологий, методы производства работ, степень механизации, обеспечивающие сокращение трудоемкости и продолжительность строительных процессов.

Одними из главных требований технологического процесса являются высокий технико-экономический уровень, стабильность производственных показателей, технологичность и конкурентоспособность технологий, что позволяет получать высокий уровень качества продукции.

На технологию реконструктивных работ решающее влияние оказывают соблюдение требований технологических карт, инструкций, руководств и пооперационный контроль качества работ инструментальными средствами.

Снижение продолжительности работ достигается использованием новых технологий и материалов, организационно технологическими приемами, основанными на поточных методах производства работ: частный поток - для простых процессов;

специализированный - для комплексных и объектный поток - для общих строительных процессов.

§ 5.2. Технологические режимы Главными параметрами, влияющими на технологические режимы при реконструкции зданий, являются:

- температурные пределы применения строительных материалов;

База нормативной документации: www.complexdoc.ru - температура и относительная влажность воздуха;

- скорость воздушных потоков;

- жизнеспособность технологий в зависимости от параметров окружающей среды;

- эксплуатационные режимы машин и механизмов.

В зависимости от используемых конструкций, материалов и полуфабрикатов в технологических процессах протекают физические, физико-химические, гидромеханические, механические и другие процессы, которые определяют условия работы. Эти условия и составляют технологические режимы.

Наибольшее влияние на технологические процессы оказывает температурный фактор, который ускоряет или замедляет химические реакции, связанные с набором прочности бетоном, раствором и другими материалами (рис. 5.1). Переход в зону отрицательных температур приводит к возникновению технологических перерывов, к повышенному расходу энергозатрат, увеличению продолжительности работ. В ряде случаев понижение температуры окружающей среды исключает использование тех или иных технологий. Многими техническими условиями на материалы регламентируются температура и относительная влажность. Отклонения от технологических регламентов приводят к снижению физико-механических характеристик и качества работ.

Рис. 5.1. Кривые набора прочности бетона в зависимости от температуры бетонной смеси База нормативной документации: www.complexdoc.ru Существенное влияние на качество работ оказывают технологические режимы динамического воздействия. Например, нарушение технологического регламента по вибрационной обработке бетонной смеси приводит к снижению плотности бетона конструкций, его однородности и прочности. При этом определяющими факторами являются продолжительность вибрирования, частота и амплитуда колебаний, а также геометрическое положение вибратора относительно опалубки (рис. 5.2). Отклонение от технологических режимов приводит к расслоению смесей при увеличении продолжительности вибрирования и снижению физико-механических характеристик конструкций при недостаточной продолжительности виброобработки.

Рис. 5.2. Изменение плотности слоев бетонной смеси в зависимости от продолжительности вибрирования (а) и распределение амплитуд колебаний от глубинного вибратора (б) Z - зона уплотнения бетонной смеси;

А1, А2 - амплитуда колебаний вибратора;

Zр - зона расслоения бетонной смеси Регламентированы режимы работы машин, механизмов и ручного механизированного инструмента. Их параметры и область допустимых отклонений содержатся в технических условиях и паспортах. Они учитываются при проектировании механизации строительных процессов. Температура, относительная влажность и скорость движения воздуха регламентируются не только техническими условиями на материалы, но и санитарными нормами, ограничивающими продолжительность пребывания рабочих или запрещающими производство работ.

База нормативной документации: www.complexdoc.ru § 5.3. Параметры технологических процессов при реконструкции зданий Производственный процесс реконструкции зданий является совокупностью простых и сложных технологических процессов, протекающих в пространстве и во времени.

Пространственным параметром служит фронт работ, состоящий из участков, захваток и делянок.


Организация строительного процесса в пространстве осуществляется путем разделения объемного пространства реконструируемого здания на участки и захватки, где в необходимой технологической последовательности выполняются строительные процессы бригадами или звеньями рабочих.

Участками являются части зданий, в пределах которых существуют одинаковые производственные условия, позволяющие применять одинаковые технические и технологические средства.

Захватками служат части зданий, на которых повторяются одинаковые комплексы строительных процессов. Они характеризуются примерно равными объемами работ, трудоемкостью, продолжительностью, составом и количеством строительных процессов. Фронт работ на захватках должен быть достаточным для одновременной работы бригады или звена рабочих. Строительные процессы на захватках должны совмещаться во времени, что обеспечивает снижение продолжительности работ при непрерывном производстве.

