авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |

«База нормативной документации: А.А. Афанасьев, Е.П. Матвеев РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ Часть I Технологии восстановления эксплуатационной надежности жилых зданий ...»

-- [ Страница 7 ] --

База нормативной документации: www.complexdoc.ru При одностороннем расположении свай со стороны подвальной части используются комплект механизмов для разборки кладки при устройстве ниш, опалубочные системы для возведения ростверка, бетононасосный транспорт. Стесненность условий производства требует высокой квалификации рабочих, соблюдения технологических регламентов и применения техники безопасности.

При значительном углублении подвальной части зданий технологические схемы производства работ включают (рис. 6.29):

подготовку участка фундамента под усиление и устройство железобетонного ростверка на уровне существующей отметки подвальной части, который служит опорной частью для размещения гидравлических домкратов для погружения элементов механических свай;

монтаж домкратов и вдавливание элементов свай в грунт на проектную отметку;

армирование и омоноличивание участка фундамента, в результате чего образуется стена подвальной части требуемого заглубления;

разработку грунта, устройство бетонной подготовки, гидроизоляции и монолитного железобетонного пола подвала.

Рис. 6.29. Схема усиления фундаментов многосекционными сваями с двусторонним (а) и односторонним размещением (б) 1 - фундамент;

2 - стена;

3 - распределительная балка;

4 – гидравлический домкрат;

5 - короткие пустотелые элементы;

6 База нормативной документации: www.complexdoc.ru железобетонная опорная плита, размещаемая в теле фундамента;

7 - гидравлическая насосная станция Производство работ осуществляется по захваткам 4,5-6,0 м, что исключает дополнительные осадки старых фундаментов и связанное с этим процессом нарушение сплошности кладки.

Другим вариантом усиления фундаментов и углубления подвальной части является технология устройства набивных свай, размещаемых на консольной части железобетонного ростверка, размещаемого в теле существующего фундамента (рис. 6.30).

Рис. 6.30. Технология усиления фундаментов и заглубления подвальных частей зданий а, б - погружение свай;

а', б' - омоноличивание и углубление подвальной части;

1 - железобетонный опорный элемент;

2 гидравлический домкрат;

3 - инвентарная опалубка;

4 - элементы свай;

5 - штраба в фундаменте;

6 - монолитный участок Железобетонный ростверк выполняется с отверстиями, которые служат направляющими для размещения гидравлической системы вдавливания труб.

После погружения труб на проектную отметку осуществляются их дополнительное армирование и бетонирование.

База нормативной документации: www.complexdoc.ru Совместная работа старого фундамента и усиления в виде свай позволяют углубить подвальную часть на требуемую отметку, объединить сваи в единый ростверк, создав дополнительную стену подвала.

Рассмотренные технологии требуют большого объема ручного труда по устройству штраб, ростверка, консолей. Процесс погружения свай осуществляется из отдельных коротких элементов, что исключает применение механизированных способов ведения работ.

Наиболее распространенной технологией является подведение под существующие фундаменты отделанных столбчатых элементов (рис. 6.31), располагаемых в шахматном порядке, на глубину до 0,5 м ниже новой отметки пола подвала, с последующим их объединением в общий массив. Технология производства работ предусматривает отрывку грунта под подошвой фундамента короткими захватками длиной 1,2-1,5 м с устройством инвентарной опалубки в плоскости существующего фундамента и укладкой бетонной смеси.

Рис. 6.31. Углубление подвальных частей зданий путем подведения монолитных элементов фундаментов 1 - существующий фундамент;

2 - монолитная часть фундамента;

База нормативной документации: www.complexdoc.ru - опалубка;

4 - вибратор;

1-10 - технологическая последовательность подведения фундаментов Углубление фундамента осуществляется с интервалом в несколько захваток, что исключает дополнительную осадку.

После набора прочности бетоном не менее 50 % проектной осуществляются разработка грунта в прилегающих зонах и подведение промежуточных монолитных элементов фундамента.

Стесненные условия производства работ исключают использование механизированных средств отрывки грунта, что делает данную технологию весьма трудоемкой.

§ 6.3. Усиление фундаментов с устройством монолитных плит Способы и технологии усиления или восстановления несущей способности фундаментов определяются уровнем реконструктивных работ, а также методами создания новых архитектурно-планировочных решений. При критическом износе внутренних стен и перекрытий возникает необходимость усиления фундаментов с изменением расчетной схемы. В таких случаях экономически целесообразно принять комбинированную систему фундаментов: фундаменты для самонесущих стен и монолитная железобетонная плита для встроенных конструктивных элементов.

Передача нагрузки на монолитную плиту снимает ограничения по высоте и количеству надстроенных этажей. При этом в зависимости от состояния фундаментов наружных стен не исключаются их восстановление, усиление и укрепление основания подошвы рассмотренными ранее методами и технологиями.

Устройство монолитной фундаментной плиты предусматривает полный демонтаж конструктивных элементов внутри коробки здания, подготовку основания, устройств для объединения фундаментов стен с плитой с целью перераспределения нагрузок.

На рис. 6.32 приведены некоторые конструктивные решения, способствующие созданию устойчивых, малодеформативных систем, объединяющих фундаменты стен с монолитной фундаментной плитой. Они основаны на использовании анкерных устройств в виде металлических консолей в фундаментных стенах, База нормативной документации: www.complexdoc.ru которые затем объединяются с армокаркасами плит и замоноличиваются.

Рис. 6.32. Конструктивные решения сопряжений фундаментов наружных стен с монолитной фундаментной плитой а - с размещением анкеров в стене фундамента;

б - то же, под подошвой фундамента;

в - с подведением монолитной плиты под стену фундамента;

г - с размещением анкеров в стене фундамента и омоноличиванием с фундаментной плитой: 1 - фундамент наружных стен;

2 - сквозные отверстия в фундаменте;

3 металлический анкер из прокатной стали;

4 - монолитная железобетонная плита;

5 - бетонная подготовка;

6 - уплотненный грунт;

7 - гидроизоляция В каждом конкретном случае техническое решение может отличаться как конструктивной схемой, так и технологией производства работ. Наиболее простым вариантом является устройство в основании фундамента штрабы глубиной 0,3-0, толщины стены с последующим подведением монолитной армированной плиты. При этом арматурный каркас должен входить в штрабу, тем самым объединяя конструктивные элементы фундамента стены и монолитной плиты.

В местах размещения внутренних стен устраиваются дополнительные ленточные углубления с проектным армированием и омоноличиванием совместно с основным телом плиты (рис. 6.32). При устройстве фундаментов под колонны над База нормативной документации: www.complexdoc.ru поверхностью плиты устраиваются сборные или монолитные стаканы.

При достаточно больших нагрузках на общий фундамент возможно устройство свайного основания из буронабивных свай с последующим объединением их оголовков с монолитной плитой.

Такие решения, как показал опыт реконструктивных работ, экономически целесообразны и весьма технологичны. По сравнению с методами, основанными на увеличении или восстановлении несущей способности старых фундаментов, себестоимость работ снижается на 30-40 %, в то же время резко сокращается продолжительность работ вследствие возможности использования высокоэффективных машин и механизмов.

На рис. 6.33 и 6.34 в качестве примера приведены конструктивно-технологические схемы устройства монолитной плиты фундамента реконструируемого здания. Наличие большого фронта работ и отсутствие стесненности позволяют применять поточные методы производства работ и высокопроизводительное оборудование. Так, при подготовке основания используются самоходные вибротрамбующие плиты. Армирование осуществляется армокаркасами заводской готовности. Подача и укладка бетонной смеси - автобетононасосами производительностью 20-40 м /ч или с помощью бадьи и башенного крана. Большие размеры захваток обеспечивают нормальный фронт работ и возможность использования современных техники и технологии.

База нормативной документации: www.complexdoc.ru Рис. 6.33. Варианты переустройства ленточных фундаментов в плитные а - устройство сплошной плиты снизу подушек;

б - то же, сплошной плиты с балками на шпонках;

1 - фундамент;

2 монолитная плита;

3 - отметка верха пола подвала;

4 - рабочая арматура плиты;

5 - кирпичная плита;

6 - штрабы;

7 - подготовка под монолитную плиту;

8 - гидроизоляция База нормативной документации: www.complexdoc.ru Рис. 6.34. Технологические схемы укладки бетонной смеси в монолитные плиты фундаментов а - с подачей бетононасосным транспортом;

б - то же, башенным краном;

1 - бетоновоз;

2 - автобетононасос;

3 - распределительная стрела;

4 - бетонная плита;

5 - бадья;

6 - башенный кран Анализ трудоемкости работ по усилению фундаментов показывает, что в зависимости от конструктивного решения принятой технологии и производства работ этот показатель может колебаться в достаточно широких пределах (от 1,2 до 12 чел.-дн/ м3). В таблице 6.8 приведены статистические данные трудоемкости выполнения работ различных методов усиления фундаментов.

Таблица 6. Трудоемкость работ на 1 м № Методы усиления фундаментов фундамента (чел.-дн/м3) п.п.

1 Бетонными обоймами 3,0-5,0:

2 Железобетонными обоймами 3,5-6, 3 Методом токретирования 2,4-5, База нормативной документации: www.complexdoc.ru 4 Уширение фундаментов с 1,8-5, использованием металлических связей 5 Свайным основанием 4,6-10, 6 Короткими сваями в раскатанных 1,2-2, скважинах 7 Сваями с электроимпульсным 2,0-2, уплотнением бетона (РИТА) 8 Корневидными сваями 5,0-12, 9 Восстановление фундаментов с 2,8-4, устройством монолитной плиты 10 Замена фундаментов 7,0-18, Несмотря на значительный разброс трудоемкости производства работ, на каждом объекте возможно применение только определенного метода усиления, который учитывает конкретные условия. При возможности использования технология усиления с помощью свай в раскатанных скважинах является наиболее эффективной и экономичной. Ее отличительной особенностью является возможность уплотнения прослоек слабых фунтов за счет дополнительного втапливания щебня, шлака и другого сыпучего материала. Это обеспечивает значительное повышение несущей способности за счет вовлечения в работу свай объема уплотненного грунта.

Применением коротких (до 4 м) набивных свай в раскатанных скважинах достигаются снижение расхода бетона и металла в 1,5-1,8 раза и трудоемкости производства работ до 3 раз. Другим преимуществом данной технологии является возможность устройства фундаментов в насыпных грунтах, что характерно при устройстве пристроенных объемов реконструируемых зданий, находящихся в зоне обратной засыпки.

База нормативной документации: www.complexdoc.ru Для восприятия возросших нагрузок от надстраиваемых этажей эффективно использование буровых свай с электроимпульсным уплотнением (сваи РИТА). Достаточно адаптированная технология к стесненным условиям производства работ может найти массовое применение для восстановления и повышения несущей способности фундаментов жилых зданий различных периодов постройки.

Технологический эффект может быть существенно повышен при сочетании технологии раскатанных скважин и разрядно импульсной.

При всем разнообразии технологий следует отметить, что методы усиления фундаментов, основанные на их вскрытии, требуют специальных мер по предотвращению нарушения сложившейся структуры грунта в уровне подошвы от воздействия атмосферных осадков и других техногенных процессов. Как правило, это приводит к дополнительным трудовым и материальным затратам и, в ряде случаев, способствует снижению их надежности.

§ 6.4. Восстановление водонепроницаемости и гидроизоляции элементов зданий При реконструкции зданий особое внимание должно уделяться процессам восстановления горизонтальной, вертикальной гидроизоляции и водонепроницаемости стен и подвальных помещений. Значение этих работ трудно переоценить, так как нарушение функционирования приводит к постоянной миграции атмосферных осадков и грунтовых вод по поверхностям стен и фундаментам. Скорость миграции как процесса влагопоглощения зависит от состояния конструктивных элементов, их материала, технического состояния, а также уровня воздействий. Например, нарушение горизонтальной гидроизоляции приводит к постоянному увлажнению наружных и внутренних стен, появлению различного рода высолов, потере физико-механических характеристик штукатурных слоев, снижению адгезии с кирпичной кладкой и их разрушению. Постоянное увлажнение несущих конструкций при расположении в зоне отрицательных температурных воздействий способствует постепенным разрушениям, приводящим к потере несущей способности.

База нормативной документации: www.complexdoc.ru Восстановление горизонтальной гидроизоляции Восстановление горизонтальной гидроизоляции является весьма ответственным и трудоемким процессом. В большинстве случаев многооперационные процессы восстановления горизонтальной гидроизоляции проводятся в стесненных условиях, требуют больших затрат ручного труда, мало механизированы.

Анализ отечественного и зарубежного опыта показывает, что наряду с традиционными и трудозатратными методами ведения работ осваиваются более прогрессивные, обеспечивающие достаточную степень надежности и долговечности, а использование высокоэффективного и производительного ручного инструмента позволяет снизить до минимума трудоемкость работ.

Особое место при этом отводится нетрадиционным способам устройства гидроизоляции, что является результатом внедрения достижений научно-технического прогресса в область технологии реконструктивных работ.

§ 6.4.1. Вибрационная технология устройства жесткой гидроизоляции Наиболее прогрессивным и технологически эффективным следует считать метод установки жесткой гидроизоляции с использованием вибрационной технологии. Она основана на разрушении материала шва кирпичной кладки или стыка панелей под действием высокочастотной вибрации или виброударных воздействий. При этом вибрационное или виброударное воздействие передается через гофрированную пластину, которая после разрушения материала оставляется в разрабатываемой полости и служит жесткой гидроизоляцией.

На рис. 6.35 приведена технологическая схема производства работ. Оборудованием для ведения работ служит вибрационный агрегат с частотой колебаний 200 Гц и амплитудой 0,1-0,3 мм.

Использование горизонтально направленных гармонических колебаний обеспечивает эффективное разрушение материала шва и проникновение пластины. После прохождения 3/4-4/5 глубины резания осуществляется ручная добивка гофрированной пластины до проектного положения. Установка очередной пластины осуществляется последовательно за предыдущей с обязательным взаимным перекрытием не менее чем на 2 паза.

База нормативной документации: www.complexdoc.ru Рис. 6.35. Вибрационная технология устройства жесткой горизонтальной гидроизоляции а - технологическая схема;

б - схема размещения элементов жесткой гидроизоляции в плане: 1 - горизонтальный элемент гидроизоляции;

2 - вибратор направленного действия;

3 струбцина для крепления с элементами изоляции;

4 - тележка;

5 кирпичная стена;

в - зоны перекрытия элементов жесткой гидроизоляции;

г - технологическая эффективность разрушения шва в зависимости от режимов колебаний: 1 - частота 50 Гц, амплитуда 0,5 мм;

2 - то же, 200 Гц;

3 - виброударный режим с частотой 20 Гц Горизонтально направленная вибрация создает условия виброударного взаимодействия погружаемой пластины и материала шва. Такие режимы существенно повышают технологический эффект, увеличивая скорость погружения пластин.

С целью однородного воздействия на обрабатываемый материал пластина по всей ширине закрепляется с источником колебаний База нормативной документации: www.complexdoc.ru с помощью струбцин, а виброагрегат снабжается виброизолированными рукоятками. При общей массе виброагрегата 6-8 кг обеспечивается ручная работа по устройству жесткой гидроизоляции.

Для обеспечения требуемой долговечности материал жесткой гидроизоляции выполняется из оцинкованной стали толщиной 1,0-1,2 мм или из алюминиевого сплава. Ширина полос составляет 0,4-0,6 м при длине, равной толщине изолируемой стены.

В зависимости от физико-механических характеристик материала шва скорость погружения может колебаться в достаточно широких пределах.

На процесс разрушения материала шва существенное влияние оказывают профиль рабочего органа, а также интенсивность вибрационного воздействия. В первом случае гофрированный профиль обеспечивает необходимую жесткость системы, а ее периодический профиль - более интенсивное разрушение материала.

Исследования процесса вибрационного разрушения показали, что эффективность виброударных режимов существенно выше, чем гармонических колебаний. В общем случае интенсивность колебаний оценивается соотношением J = а2f3, где а - амплитуда колебаний, f - частота. Из соотношения следует, что повышение частоты приводит к более высокой интенсивности по сравнению с амплитудой. Поэтому использование вибраторов дебалансного типа с частотой колебаний 200 Гц приводит к достаточно высокой интенсивности при относительно низкой амплитуде колебаний.

Виброударный режим в отличие от гармонических колебаний несет более высокую энергию при более низкой частоте колебаний. Так, при частоте 25-30 Гц и амплитуде колебаний 0,5-0,8 мм эффективность разрушения материала более высокая, чем при гармонических колебаниях с частотой 50, 100 и 200 Гц и амплитудой колебания соответственно 1,0;

0,6;

0,3 мм.

Интенсивность колебаний при виброударных режимах может быть оценена зависимостью более сложного вида.

Увеличение прочностных характеристик раствора приводит к некоторому снижению скорости разрушения. Эта зависимость близка к линейной. Установлена некоторая пропорциональность База нормативной документации: www.complexdoc.ru скорости разрушения от механических характеристик растворной части.

Создание эффективного камнерезательного оборудования позволило перенести достижения в этой области на реконструктивные работы. В частности, фирмой Cedima выпускается резательное оборудование в виде дисковых и цепных алмазных пил, обеспечивающих сухую резку железобетонных и каменных конструкций с глубиной реза до 800 мм. Использование алмазного инструмента позволяет существенно интенсифицировать процессы и повысить производительность труда.

Так, ручная алмазная пила 823Н имеет массу рабочего органа 4,6 кг, гидравлический привод с маслостанцией HAG- мощностью 7,5 кВт с набором гидрошлангов длиной до 10 м. Она обеспечивает образование прорезей в кирпичной кладке, железобетоне и других материалах с радиусом действия до 10 м.

Компактное решение гидропривода на пневмоходу обеспечивает его размещение в зоне производства работ.

Отличительной особенностью данного оборудования является отсутствие недопустимых вибраций и шума.

Для выполнения небольшого объема работ возможно использование гидравлической ручной цепной пилы JCS-823H с глубиной резания до 450 мм в бетоне, кирпичной кладке и других материалах.