Развитие и функционирование технологических процессов в пространстве зависят от уровня реконструктивных работ, конструктивно-технологических решений, организации работ без отселения или с отселением жильцов.

При реконструкции зданий с отселением жильцов наиболее распространенной является вертикально-восходящая схема развития технологических процессов. При этом в качестве захватки принимается секция жилого дома или здания. Работы по усилению фундаментов, как правило, проводятся по горизонтально-продольной схеме, производство отделочных работ - по вертикально-нисходящей, утепление фасадных поверхностей по вертикально-восходящей (рис. 5.3).

База нормативной документации: www.complexdoc.ru Рис. 5.3. Развитие технологических процессов в пространстве а - вертикально-восходящая схема развития технологических процессов при замене перекрытий;

б - вертикально-нисходящая схема при выполнении отделочных работ;

в - горизонтально восходящая схема при утеплении фасадов При санации и реконструкции зданий без отселения жильцов используются различные технологические схемы, обеспечивающие безопасное производство и создание минимального дискомфорта для проживающих. Для каждого технологического процесса разрабатывается оптимальная схема производства работ, обеспечивающая максимальное совмещение во времени смежных процессов. Их осуществление производится параллельным, последовательным и поточными методами.

При реконструкции зданий строительные процессы имеют пространственные параметры, как правило, с неоднородными характеристиками по количеству захваток, направлению развития процессов, размеров захваток и т.п., что вызвано различными архитектурно-планировочными решениями зданий, степенью износа конструктивных элементов, методами реконструкции.

Несмотря на эти обстоятельства, принимается производство работ, базирующееся на максимальном использовании современных технологий, обеспечивающих высокие показатели эффективности:

трудоемкость, интенсивность производства, продолжительность, расход энергоресурсов, себестоимость работ и др.

База нормативной документации: www.complexdoc.ru § 5.4. Подготовительные работы До начала основных строительных работ должен быть выполнен цикл подготовительных работ. Его состав, уровень механизации, последовательность выполнения процессов зависят от принятой технологии производства работ.

При варианте с отселением жильцов осуществляется предоставление постоянного или временного жилья для расселения. Затем производят непосредственно цикл строительных подготовительных работ. К ним относятся:

- предварительная планировка площадок, обеспечивающая сток атмосферных осадков при отрывке котлованов под входы, лифтовые шахты, эркеры и другие конструктивные элементы;

- вскрытие асфальтобетонных покрытий для организации трасс перемещения механизмов, перекладки сетей и других элементов;

- устройство подготовок под площадки различного технологического назначения;

- установка временных бытовых помещений и складов;

- устройство временного забора, козырьков безопасности над выходами из здания в безопасные зоны;

- установка предупреждающих и запрещающих знаков у въезда, входов, проемов;

- отключение постоянных коммуникаций при варианте с отселением;

- перенос постоянных сетей, попадающих в зону производства земляных работ;

- подключение временного электро- и водоснабжения для нужд строительства;

- устройство крановых путей и монтаж кранов при варианте с отселением;

- устройство подъездных путей и стоянок под мобильные пневмоколесные краны;

База нормативной документации: www.complexdoc.ru - подготовка площадок и установка крышевых кранов;

- установка подъемников и других средств вертикального транспорта;

- устройство площадок для приема бетонной смеси, складирования материалов и полуфабрикатов.

Подготовительный цикл при реконструкции зданий старой постройки, требующий демонтажа отдельных конструктивных элементов и частей, кроме перечисленных работ включает мероприятия по обеспечению безопасного производства с целью исключения самопроизвольного обрушения конструкций, использование инвентарных мусоропроводов для удаления материалов разборки, специальных средств механизации для разрушения конструкций, предотвращение запыленности площадки и другие мероприятия.

При варианте без отселения жильцов необходимо предусмотреть работы, обеспечивающие защиту здания от атмосферных осадков, возможного промерзания и протечек, связанных с производством работ на надстраиваемых этажах.

В подготовительный период и в процессе строительства следует выполнять натурные наблюдения по определению осадок, кренов и смещений подземной части как строящегося, так и близлежащих зданий, определять напряжения и деформации в грунтовом массиве.