§ 6.4.2. Восстановление гидроизоляции инъецированием кремнийорганических соединений Этот способ заключается в выбуривании горизонтальных отверстий диаметром 20-25 мм на глубину 0,8-0,9 толщины стены по одной горизонтальной линии на уровне гидроизоляционного слоя с расстоянием 0,6-0,7 м. Затем в образовавшиеся цилиндрические полости устанавливаются инъекторы, в которые нагнетаются кремнийорганические соединения типа ГКЖ-10 или ГКЖ-11. Обладая высокой проницаемостью и малой вязкостью, кремнийорганические соединения распространяются по периметру инъекционных трубок в радиусе 0,5-0,6 м.

База нормативной документации: www.complexdoc.ru Отверстия под инъектором после окончания цикла нагнетания тампонируются. Расстояние между инъекторами принимается таким образом, чтобы зоны инъецирования пересекались не менее /3 диаметра. Этот параметр, как правило, принимается экспериментально и учитывает пористость материала кладки, состояние швов и отдельных камней.

Как правило, работы по восстановлению гидроизоляции осуществляются изнутри подвального помещения и только в редких случаях - со стороны фасадных поверхностей.

Способность кремнийорганических соединений вступать в реакцию с элементами кладки и образовывать плотные геле-вые структуры обеспечивает требуемый уровень гидроизоляции.

На рис. 6.36 приведена принципиальная схема производства работ. Она включает: разметку мест выбуривания полостей, выбуривание отверстий и нагнетание кремнийорганической композиции. Работу выполняют 3 человека: бурильщик IV разряда - 1, изолировщики III разряда - 1 и IV разряда - 1.

База нормативной документации: www.complexdoc.ru Рис. 6.36. Технологическая схема восстановления горизонтальной гидроизоляции методом инъецирования кремнийорганических соединений 1 - стена фундамента;

2 - отверстие для инъекций;

3 - зона инъецирования;

4 - материальный шланг;

5 - гидронасос;

6 перфоратор;

7 - инъектор;

8 - зона разрушения гидроизоляции Рис. 6.37. Схемы восстановления горизонтальной гидроизоляции стен путем инъецирования изолирующего состава в швы кладки а, б - общий вид процесса гидроизоляции;

в - принципиальная схема: 1 - емкость с изолирующим составом;

2 - трубопроводы;

3 шов кладки с отверстием;

4 - зона насыщения раствором Контроль качества выполнения работ осуществляется визуально, по моменту появления инъецируемой среды на наружной поверхности кладки. При этом трудоемкость работ в 1,5-3 раза ниже, чем для случаев, рассмотренных выше.

При восстановлении горизонтальной гидроизоляции для фундаментов с малой степенью физического износа применяется более простая технология, основанная на создании кристаллизационного барьера путем инъекции высокопроникающих растворов щелочных кремнийорганических соединений типа метилсиликонатов калия с низкой плотностью «вязкостью».

В результате взаимодействия химически активных кремнийорганических соединений с углекислым газом воздуха, а База нормативной документации: www.complexdoc.ru также с растворами солей и известью образуются кристаллы нерастворимых гидросиликатов. С течением времени происходит рост кристаллов, которые блокируют капилляры, поры и трещины в материале стен, а также создают внутренний гидрофобный барьер.

Благодаря пропиточной технологии введения раствора создается водонепроницаемый экран толщиной 30-40 см.

Химический процесс завершится через 28-30 сут.

Средний расход раствора для кирпичной стены толщиной 52 см составляет 6-8 л на погонный метр в горизонтальном направлении.

Технология производства работ состоит в устройстве отверстий в швах кладки на 2/3 ее толщины, установке инъекторов и системы полимерных труб, отходящих от емкости с композиционным раствором.

Основными преимуществами данной технологии являются малая трудоемкость подготовительных работ, универсальность и высокая технологичность.

Процесс насыщения раствором контролируется по расходу используемого композита и времени, необходимого для кристаллизации новообразований.

§ 6.4.3. Восстановление наружной вертикальной гидроизоляции стен фундаментов Наиболее частыми являются повреждения вертикальной гидроизоляции с внешней стороны фундамента. Разрушение вертикальной гидроизоляции и высокий уровень грунтовых вод приводят к насыщению фундаментов водой, затоплению грунтовыми водами помещений и постепенному их разрушению.

Усиление или устройство новой наружной гидроизоляции выполняют в следующей последовательности.

Вдоль стен подвала отрывают траншею на глубину на 0,5 м выше подошвы фундамента. После этого для устройства изоляции нижнего пояса стены отрывают траншею отдельными участками длиной 2-3 м с интервалом 6-8 м. Лицевую сторону стены очищают и промывают поверхность. Затем наносят цементно-песчаный раствор.

База нормативной документации: www.complexdoc.ru Гидроизоляционный слой может быть устроен в зависимости от проектного решения из рулонных материалов, асфальтовых мастик, полимерных композиций, цементно-песчаного раствора.

При устройстве изоляции из рулонных материалов, в том числе полимерных пленок, по высушенной оштукатуренной поверхности производят огрунтовку с последующей наклейкой рулонного материала в несколько слоев.

Для исключения доступа грунтовых вод к изолируемой поверхности используется водо-понизительные установки, а после выполнения работ устраивается глиняный замок из жирной мягкой глины толщиной не менее 20 см. Затем производят обратную засыпку с послойным уплотнением.

На рис. 6.38 приведены некоторые технологические схемы процесса замены и восстановления вертикальной гидроизоляции подвальных стен и фундаментов здания.

Рис. 6.38. Технологическая схема процессов восстановления вертикальной гидроизоляции 1 - изолируемые стены фундаментов;

2 - траншея;

3 - комплект оборудования для торкретирования;

4 - комплект оборудования для наклейки рулонной изоляции;

5 - обратная засыпка траншеи бульдозером с послойным уплотнением;

6 - ограждение площадки;

7 - складирование грунта;

8 - зона складирования материалов База нормативной документации: www.complexdoc.ru Отрывка траншей с целью освобождения поверхности стены от грунта осуществляется экскаватором с вместимостью ковша 0,15-0,25 м3. Затем вручную осуществляется доработка грунта до основания фундамента. Поверхность стены и фундаментов очищается, промывается и высушивается.

Если проектом предусмотрена рулонная гидроизоляция, то поверхность стены и фундамента выравнивается штукатурным цементно-песчаным раствором, после затвердения которого производятся огрунтовка поверхности и наклейка 2-, 3-слойного гидроизоляционного ковра.

При устройстве гидроизоляции в виде торкрет-слоя последний устраивается после очистки и увлажнения поверхности. При этом 2-3 слоя торкрет-бетона наносятся сверху вниз с взаимным перекрытием слоев.

При наличии в проекте защиты гидроизоляционного слоя в виде кирпичной кладки или кладки из бетонных блоков этот процесс выполняется параллельно ведению работ по гидроизоляции.

Объект разбивается на приблизительно равные захватки, на каждой из которых ведется определенный вид работ.

После окончания гидроизоляционных работ осуществляются их приемка и оценка качества. Затем производят обратную засыпку с послойным уплотнением, восстановление отмостки и асфальтового покрытия.

§ 6.4.4. Технология повышения водонепроницаемости заглубленных конструкций зданий и сооружений путем создания кристаллизационного барьера Повышение водонепроницаемости заглубленных конструкций получило все большее развитие как принципиально новый метод, основанный на создании кристаллизационного барьера путем проникновения в капилляры, поры цементного камня, микротрещины в бетоне, кирпичной кладке насыщенных растворов, содержащих химические соединения. Образующиеся при контакте с минералами цемента на стенках пор и капилляров нитевидные игольчатые кристаллы создают плотные участки бетона, препятствующие водопроницаемости.

База нормативной документации: www.complexdoc.ru Основной принцип создания кристаллизационного барьера состоит в эффекте осмоса, когда растворимые химически активные добавки перемещаются от большей концентрации к меньшей, проникая вглубь капилляров, пустот и микротрещин.

Внутрикапиллярное кристаллообразование уплотняет структуру бетона на большую глубину, вступает в реакцию с негидратиро ванными цементными зернами, образуя повышенный объем геля.

При разработке составов для гидроизоляции пористых материалов (бетон, кирпич и др.) учитывается эффект снижения размеров за счет повышения их смачиваемости и проникновения композиции на большую глубину. Проникая в капилляры, они вступают в реакцию с компонентами бетона или кирпича, образуя химические связи с сохранением капилляров, диаметр которых соизмерим с молекулами воды. Такой механизм взаимодействия защищает конструкции из бетона или кирпича от проникновения влаги, сохраняя их воздухопроницаемость.

Для восстановления гидроизоляции используются составы зарубежных и отечественных разработок. Материалы, обеспечивающие формирование кристаллизационного барьера, производятся в Канаде, США, Бельгии и в основном предназначены для повышения водонепроницаемости бетона.

Составы Клайпекс, Пенетрон, Кальматрон, Вендекс, Торасил позволяют повысить стойкость бетона не только по отношению к воде, но и к агрессивным средам. Глубина пропитки такими составами составляет до 100 мм и возрастает со временем. В С. Петербурге освоена технология изготовления Кальматрона и налажено массовое производство, а Пенетрон различных модификаций производится в Екатеринбурге и др. городах России.

Результаты испытаний состава Клайпекс приведены на рис. 6.39, где показано, что сопротивление водопроницаемости со временем возрастает и достигает к 28-суточному сроку со дня обработки более 1,6 МПа. Уплотнение структуры бетона сопровождается повышением его долговечности. Получен эффект резкого повышения морозостойкости.