§ 5.5. Механизация строительных процессов Механизация строительных процессов при реконструкции зданий определяется принятыми конструктивно технологическими решениями, технологией производства работ и стесненностью строительной площадки. В зависимости от уровня реконструктивных работ (с сохранением строительного объема, надстройкой этажей, пристройкой объемов), геометрических размеров и массы конструктивных элементов механизация основных технологических процессов осуществляется путем рационального использования кранов, грузопассажирских подъемников, бетононасосного транспорта, а также специальных грузоподъемных механизмов и средств малой механизации, База нормативной документации: www.complexdoc.ru обеспечивающих снижение трудозатрат, повышение производительности труда и сокращение продолжительности работ.

Определяющими факторами выбора средств механизации являются методы производства работ: устройство встроенного каркаса из сборных или сборно-монолитных конструкций, пристройка или надстройка здания из штучных, укрупненных плоских или объемных элементов и т.п.

Подбор грузоподъемных механизмов осуществляется исходя из геометрических размеров здания в плане и по высоте, в результате чего определяются параметры монтажных кранов: высота подъема крюка, вылет стрелы, длина кранового пути. В зависимости от массы перемещаемых грузов и требуемого вылета стрелы определяется его грузоподъемность. Выбор типа кранов и грузоподъемности определяется технологией производства работ и в первую очередь максимальной массой монтируемых элементов.

При выполнении реконструктивных работ с применением монолитного железобетона определяющими факторами служат масса опалубочных щитов и бадьи с бетонной смесью, при надстройке мансардных этажей из объемных блоков - их масса и габариты, при устройстве перекрытий - геометрические размеры и масса железобетонных панелей и т.п.

Для каждого грузоподъемного механизма осуществляется вертикальная и горизонтальная привязка к зданию с обеспечением устойчивой и безопасной работы. Для самоходных стреловых кранов на автомобильном или пневмошасси определяются места стоянок и проездов, а также площадки для складирования или укрупнительной сборки. Грузопассажирские подъемники различных систем располагаются по торцам и фасадам зданий. Их устойчивость и безопасность работы достигаются путем крепления к конструктивным элементам зданий.

Расположение грузоподъемных механизмов и схемы их движения являются неотъемлемой частью строительного генерального плана.

На различных стадиях производства работ возможно использование нескольких видов средств механизации. Их функционирование должно обеспечивать безопасное производство работ, различных технологических процессов и обслуживать База нормативной документации: www.complexdoc.ru определенные пространственные зоны в виде захваток, участков и рабочих мест.

Наиболее распространенными средствами механизации при реконструкции зданий с отселением жильцов являются башенные, башенно-стреловые, приставные, крышевые и пневмоколесные краны. Они отличаются грузоподъемностью, мобильностью и габаритными размерами.

Современные средства вертикального транспорта имеют достаточно широкий диапазон грузоподъемности, регулируемый вылет и длину стрелы. Это обстоятельство позволяет для различных технологических процессов применять на одном и том же объекте различные средства механизации.

Принципиальные схемы расстановки монтажных средств вертикального транспорта при реконструкции зданий с надстройкой этажей приведены на рис. 5.4.

База нормативной документации: www.complexdoc.ru База нормативной документации: www.complexdoc.ru Рис. 5.4. Технологические схемы размещения средств механизации при реконструкции зданий с надстройкой этажей и расширением корпусов а - самоподъемный кран;

б - башенный;

в - крышевой кран;

г мобильный кран на пневмоходу с телескопической стрелой;

д бетононасос с распределительной стрелой и башенным краном;

е лебедки для надвижки объемных блоков, механизм вертикального перемещения Наиболее распространенной является схема (рис. 5.4,б), когда в качестве грузоподъемного механизма используются башенные краны. В зависимости от конструктивно-технологических решений надстройки применяют башенные и башенно-стреловые краны грузоподъемностью до 8-10 т при надстройке из объемных элементов или сборного железобетона и 3-5 т при монолитном возведении.

В условиях стесненного производства работ используются технологические схемы, основанные на применении самоподъемных (рис. 5.4,а), приставных и крышевых кранов, располагаемых на усиленном перекрытии (рис. 5.4,в). При надстройке зданий объемными блоками мансардных этажей наиболее предпочтительным является использование мобильных авто- и кранов на пневмоходу с телескопическими стрелами, а также специальных подъемников и системы надвижки.

Выбор средств механизации осуществляется путем экономических расчетов по величине прибыли строительной организации.

В ряде случаев применение определенного типа крана диктуется стесненностью строительной площадки, а также конструктивным решением надстраиваемых этажей.