База нормативной документации: www.complexdoc.ru Рис. 6.39. Физико-механические характеристики водонепроницаемости (а) и морозостойкости (б) необработанных (1), обработанных концентратом Клайпекс (2) и Акватроном (3) бетонных конструкций Отечественная разработка - состав Акватрон существенно превышает технологический эффект восстановления гидроизоляции эксплуатируемых конструкций и вновь возводимых.

Он обладает двойным защитным действием: капиллярным композиционный материал глубоко проникает в поры изолируемой поверхности и бронирующим - образует на поверхности плотный и высокопрочный защитный слой. Механизм повышения сопротивления водопроницаемости основан на реакции между компонентами Акватрона и гидроксидом кальция бетона. В результате химической реакции образуются нерастворимые кристаллы игольчатой формы, которые заполняют капилляры и трещины, вытесняя при этом воду. При эксплуатации действие Акватрона носит эстафетный характер. Как только возникает новый контакт с водой, возобновляется реакция и процесс уплотнения структуры материала развивается в глубину до 150 мм.

База нормативной документации: www.complexdoc.ru Такое проникновение внутрь материала обеспечивает водонепроницаемость до 20 МПа и повышение морозостойкости до F300 и более.

Применение гидроизоляционной смеси в качестве защитного покрытия увеличивает стойкость материала к растворам серной, азотной, ортофосфорной кислот, морской воде, обеспечивает непроницаемость по отношению к нефтепродуктам.

Серийно изготавливаются два состава гидроизоляционной смеси: Акватрон-6 и Акватрон-8.

Состав Акватрон-6 обладает периодом схватывания (твердения) 4-5 ч, а Акватрон-8 - 15-20 с. Быстродействие смеси успешно используется при наличии активных протечек.

В таблице 6.9 приведены основные показатели и свойства гидроизоляционных смесей.

Таблица 6. Наименование Гидроизоляционная смесь показателей Акватрон-6 Акватрон- Состав Цемент, песок, химические добавки Внешний вид Порошок серого цвета Область применения Обеспечение Зачеканка гидронепроницаемости бетона, активных кирпича протечек Растворитель для Вода приготовления смеси База нормативной документации: www.complexdoc.ru Водонепроницаемость W12 W Прочность на сжатие, 45 Не менее МПа Прочность на 6,2 Не нормируется растяжение, МПа Глубина проникновения, 150 Не нормируется мм Адгезия, МПа: Не нормируется к бетону 1, к кирпичу:

красному 1, силикатному 0, шамотному 1, кислотостойкому 1, Время твердения 4-5 ч 15-20 с Расход материала, кг/м2 0,8-5 В объеме шва зачеканки Морозостойкость F300 Не нормируется Влажность, % 0,1 0, База нормативной документации: www.complexdoc.ru Температура -60...+ эксплуатации, °С Время хранения, мес 9 Наибольшее распространение получила технология, реализующая метод кристаллизационного барьера при помощи нанесения на изолируемую поверхность смеси портландцемента и мелкого кварцевого песка с набором химических добавок. Такая смесь затворяется водой и наносится на влажную поверхность с помощью кисти, щеток, малярных валиков или распылителей.

При значительном повреждении гидроизоляции заглубленных частей фундаментов и подвальных помещений нанесение композиционной смеси осуществляется методами набрызга или оштукатуривания.

Цементно-песчаная составляющая композиция служит матрицей, обеспечивающей распределение химических добавок по изолируемой поверхности. В то время как в цементно-песчаном растворе проходят процессы гидратации, на влажной изолируемой поверхности образуется высококонцентрированный раствор химических добавок, который проникает вглубь капилляров, пустот и микротрещин.

Средний расход состава Акватрон-6 - 1-3 кг/м2 изолируемой поверхности и зависит от состояния конструкции и гидростатического давления жидкости.

При высоком гидростатическом напоре (до 1,2 МПа) осуществляется нанесение состава в виде штукатурного покрытия толщиной 10-12 мм с расходом 5-9 кг/м2.

При значительном износе заглубленных конструкций технология восстановления гидроизоляционных свойств осуществляется путем нагнетания раствора в пробуренные скважины. Это обеспечивает более глубокое проникновение состава и восстановление не только гидроизоляционных, но и физико-механических характеристик материала.

Отличительной особенностью композиционных смесей Акватрон является высокая адгезия к бетону, кирпичу (керамическому, База нормативной документации: www.complexdoc.ru силикатному, шамотному), что существенно расширяет диапазон использования при восстановлении гидроизоляции реконструируемых заглубленных частей зданий и сооружений, а также при ликвидации дефектов возводимых конструкций.

Невысокая трудоемкость работ способствует снижению себестоимости, повышению долговечности и эксплуатационной надежности реконструируемых зданий.

§ 6.5. Технология усиления кирпичных стен, столбов, простенков При реконструкции жилых зданий со стенами из кирпичной кладки возникает необходимость восстановления несущей способности или усиления элементов кладки вследствие увеличения нагрузок от надстраиваемых этажей. При длительной эксплуатации зданий наблюдаются признаки разрушения простенков, столбов и кладки стен в результате неравномерных осадок фундаментов, атмосферных воздействий, протечек кровли и др.

Процесс восстановления несущей способности кладки следует начинать с исключения основных причин трещинообразования.

Если этому процессу способствует неравномерная осадка здания, то следует исключить это явление известными и описанными ранее методами.

До принятия технических решений по усилению конструкций важно оценить фактическую прочность несущих элементов. Эта оценка выполняется методом разрушающих нагрузок, фактической прочности кирпича, раствора, а для армированной кладки - предела текучести стали. При этом необходимо наиболее полно учитывать факторы, снижающие несущую способность конструкций. К ним относятся трещины, локальные повреждения, отклонения кладки от вертикали, нарушение связей, опирания плит и т.п.

Что касается усиления кирпичной кладки, то накопленный опыт реконструкционных работ позволяет выделить ряд традиционных технологий, основанных на использовании: металлических и железобетонных обойм, каркасов;

на инъецировании полимерцементных и других суспензий в тело кладки;

на База нормативной документации: www.complexdoc.ru устройстве монолитных поясов по верхней части зданий (в случаях надстройки), предварительно напрягаемых стяжек и др. решений.

На рис. 6.40 приведены характерные конструктивно технологические решения. Представленные системы направлены на всестороннее обжатие стен с использованием регулируемых натяжных систем. Они выполняются открытого и закрытого типов, при внешнем и внутреннем расположении, обеспечиваются антикоррозионной защитой.

Рис. 6.40. Конструктивно-технологические варианты усиления кирпичных стен а - схема усиления кирпичных стен здания металлическими тяжами;

б, в, г - узлы размещения металлических тяжей;

д - схема размещения монолитного железобетонного пояса;

е - то же, тяжами с центрирующими элементами: 1 - металлический тяж;

2 натяжная муфта: 3 - монолитный железобетонный пояс;

4 - плита перекрытий;

5 - анкер;

6 - центрирующая рама;

7 - опорная пластинка с шарниром База нормативной документации: www.complexdoc.ru Для создания требуемой степени натяжения используются стяжные муфты, доступ к которым должен быть всегда открыт. Они позволяют по мере удлинения тяжей в результате температурных и других деформаций производить дополнительное натяжение.

Обжатие элементов кирпичных стен производится в местах наибольшей жесткости (углы, сопряжения наружных и внутренних стен) через распределительные пластины.

Для равномерного обжатия кладки стен используется специальная конструкция центрирующей рамы, которая имеет шарнирное опирание на опорно-распределительные пластины.

Такое решение обеспечивает длительную эксплуатацию с достаточно высокой эффективностью.

Места расположения тяжей и центрирующих рам закрываются различного рода поясами и не нарушают общий вид фасадных поверхностей.

Для элементов стен, простенков, столбов, имеющих разрушения кирпичной кладки, но не потерявших устойчивость, производится местная замена кладки. При этом марка кирпича принимается на 1-2 единицы выше, чем существующая.

Технология производства работ предусматривает: устройство временных разгрузочных систем, воспринимающих нагрузку;

разборку фрагментов нарушенной кирпичной кладки;

устройство кладки. При этом необходимо учитывать, что удаление временных разгрузочных систем должно осуществляться после набора прочности кладки не менее 0,7RКЛ. Как правило, такие восстановительные работы ведутся при сохранении конструктивной схемы здания и фактических нагрузок.

Весьма эффективны приемы восстановления неоштукатуренной кирпичной кладки, когда требуется сохранить прежний вид фасадов. В этом случае очень тщательно подбираются кирпич по цветовой гамме и размерам, а также материал швов. После восстановления кладки производится пескоструйная очистка, что позволяет получать обновленные поверхности, где новые участки кладки не выделяются из основного массива.

В связи с тем что каменные конструкции воспринимают в основном сжимающие усилия, то наиболее эффективным способом их усиления является устройство стальных, железобетонных и армоцементных обойм. При этом кирпичная кладка в обойме работает в условиях всестороннего сжатия, когда поперечные База нормативной документации: www.complexdoc.ru деформации значительно уменьшаются и, как следствие, увеличивается сопротивление продольной силе.