Наиболее распространенные типы кранов и область их рационального применения приведены в таблице 5.1.

Таблица 5. Высота Ширина Вылет Область № Наименование Грузоподъемность, подъема колей, стрелы, рационального п.п. кранов, марка т крюка, м м применения м База нормативной документации: www.complexdoc.ru I. Башенные краны 1 КБ-101.1 5 4,5 20 33 Надстройки зданий до 3- этажей 2 МСК-5-30 5 4,0 30 3 КБ-100.2 5 4,5 20 4 МСК3-5-20 5 4,0 20 5 КБ-100.3 8 4,5 35 48 Надстройка зданий с применением 6 КБ-160.2 8 6,0 25 60 тоннельной опалубки II. Приставные башенные краны 7 КБ-573, КБ-180 10 - 30-40 До 100 Надстройка м зданий с применением перекрытий из многопустотного настила 8 Башенные 1,1-3,0 4,0 До 45 До 90 Надстройка и краны фирмы обстройка POTAIN HDT-70 зданий из монолитного бетона в щитовой опалубке База нормативной документации: www.complexdoc.ru 9 Крышевой кран 1,0-4,0 3,5 До 30 До 30 Надстройка GMR HD 32 зданий с размещением крана на 10 Самоподъемные 5-8 - До 30 - перекрытии краны ТОРК1Т MD 185A III. Краны на пневмоходу 11 Поклейн До 23 Надстройка зданий из КС-Т473, Т-250, укрупненных А-331 плоских и объемных блоков 12 КС-4561, 4362, 16-25 2,6 10 13 Локомо А-335 До 35 3,2 - 30 То же КС- 14 Крупп КМК 20 2,5 - 26 »

15 Като NK-200S 22 2,5 - 36 »

IV. Автокраны База нормативной документации: www.complexdoc.ru 16 КС-2561, 6,3 2,6 12 12,0 Для обстройки КС-2572, зданий из объемных блоков и 17 СМК-10, 10,0 3,0 - 16,5 возведения КС-3575 эркеров из монолитного бетона 18 КС-3571 10,0 2,6 - 18, 19 КС-3471, 4572, 16 2,8 - 24, КС- Для подачи строительных материалов и конструкций используются подъемники грузоподъемностью 0,8-10 т (РЛ-1000, МГП-1000, ДВМ-1003/100, ПГПМ-4272). Наиболее эффективным является подъемник ПГПМ-4272, который снабжен короткой стрелой для подъема и размещения груза в кабине. Конструкция мачты предусматривает выход на крышу строящегося здания.

Для подъема материалов используются реечные грузовые подъемники ПГР-630, ПГ-800, ПГР-500 грузоподъемностью до 1,0 т.

Для перемещения крупногабаритных грузов подъемники оснащаются грузовой консолью, а подача материалов осуществляется в оконные проемы (рис. 5.5).

База нормативной документации: www.complexdoc.ru Рис. 5.5. Грузопассажирский подъемник ПГПМ-4272 (а) и вариант оснащения подъемника грузовой консолью (б) Транспортирование и подача бетонной смеси к месту укладки осуществляются с применением автобетононасосов и стационарных бетононасосов производительностью до 40 м /ч (Штеттер V315, Шеле М27/30, БН-80-20М и др.).

Наиболее рациональным является использование автобетононасосов при усилении фундаментов, замене перекрытий и других конструктивных элементов с подачей смеси через оконные и дверные проемы (рис. 5.6). Широко применяются средства малой механизации в виде ленточных транспортеров, мототележек, ручного механизированного инструмента.

Рис. 5.6. Подача бетонной смеси через оконные проемы автобетононасосами при возведении фундаментной плиты и перекрытий Особый интерес представляет использование манипуляторов для подъема и перемещения строительных грузов. При расположении на перекрытии они обеспечивают зону обслуживания в радиусе до 30 м.

Для подъема строительных материалов непосредственно в зону восстановительных работ на этаже используются краны с балочной стрелой, устанавливаемые в оконных проемах (рис. 5.7). Они обеспечивают подъем грузов и их перемещение с помощью тельфера вглубь помещений, что существенно снижает трудоемкость работ.