Расчетное усилие в металлическом поясе определяется по зависимости N = 0,2RKJllb, где RKJl - расчетное сопротивление кладки скалыванию, тс/м2;

l - длина участка усиливаемой стены, м;

b - толщина стены, м.

Для обеспечения нормальной работы кирпичных стен и предотвращения дальнейшего раскрытия трещин первоначальным этапом является восстановление несущей способности фундаментов методами усиления, исключающей появление неравномерных осадок.

На рис. 6.41 приведены наиболее распространенные варианты усиления каменных столбов и простенков стальными, железобетонными и армоцементными обоймами.

База нормативной документации: www.complexdoc.ru Рис. 6.41. Усиление столбов стальной обоймой (а), армокаркасами (б), сетками и железобетонными обоймами (в, г) 1 - усиливаемая конструкция;

2 - элементы усиления;

3 защитный слой;

4 - щитовая опалубка с хомутами;

5 - инъектор;

6 материальный шланг Стальная обойма состоит из продольных уголков на всю высоту усиливаемой конструкции и поперечных планок (хомутов) из плоской или круглой стали. Шаг хомутов принимается не более меньшего размера сечения, но не более 500 мм. Для включения обоймы в работу следует инъецировать зазоры между стальными элементами и кладкой. Монолитность конструкции достигается путем оштукатуривания высокопрочными цементно-песчаными растворами с добавкой пластификаторов, способствующих большей адгезии с кладкой и металлоконструкциями.

База нормативной документации: www.complexdoc.ru Для более эффективной защиты на стальную обойму устанавливается металлическая или полимерная сетка, по которой осуществляется нанесение раствора толщиной 25-30 мм. При незначительных объемах работ раствор наносится вручную с помощью штукатурного инструмента. Большие объемы работ выполняются механизированным путем с подачей материала растворонасосами. Для получения высокопрочного защитного слоя используются установки торкретирования и пнев мобетонирования. Из-за высокой плотности защитного слоя и большой адгезии с элементами кладки достигается совместная работа конструкции и повышается ее несущая способность.

Устройство железобетонной рубашки осуществляется путем установки арматурных сеток по периметру усиливаемой конструкции с креплением ее через фиксаторы к кирпичной кладке. Крепление осуществляется путем использования анкеров или дюбелей. Железобетонная обойма выполняется из мелкозернистой бетонной смеси не ниже класса В10 с продольной арматурой классов А240-А400 и поперечной - А240. Шаг поперечной арматуры принимается не более 15 см. Толщина обоймы определяется расчетом и составляет 4-12 см. В зависимости от толщины обоймы существенно меняется технология производства работ. Для обойм толщиной до 4 см используются методы нанесения бетона торкретированием и пневмобетонированием. Окончательная отделка поверхностей достигается устройством штукатурного накрывочного слоя.

Для обойм толщиной до 12 см по периметру усиливаемой конструкции устанавливается инвентарная опалубка. В ее щитах устанавливаются инъекционные трубки, через которые мелкозернистая бетонная смесь нагнетается под давлением 0,2-0, МПа в полости. Для повышения адгезионных свойств и заполнения всего пространства бетонные смеси пластифицируются путем введения суперпластификаторов в объеме 1,0-1,2 % массы цемента.

Снижение вязкости смеси и повышение ее проницаемости достигаются дополнительным воздействием высокочастотной вибрации путем контакта вибратора с опалубкой рубашки.

Достаточно хороший эффект дает импульсный режим подачи смеси, когда кратковременные воздействия повышенного давления обеспечивают более высокий градиент скоростей и высокую проницаемость.

На рис. 6.41,г приведена технологическая схема производства работ путем инъецирования железобетонной обоймы. Установка База нормативной документации: www.complexdoc.ru опалубки производится на всю высоту конструкции с обеспечением защитного слоя арматурного заполнения.

Нагнетание бетона осуществляется по ярусам (3-4 яруса). Процесс окончания подачи бетона фиксируется по контрольным отверстиям с противоположной стороны от места нагнетания. Для ускоренного твердения бетона используются системы термоактивных опалубок, греющих проводов и другие приемы повышения температуры твердеющего бетона. Демонтаж опалубки осуществляется по ярусам при достижении бетоном распалубочной прочности. Режим твердения при t = 60 °С обеспечивает распалубочную прочность в течение 8-12 ч прогрева.

Железобетонные обоймы могут выполняться в виде элементов несъемной опалубки (рис. 6.42). При этом наружные поверхности могут иметь мелкий или глубокий рельеф или гладкую поверхность. После установки несъемной опалубки и крепления ее элементов обеспечивается замоноличивание пространства между усиливаемой и ограждающей конструкцией. Использование несъемной опалубки имеет значительный технологический эффект, так как отпадает необходимость в разборке опалубки, а главное - исключается отделочный цикл работ.

База нормативной документации: www.complexdoc.ru Рис. 6.42. Усиление столбов с использованием опалубки облицовки из архитектурного бетона 1 - усиливаемая конструкция;

2 - армокаркас;

3 - элементы облицовки;

4 - бетон омоноличивания Наиболее эффективными несъемными опалубками следует считать тонкостенные элементы (1,5-2 см), изготовленные из дисперсно-армированного бетона. Для вовлечения опалубки в работу она снабжается выступающими анкерами, существенно повышающими адгезию с укладываемым бетоном.

Устройство растворных обойм отличается от железобетонных толщиной наносимого слоя и составом. Как правило, для защиты арматурной сетки и обеспечения ее адгезии с кирпичной кладкой используются штукатурные цементно-песчаные растворы с добавкой пластификаторов, повышающих физико-механические характеристики. Технология строительных процессов практически не отличается от выполнения штукатурных работ.

Для обеспечения совместной работы элементов обоймы по ее длине, превышающей в 2 и более раз толщину, необходима установка дополнительных поперечных связей через сечение кладки. Усиление кирпичной кладки может быть произведено методом инъецирования. Оно осуществляется путем нагнетания через заранее пробуренные шпуры цементного или полимерцементного раствора. В результате достигается монолитность кладки и повышаются ее физико-механические характеристики.

К инъекционным растворам предъявляются достаточно жесткие требования. Они должны обладать малым водоотделением, низкой вязкостью, высокой адгезией и достаточными прочностными характеристиками. Раствор нагнетается под давлением до 0, МПа, что обеспечивает достаточно обширную зону проникновения. Параметры инъекции: расположение инъекторов, их глубина, давление, состав раствора в каждом конкретном случае подбираются индивидуально с учетом трещиноватости кладки, состояния швов и других показателей.

Прочность кладки, усиленной инъецированием, оценивается по СНиП II-22-81* «Каменные и армокаменные конструкции». В зависимости от характера дефектов и вида инъецированного раствора устанавливаются поправочные коэффициенты: тк = 1,1 при наличии трещин от силовых воздействий и при использовании цементного и полимерцементного растворов;

тк = 1,0 - при База нормативной документации: www.complexdoc.ru наличии одиночных трещин от неравномерных осадок или при нарушении связи между совместно работающими стенами;

тк = 1,3 - при наличии трещин от силовых воздействий при инъекции полимерных растворов. Прочность растворов должна быть в пределах 15-25 МПа.

Усиление кирпичных перемычек достаточно распространенное явление, что связано со снижением несущей способности распорной кладки вследствие выветривания швов, нарушения адгезии и другими причинами.

На рис. 6.43 приведены конструктивные варианты усиления перемычек с использованием различного рода металлических накладок. Они устанавливаются путем пробивки штраб и отверстий в кирпичной кладке и в дальнейшем омоноличиваются цементно-песчаным раствором по сетке.

Рис. 6.43. Примеры усиления перемычек кирпичных стен а, б - путем подведения накладок из уголковой стали;

в, г дополнительными металлическими перемычками из швеллера: 1 База нормативной документации: www.complexdoc.ru кирпичная кладка;

2 - трещины;

3 - накладки из уголков;

4 полосовые накладки;

5 - анкерные болты;

6 - накладки из швеллера Для перераспределения усилий на железобетонные перемычки вследствие увеличения нагрузок на перекрытия используются металлические разгрузочные пояса, выполненные из двух швеллеров и объединенные болтовыми соединениями.

Усиление и повышение устойчивости кирпичных стен.

Технология усиления базируется на создании дополнительной железобетонной рубашки с одной или двух сторон стены (рис.

6.44). Технология производства работ включает процессы подготовки и очистки поверхности стен, сверления отверстий под анкеры, установки анкеров, крепления к анкерам арматурных стержней или сеток, омоноличивание. Как правило, при достаточно больших объемах работ используется механизированный метод нанесения цементно-песчаного раствора: пневмобетонированием или торкретированием и реже ручным способом. Затем для выравнивания поверхностей наносится затирочный слой и выполняются последующие операции, связанные с отделкой поверхностей стен.

База нормативной документации: www.complexdoc.ru Рис. 6.44. Усиление кирпичных стен армированием а - отдельными стержнями арматуры;

б - арматурными каркасами;

в - арматурной сеткой;

г - железобетонными пилястрами: 1 усиливаемая стена;

2 - анкеры;

3 - арматура;

4 - штукатурный или торкрет-бетонный слой;

5 - металлические тяжи;

6 - арматурная сетка;

7 - армокаркас;

8 - бетон;

9 - опалубка Эффективным приемом усиления кирпичных стен является устройство железобетонных одно- и двусторонних стоек в штрабах и пилястр.

Технология устройства двусторонних железобетонных стоек предусматривает образование штраб на глубину 5-6 см, высверливание сквозных отверстий по высоте стены, крепление с помощью тяжей арматурного каркаса и последующее омоноличивание образовавшейся полости. Для омоноличивания База нормативной документации: www.complexdoc.ru используют цементно-песчаные растворы с пластифицирующими добавками. Высокий эффект достигается при использовании растворов и мелкозернистых бетонов с предварительным домолом цемента, песка и суперпластификатора. Такие смеси кроме большой адгезии обладают свойством ускоренного твердения и высокими физико-механическими характеристиками.


При возведении односторонних железобетонных пилястр требуется устройство вертикальных штраб, в полости которых устанавливают анкерные устройства. К последним осуществляется крепление арматурного каркаса. После его размещения производится установка опалубки. Она выполняется из отдельных фанерных щитов, объединенных хомутами и прикрепляемых к стене с помощью анкеров. Мелкозернистая бетонная смесь нагнетается с помощью насосов поярусно через отверстия в опалубке. Подобная технология применяется при двустороннем устройстве пилястр с той разницей, что процесс крепления щитов опалубки осуществляется с помощью болтов, перекрывающих толщину стены.

§ 6.6. Технология усиления железобетонных колонн, балок и перекрытий Основной принцип усиления конструкций заключается во включении в работу дополнительных элементов, увеличивающих сечение и степень армирования, также и за счет изменения расчетной схемы путем введения дополнительных опор.

Усиление железобетонных колонн возможно производить различными методами. Ряд из них подобен способам усиления кирпичных столбов.

Широко используются способ устройства железобетонных и стальных обойм, метод усиления путем приварки металлических уголков к рабочей арматуре, установка предварительно напряженных хомутов, металлических обойм из уголка и листа, предварительно напряженного арматурного каркаса или хомутов.

На рис. 6.45 приведены некоторые варианты усиления колонн.

База нормативной документации: www.complexdoc.ru Рис. 6.45. Технологические схемы усиления железобетонных колонн а - стальными обоймами: 1 - колонна;

2 - металлический лист;

3 уголки;

б - наращиванием железобетонных обойм: 1 железобетонная обойма с отверстием для нагнетания цементно песчаного раствора;

2 - растворная часть;

3 - дополнительное армирование сеткой;

4 - патрубок;

5 - насос-инъектор;

в - усиление рабочей арматуры дополнительными стержнями и обоймой из уголков: 1 - усиливаемая колонна;

2, 3 - рабочая и наращиваемая арматура;

4, 5 - уголки;

г - усиление рабочей арматуры отдельными стержнями с последующим омоноличиванием: 1 колонна;

2 - рабочая арматура;

3, 4 - наращиваемая арматура;

5, - опалубка;

7 - фиксаторы опалубки При выполнении работ следует руководствоваться следующими положениями технологии строительных процессов.

База нормативной документации: www.complexdoc.ru При усилении методом наращивания сечения в виде железобетонных обойм следует произвести тщательную очистку поверхности колонн;

выполнить насечку, обеспечивающую более высокое сцепление с новым бетоном;

при нарушении защитного слоя очистить выступающую на поверхность арматуру, произвести антикоррозийную защиту;

перед укладкой бетонной смеси поверхность колонн увлажнить.

При усилении с помощью металлических уголков и хомутов обязательным условием является плотное сопряжение усиливаемых элементов с поверхностью колонны. Для этой цели осуществляются удаление неровностей и шлифовка поверхности колонн.

Усиление методом наращивания к продольной арматуре дополнительных уголков требует очистки швов после выполнения сварочных работ и омоноличивания вскрытых полостей полимерными растворами. Использование напрягаемых хомутов требует применения инструмента, обеспечивающего равномерность натяжения до расчетных усилий. Залогом качественного выполнения технологических операций являются правильная организация пооперационного контроля и соблюдение технологического регламента.

Особый интерес представляет усиление колонн, примыкающих к наружным или внутренним стенам. Наиболее эффективной технологией остается устройство железобетонной рубашки. Такое решение принимается в случае, когда поверхность колонн сильно разрушена, имеют место отслоение защитного слоя бетона, высокая трещиноватость. Производство работ заключается в очистке поверхности колонны, устройстве насечки, установке дополнительного арматурного каркаса, монтаже опалубочных щитов и нагнетании бетонной смеси в полость. Как правило, перед нагнетанием мелкозернистой бетонной смеси производится обильное увлажнение поверхности колонн.

Нагнетание смеси производится известными установками с обязательным контролем качества работ. Особое внимание уделяется вибрационным воздействиям на щиты опалубки, что обеспечивает более равномерное распределение смеси и заполнение всех пустот и дефектов.

Возможно поярусное бетонирование усиливаемого слоя. В этом случае торцевой щит опалубки выполняется разъемным. После заполнения одного яруса бетонной смесью производят База нормативной документации: www.complexdoc.ru наращивание торцевого щита, и цикл повторяется. В процессе укладки необходимо тщательное уплотнение бетонной смеси глубинным вибрированием.

Достаточно высокий эффект омоноличивания достигается при использовании опалубки в виде вакуум-щитов. Это обстоятельство позволяет удалить значительное количество химически несвязанной воды, что приводит к повышению прочности бетона на 25-30 %. При этом сокращается цикл набора прочности и обеспечивается более ранняя распалубка конструкции.

При увеличении нагрузок на колонну, а также вследствие деструктивных процессов, протекающих в бетоне, повышение несущей способности достигается путем установки разгрузочных элементов в виде швеллеров, объединенных по периметру колонн хомутами.

Несмотря на простоту решения, метод усиления металлоемок и малопригоден в условиях реконструкции жилого фонда.

Для вовлечения в работу элементов стены используют наклонные напряженные хомуты, объединяющие колонну со стеной. Для этой цели на поверхности колонн устраивают штрабы, фиксирующие положение хомутов, а в кирпичной стене наклонные сквозные отверстия. С помощью натяжных устройств обеспечиваются равномерное натяжение хомутов и вовлечение стены в совместную работу с колонной.

При высокой прочности стен такое решение позволяет усилить колонну. В то же время оно может выполнять и противоположную функцию - повысить устойчивость наружных стен. Это решение может быть успешно использовано при реконструкции старого жилого фонда с применением метода встроенных систем, когда имеет место снижение устойчивости кирпичной кладки стен.

Усиление балочных конструкций осуществляется, как правило, несколькими способами: наращиванием арматуры растянутой зоны;

наращиванием балок снизу с увеличением степени армирования и высоты сечения;

установкой железобетонных обойм;

устройством шпренгельных систем;

устройством затяжек по нижнему поясу балок.

Если по расчету требуется незначительное увеличение сечения арматуры растянутой зоны, то процесс усиления осуществляется следующим образом. С шагом 500-600 мм отбивают защитный слой База нормативной документации: www.complexdoc.ru бетона от боковых стержней, оголяют арматуру. Затем осуществляют приварку z-образных коротышей диаметром 20- мм, длиной до 200 мм. Далее приваривают дополнительные стержни продольной арматуры (рис. 6.46).

Рис. 6.46. Конструктивно-технологические схемы усиления железобетонных балок а - наращиванием арматуры растянутой зоны: 1 - усиливаемая конструкция;

2 - наращиваемая зона;

3 - рабочая арматура;

4 кронштейн для крепления дополнительной арматуры;

5 наращиваемая арматура;

б - наращивание арматуры растянутой зоны в виде уголков: 1 - усиливаемая конструкция;

2 - рабочая арматура;

3 - опорный уголок;

4 - дополнительное армирование;

5 зона заделки цементно-полимерным раствором;

в - устройство затяжки по нижнему поясу: 1 - усиливаемая конструкция;

2 дополнительная арматура;

3 - коротыш;

4 - натяжное устройство;

г - дополнительное армирование нижнего пояса: 1 - усиливаемая конструкция;

2 - арматура усиления;

3 - полимерцементный раствор После установки дополнительной арматуры осуществляется ее защита. Наиболее эффективной технологией является торкретирование. В то же время имеется ряд композиционных растворов, которые обладают хорошей адгезией со старым бетоном и арматурой и наносятся методом оштукатуривания.

Для более высокой степени усиления балочных конструкций используется для дополнительного армирования уголковая сталь, База нормативной документации: www.complexdoc.ru которая с помощью коротышей и сварных соединений фиксируется к крайним стержням арматуры.

Сколы бетона после выполнения всех операций заделываются цементно-песчаным раствором.

Усиление нижнего пояса отдельными стержнями осуществляется путем устройства затяжек, а также путем расположения дополнительных стержней в пазы с последующим омоноличиванием полимерцементными высокоадгезионными составами. Пазы образуют, используя специальный ручной инструмент с алмазным напылением.

Для зданий жилого фонда шпренгельное усиление балок используется чрезвычайно редко, так как требует периодического наблюдения за состоянием конструкции, а содержание без экранов и подвесных потолков нарушает интерьер помещений.

Усиление и восстановление несущей способности перекрытий являются наиболее распространенными задачами при реконструкции зданий.