База нормативной документации: www.complexdoc.ru Рис. 5.7. Грузоподъемное устройство, устанавливаемое в оконном проеме 1 - емкость;

2 - опоры;

3 - тельфер;

4 - балка;

5 - ограничитель;

6 рукоять В зарубежной практике широко используются подъемники с наклонными направляющими для подачи мелкоштучных материалов. Они оснащены электролебедками и грузовыми тележками (рис. 5.8). Путем наращивания секций изменяется высота подачи материалов.

База нормативной документации: www.complexdoc.ru База нормативной документации: www.complexdoc.ru Рис. 5.8. Подъемник системы Lift (Германия) для подачи мелкоштучных материалов 1 - направляющие;

2 - электролебедка;

3 - грузовая тележка § 5.6. Технологическое проектирование Целью технологического проектирования является разработка рациональных организационно-технологических решений для выполнения строительных процессов, обеспечивающих выпуск строительной продукции в планируемые сроки и при минимальном использовании всех ресурсов.

Технология производства работ по реконструкции существенно отличается от нового строительства. Прежде всего, это связано с необходимостью использования существующих частей зданий, как правило, имеющих определенную степень физического износа. Это обстоятельство требует принятия мер по усилению или замене несущих или ограждающих конструкций, что, в свою очередь, влечет к комплексу работ по демонтажу и разборке частей зданий.

Стесненные условия производства работ не позволяют в полной мере использовать средства механизации, что приводит к увеличению доли ручного труда. Снижение несущей способности конструктивных элементов требует как временного, так и постоянного их усиления для обеспечения устойчивости зданий и безопасности производства работ.

Реконструкции зданий базируется на эффективном использовании капитальных вложений, инвестиций трудовых и материально-технических ресурсов, прогрессивных организационно-технологических решений. Она требует системного подхода, учитывающего организационно-техническую, технологическую и экономическую надежность производства, обеспечивающую снижение сроков строительства и максимальную прибыль от реализации проектов.

Методы организации и технологии реконструктивных работ должны быть адаптированы к условиям городской застройки и оптимизированы по основным показателям. При этом должен быть достигнут высокий уровень инженерно-технологической подготовки строительного производства.

Проекты производства работ База нормативной документации: www.complexdoc.ru Одним из основных этапов подготовки строительного производства является разработка проектов организации реконструкции (ПОР) и проектов производства работ (ППР). Они разрабатываются на базе рабочей документации, отражают качество организационно-технологического проектирования и включают подготовку и создание производственной базы, управление процессами реконструкции с учетом потребностей в материально-технических ресурсах, рабочих кадрах, складских и административно-бытовых помещениях, разработку прогрессивных методов ведения работ и технологий, базирующихся на создании долговременных строительных потоков и т.п.

Проект организации реконструкции квартала микрорайона застройки или отдельно стоящего здания включает:

календарный или сетевой график производства работ с определением очередности реконструкции отдельных зданий и комплексов;

строительные генеральные планы на основные периоды реконструкции;

организационно-технологические решения для конкретных зданий, включая схемы производства работ;

потребность в конструкциях, материалах и полуфабрикатах с распределением материально-технических ресурсов по календарным срокам с учетом очередности реконструкции зданий;

потребность в основных машинах, механизмах, инвентаре и транспортных средствах, привязанных к календарному плану производства работ;

потребность в основных категориях рабочих кадров и их распределение во времени в общем цикле реконструктивных работ;

обоснование решений, принятых в проекте организации реконструкции. Основным документом, отражающим технологию производства работ, является ППР. Проекты производства работ разрабатываются на отдельные строительные циклы: разборка и демонтаж отдельных конструктивных элементов здания;

усиление или восстановление несущей способности фундаментов и других конструктивных элементов;

производство работ по замене База нормативной документации: www.complexdoc.ru перекрытий, пристройке и надстройке, специальных и отделочных работ.

В состав ППР входят технологические карты.

Технологические карты разрабатывают на отдельные или комплексные процессы, результатом выполнения которых являются законченные конструктивные элементы или части зданий. Технологические карты предусматривают применение новых технологических процессов или адаптацию известных к условиям реконструкции зданий, определяют уровень качества работ, совмещение строительных процессов, соблюдение правил охраны труда и безопасного производства работ.

Технологические карты, адаптированные к реконструируемому объекту и местным условиям, включают следующие разделы:

область применения;

технология и организация строительного процесса;

контроль качества работ;

технико-экономические показатели;

материально-технические ресурсы.



Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |   ...   | 9 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.