По результатам обследований и оценки степени износа конструктивных элементов принимают решение о восстановлении, усилении несущей способности, частичной или полной замене перекрытий. Принятию решения предшествует технико экономическая оценка вариантов.

Конструктивные решения перекрытий для зданий различного периода строительства весьма разнообразны. К наиболее распространенным следует отнести: каменные перекрытия по несущим металлическим балкам;


монолитные балочные и безбалочные;

сборные из сплошного и многопустотного настилов;

сборные по балкам из штучных материалов и др. В перечисленные типы перекрытий не вошли деревянные, так как срок их эксплуатации и физический износ многократно превышают допустимые нормы.

Каменные перекрытия по металлическим балкам, как правило, выполнялись в подвальных этажах жилых зданий. Они представляют собой арочное перекрытие из кирпича по несущим металлическим балкам из двутавра или рельса. В зависимости от степени физического износа кирпичной кладки возможны следующие варианты усиления: установка затяжек для восприятия распора с частичным восстановлением кладки;

устройство База нормативной документации: www.complexdoc.ru железобетонного наращивания сверху;

устройство железобетонного наращивания снизу в виде арочной плиты;

замена кирпичного арочного перекрытия на железобетонные.

Способы усиления монолитных перекрытий достаточно разнообразны и приведены на рис. 6.47. Основой усиления является увеличение степени армирования растянутой или сжатой зоны с одновременным наращиванием сечения.

Рис. 6.47. Конструктивно-технологические схемы усиления монолитных перекрытий а - путем наращивания арматуры растянутой зоны и торкретирования поверхностей;

б, в - устройством дополнительного армирования плиты с наращиванием верхнего железобетонного слоя;

г - установкой звуко- и виброизоляционных плит и наращиванием верхнего железобетонного слоя;

1 железобетонное перекрытие;

2 - наращиваемая арматура;

3 дополнительный слой бетона;

4 - штрабы;

5 - подвесная опалубка;

6 - шумо- и виброзащитные плиты База нормативной документации: www.complexdoc.ru Наиболее сложным и достаточно трудоемким является вариант усиления, основанный на установке дополнительных стержней арматуры в растянутой зоне. В этом случае с интервалом 60-120 см по длине вскрывается рабочая арматура на участках длиной 2- см, к которой с помощью Z-образных кронштейнов приваривается дополнительная арматура. Затем осуществляется торкретирование поверхности для обеспечения требуемой адгезии и защитного слоя.

Рассматриваемый способ целесообразно использовать, когда нижняя поверхность перекрытия имеет существенные дефекты в виде разрушения бетона, при утрате защитного слоя арматуры, высокой трещиноватости поверхности и в других случаях.

Перед выполнением работ по наращиванию дополнительной арматуры осуществляют очистку поверхности с помощью пескоструйных аппаратов, обеспечивающих также очистку арматуры от коррозии.

Процесс торкретирования осуществляется по известной технологии путем нанесения 3-4 слоев. Как правило, работы по торкретированию потолочных поверхностей весьма трудоемки, требуют использования специальных составов бетона и методов пооперационного контроля. Особое внимание при этом должно уделяться соблюдению режимов тепловлажностной обработки и уходу за поверхностью торкрет-слоев, чтобы не допустить высыхания.

Более простыми и эффективными являются методы, основанные на поверхностном наращивании железобетонных слоев, а также устройстве дополнительных балочных систем.

По данной технологии в плите перекрытия вырезаются сквозные продольные штрабы параллельно расположению рабочей арматуры. Затем устанавливаются подвесная опалубка, арматурный каркас, после чего производят укладку бетонной смеси. Одновременно производят работы по армированию наращиваемого поверхностного слоя. До укладки бетонной смеси необходимо выполнить работы по насечке бетонной поверхности, а перед непосредственной укладкой смеси - увлажнение.

Укладку смеси производят за один прием с использованием виброреек и маячных досок с соблюдением известного технологического регламента. Особое внимание уделяется вибрационной проработке густоармированной области штраб, где База нормативной документации: www.complexdoc.ru используются глубинные вибраторы с гибким валом.

Предотвращение смещения арматуры от проектного положения должно обеспечиваться использованием фиксаторов. Более простым технологическим решением является усиление перекрытий путем наращивания слоя железобетона. В этой связи следует отметить, что для повышения адгезии старого бетона с вновь укладываемым целесообразно на предварительно очищенную поверхность осуществить наклейку полимерной или металлической сетки на бентонитовом растворе. Помимо высокой адгезии при этом исключается весьма трудоемкий и экологически неблагоприятный процесс устройства насечек на старой поверхности бетона. Процесс бетонирования производится через 6-8 ч после наклейки сетки.

На рис. 6.47, г приведена конструктивно-технологическая схема, направленная на повышение не только несущей способности перекрытия, но и на повышение его вибро-, шумоизолирующих свойств. В качестве изоляционного материала могут использоваться плитный пенополистирол толщиной 2-4 см, жесткие минераловатные плиты, прессованный картон и другие материалы. Они наклеиваются на заранее подготовленную поверхность перекрытия таким образом, чтобы оставалось свободное пространство для армирования и устройства ребра наращиваемого перекрытия. После выполнения работ по армированию производят подачу и укладку бетонной смеси одним из приемлемых способов.

Конструктивное решение такого метода усиления позволяет без дополнительного расхода бетона увеличить высоту сжатой зоны, тем самым повысив несущую способность перекрытия.

Технологические схемы производства работ по усилению перекрытий реконструируемого здания базируются на механизированных процессах транспортирования композиционных смесей к месту укладки. Кроме широко распространенного бетононасосного транспорта используются пневмонагнетатели, цемент-пушки, растворонасосы. Они обеспечивают шланговую подачу смесей на высоту до 30 м и до 200 м по горизонтали.

Как правило, для сохранения стабильных физико-механических и технологических свойств смеси приготавливаются в сухом состоянии с заданными пропорциями. На строительную площадку они доставляются в упакованной таре, и достаточно внести указанное количество воды, чтобы получить требуемую консистенцию.

База нормативной документации: www.complexdoc.ru Отличительными особенностями использования транспортных средств для доставки композиционных смесей являются их высокая производительность (до 5 м3/ч), малочисленность обслуживающего персонала и надежность в работе. Эти обстоятельства позволяют довести выработку на одного рабочего в пределах 150-200 м2 в смену.

Усиление перекрытий из многопустотного настила осуществляется технологическими приемами, приведенными на рис. 6.48, путем верхнего наращивания слоя железобетона;

установки дополнительной арматуры нижнего пояса и использования пустот. Последний вариант является наиболее эффективным, так как позволяет значительно увеличить несущую способность конструкции без заметного увеличения ее высоты при дополнительном армировании зоны пустот. Технология производства работ мало отличается от ранее рассмотренных и ведется традиционными приемами.

База нормативной документации: www.complexdoc.ru Рис. 6.48. Технологические схемы усиления перекрытий из многопустотного настила а - методом наращивания железобетонного поверхностного слоя: - многопустотная плита перекрытия;

2 - металлическая сетка;

3 слой наращиваемого бетона;

б - дополнительным армированием нижнего пояса: 1 - многопустотная плита перекрытия;

2 дополнительная арматура, устанавливаемая в пазы;

3 омоноличивание арматуры;

в, г - путем армирования и бетонирования пустот: 1 - многопустотная плита перекрытия;

2 продольные и поперечные сетки;

3 - слой наращиваемого бетона;

4 - арматура в виде двутавров;

д, е - схемы дополнительного армирования зон опирания на стены Метод верхнего наращивания плит перекрытий железобетоном кроме увеличения несущей способности способствует образованию горизонтальных дисков жесткости, что в значительной степени приводит к повышению пространственной жесткости реконструируемых зданий.

Локальные приемы и технологии повышения монолитности перекрытий (рис. 6.49) могут быть достигнуты путем анкеровки железобетонных плит с наружными стенами, установкой анкерных связей в виде стержней и каркасов, устройством шпонок, монолитного обвязочного пояса, объединенного с плитами, и др.

приемами.

База нормативной документации: www.complexdoc.ru Рис. 6.49. Конструктивно-технологические решения включения в совместную работу железобетонных плит перекрытия а - усиление анкеровки железобетонных плит;

б - установка анкерных связей в виде стержней;

в - то же, армокаркасами;

г устройство обвязочного монолитного пояса;

д, е - устройство шпонок и железобетонного наращивания Совместная работа плит перекрытий позволяет перераспределить постоянные и временные нагрузки, снизить величину прогибов и исключить случаи нарушения сцепления материала шва между плитами.

Усиление конструкций композитными материалами из углеродных волокон Данный метод является наиболее прогрессивным, менее трудоемким и более надежным. Его использование достаточно универсально, не вызывает дополнительных нагрузок.

Углеродные композитные материалы обладают высокой прочностью на растяжение, модулем линейной упругости, коррозийной стойкостью.

База нормативной документации: www.complexdoc.ru Они успешно используются при выполнении ремонтно восстановительных работ с целью повышения несущей способности различных конструктивных элементов колонн, балок, плит перекрытий, выполненных из железобетона, металла, кирпича, дерева и др. материалов.

Разработаны три типа графитопластиковых лент с расчетным сопротивлением растяжению 2800, 2400 и 1300 МПа.

Ленты поставляются в бухтах с общей длиной до 250 м, шириной от 50 до 120 мм и толщиной 1,2-1,4 мм.

Основной способ усиления состоит в наклейке лент или полотнищ из углеродистых волокон на усиливаемые конструкции (рис. 6.50). В качестве клеящего материала используют специальные составы эпоксидных клеев, а также ремонтные растворы. Качество усиления конструктивных элементов зависит от подготовки основания и соблюдения технологического регламента.

Рис. 6.50. Усиление несущих конструкций композитными материалами в виде лент из углеродистых волокон а - колонн;

6 - балок;

в - плит перекрытий;

г - графики набора прочности клея на сжатие (I) и растяжение (II);

1 - наклеиваемые ленты;

2 - защитные покрытия База нормативной документации: www.complexdoc.ru Основание усиливаемой конструкции должно быть ровным, обезжиренным, обеспыленным и чистым. При наличии раковин и выколов основание шпатлюется ремонтным полимерным раствором.

Технология производства работ состоит в нанесении на подготовленную поверхность и ленту клеящего состава толщиной прослойки в пределах 3-5 мм. Затем осуществляется наклейка ленты с прижатием с помощью ролика таким образом, чтобы избыток клеящей массы был выдавлен за пределы кромок.

Усиление колонн цилиндрической или прямоугольной формы осуществляется наклейкой ленты с расположением по спирали с расчетным шагом, а также путем наклейки полотнищ по периметру колонн.

Балочные конструкции получают дополнительное усиление путем размещения лент в растянутой зоне, а для восприятия поперечных сил - по периметру. Плиты перекрытия могут усиливаться путем наклейки лент в продольном и поперечном направлениях. При усилении конструкций целесообразно осуществлять небольшую тепловую обработку составов. Это позволяет за 8-12 ч достигать требуемой адгезии с поверхностью усиливаемой конструкции.

Простота технологии наклейки, малая масса и коррозионная стойкость позволяют широко использовать данную технологию для усиления конструкций реконструируемых зданий при наличии дефектов, трещинообразования, а также при возросших нагрузках.

База нормативной документации: www.complexdoc.ru ГЛАВА ИНДУСТРИАЛЬНЫЕ ТЕХНОЛОГИИ ЗАМЕНЫ ПЕРЕКРЫТИЙ § 7.1. Конструктивно-технологические решения замены междуэтажных перекрытий В большинстве случаев основной причиной проведения реконструкции жилых и гражданских зданий старой постройки является повышенный износ конструкций междуэтажных перекрытий, лестничных маршей и площадок. Замена таких конструктивных элементов не только является дорогостоящим и трудоемким видом работ, но и вносит значительные изменения в нагрузки на стеновые конструкции и фундаменты. Поэтому процессу принятия решения о материале и конструкции заменяемых перекрытий предшествуют расчеты несущей способности стен и фундаментов.

Повышение капитальности и огнестойкости реконструируемых зданий достигается путем замены перекрытий из сборных, монолитных и сборно-монолитных железобетонных элементов.

Анализ конструктивных решений при сборном варианте показывает, что серьезными препятствиями на пути осуществления общей технической политики в области проектирования реконструкции жилых зданий являются большая номенклатура конструкций и их высокая себестоимость.

Тенденции использования эффективных сборных конструкций шли по пути моделирования старых технологических схем перекрытий по деревянным или металлическим балкам с адаптацией их к железобетонным конструкциям. Это привело к их разнотипности, мелко-штучности и нетехнологичности как в процессе изготовления, так и монтажа.

База нормативной документации: www.complexdoc.ru При замене перекрытий целесообразно выделить несколько конструктивных решений, отличающихся более высокими индустриальностью и технологичностью. К ним следует отнести:

использование балочных систем с заполнением пустотелыми керамическими или керамзитобетонными блоками;

сборно монолитные перекрытия по металлическим балкам с заполнением мелкоштучными плитами-вкладышами;

сборно-монолитные перекрытия с применением несъемной опалубки из железобетонных плит-скорлуп, профнастила, пенополистирольных плит;

монолитные балочные и безбалочные перекрытия;

перекрытия из железобетонных плит многопустотного настила по металлическим балкам.

Область применения конструктивных решений зависит от степени износа несущих стен, изменившихся нагрузок и условий механизации технологических процессов.

При использовании средств механизации в виде подъемников, тельферов и кранов малой грузоподъемности широко применяются балочные системы с заполнением керамзитобетонными пустотелыми балками (рис. 7.1).

Рис. 7.1. Сборные и сборно-монолитные перекрытия из мелкоразмерных блоков по балкам База нормативной документации: www.complexdoc.ru а - сборное перекрытие из керамических блоков по стальным балкам;

б - сборно-монолитное перекрытие из керамических блоков «Симплекс»;

в - сборное перекрытие по железобетонным тавровым балкам с заполнением керамзитобетонными блоками;

г сборно-монолитное перекрытие системы Omnia (Великобритания):

1 - балки;

2 - блоки и вкладыши;

3 - монолитный участок;

4 арматурный каркас;

5 - арматурная сетка;

6 - поддерживающие балки;

7 - телескопические стойки Основные нагрузки воспринимаются балками, которые располагаются с шагом, соответствующим ширине проемов, а их концы заделываются в несущие стены. Используются металлические балки в виде двутавров, таврового и прямоугольного сечений из преднапряженного железобетона или монолитные балки, образуемые пространством между продольными рядами блоков, устанавливаемых на временные поддерживающие балки и телескопические стойки.

После установки в проектное положение блоков их наружная поверхность омоноличивается легкобетонной смесью с предварительным сетчатым армированием.

Приведенные конструктивно-технологические решения позволяют получать перекрытия требуемой несущей способности и толщины с минимальным расходом материала. Они обладают достаточно высокими показателями по звукоизоляции за счет использования пустотных элементов и легкобетонных смесей.

Широкое распространение при замене перекрытий получила технология с использованием несъемной опалубки в виде профнастила по балкам и тонкостенных железобетонных плит с арматурными выпусками (рис. 7.2).

База нормативной документации: www.complexdoc.ru Рис. 7.2. Сборно-монолитные перекрытия в несъемной опалубке а - с использованием металлических балок и профнастила: 1 стена;

2 - балка;

3 - подвесной потолок;

4 - технологические отверстия в стенке балки;

5 - монолитная железобетонная плита;

6 - профнастил;

б - с использованием железобетонной несъемной опалубки;

1 - стена;

2 - монолитный бетон;

3 - несъемная опалубка;

4 - распределительные балки;

5 - телескопические стойки В Германии, Франции, Бельгии нашли распространение оставляемые опалубочные системы из пенополистерольных плит.

Основными их преимуществами являются малый вес, достаточная прочность и невозгораемость. Малая масса элементов опалубки позволяет выполнить работы вручную, используя систему подмостей и распределительных стоек, исключающих деформации от свежеуплотненного бетона.

Оставляемая опалубка (Интербаусистем) предусматривает использование армоопалубочных плит на пролет. Они опираются на штрабы, а по длине устанавливаются распределительные стойки для исключения деформаций. После плотного сочленения панелей производится укладка бетонной смеси. Размер плит, степень их армирования и толщина укладываемого бетонного слоя рассчитываются индивидуально для каждого перекрытия с учетом пролета и нагрузок. Для повышения несущей способности верхняя зона перекрытия армируется дополнительной сеткой. Такое решение обеспечивает совместную работу плит несъемной опалубки.

При реконструкции зданий достаточно часто встречаются случаи, когда применение сборных и сборно-монолитных конструкций бывает нерационально. Так, для зданий, имеющих в плане сложную конфигурацию, применение сборных конструкций требует использования большого количества типоразмеров (при малом количестве деталей каждого типа), что сводит «на нет» саму идею повышения уровня индустриализации реконструктивных работ. То же самое происходит и при реконструкции зданий с разновеликими или неповторяющимися пролетами.

В подобных случаях наиболее рационально устройство монолитных железобетонных междуэтажных перекрытий. Они могут оказаться более эффективными в тех случаях, когда нет возможности установить на объектах реконструкции соответствующие грузоподъемные механизмы.

База нормативной документации: www.complexdoc.ru Монолитные перекрытия, нашедшие в настоящее время широкое применение при реконструктивных работах, применяются в зависимости от величины пролетов, состояния несущих стен и других элементов в различных конструктивно технологических схемах (рис. 7.3). Они выполняются безбалочными, балочными, ребристыми или кессонного типа.

Рис. 7.3. Конструктивно-технологические схемы монолитных перекрытий а - монолитное безбалочное перекрытие;

б - балочное монолитное перекрытие;

в - кессонное безбалочное;

г - монолитное ребристое перекрытие с пенополистирольными вкладышами;

1 - монолитная плита;

2 - опалубка;

3 - поддерживающие элементы опалубки;

4 балка;

5 - пенополистирольный вкладыш Немаловажным фактором является возможность проведения реконструктивных работ с частичным отселением жильцов, когда, например, одна секция здания реконструируется, а все остальные находятся в эксплуатации.

Другим примером может служить вариант замены перекрытий нескольких первых этажей, когда при ранее выполняемой надстройке здания применены долговечные материалы, а конструкции находятся в хорошем состоянии.



Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.