авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 6 | 7 || 9 |

«База нормативной документации: А.А. Афанасьев, Е.П. Матвеев РЕКОНСТРУКЦИЯ ЖИЛЫХ ЗДАНИЙ Часть I Технологии восстановления эксплуатационной надежности жилых зданий ...»

-- [ Страница 8 ] --

Технология замены перекрытий предусматривает ведение работ по захваткам. В строительном процессе участвуют несколько технологических потоков: разборка перекрытий и демонтаж внутренних перегородок;

устройство штраб и опорных элементов под балки;

возведение опалубки перекрытия;

армирование База нормативной документации: www.complexdoc.ru конструкций;

подача, укладка и уплотнение бетонной смеси;

уход за бетоном и его тепловая обработка до набора распалубочной прочности;

демонтаж поддерживающих элементов стоек, прогонов, палубы.

В зависимости от конструктивно-технологических решений размер захваток может колебаться в широких пределах. При возведении перекрытий из мелкоштучных конструкций по балкам за захватку принимается часть секции, обслуживаемая грузоподъемным механизмом. При устройстве перекрытий в несъемной опалубке из профнастила размер захватки может достигать площади секции или этажа. Это связано с применением бетоноукладочного комплекса на базе бетононасосов. Их высокая производительность обеспечивает непрерывную укладку смеси на размер захватки в течение рабочей смены.

В общем плане размер захваток определяется уровнем механизации производства работ. При этом интенсивность работ обеспечивается количественным составом рабочих для создания ритмичного производства.

В таблице 7.1 приведен примерный график производства работ по устройству монолитного перекрытия с применением несъемной опалубки из профнастила. Секция жилого дома имеет 4 захватки, на которых с отставанием на две смены ведется комплекс строительно-монтажных работ поточным методом. Общая продолжительность работ составляет 8 рабочих дней.

Таблица 7. График производства работ при устройстве монолитного перекрытия по профнастилу База нормативной документации: www.complexdoc.ru § 7.2. Технология замены перекрытий из мелкоштучных бетонных и железобетонных элементов Весьма распространенным решением при замене перекрытий является устройство междуэтажных перекрытий из несущих сборных железобетонных балок разного сечения и различного рода вкладышей. По своим конструктивным решениям железобетонные балки подразделяются на несколько типов: балки цельного сечения (тавровые и прямоугольные с выпусками арматуры);

балки составного сечения (швеллерные, Г-образные).

Балками таврового сечения перекрывают пролеты до 7 м. Эти балки изготавливаются преднапряженными на специальных длинных стендах с последующей разрезкой на требуемые размеры.

Основным видом вкладышей в междуэтажных перекрытиях такой конструкции являются пустотелые железобетонные, керамзитобетонные и керамические блоки.

Недостатком данной технологии является необходимость частого расположения балок (через каждые 60-80 см), что влечет База нормативной документации: www.complexdoc.ru за собой потребность вырубки в несущих стенах проемов для их опирания.

В зависимости от принятой технологии и подъемно транспортных механизмов производство работ осуществляется снизу вверх или сверху вниз. Преимуществом замены перекрытий начиная с верхнего этажа является возможность сохранения пространственной жесткости и геометрической неизменяемости несущих и ограждающих конструкций стен. При этом в качестве подъемно-транспортных средств используются приставные подъемники и консольные краны, которые обеспечивают подачу конструктивных элементов через оконные проемы.

Недостатком этой технологической схемы является то обстоятельство, что процессы замены перекрытий и демонтажа нижележащих конструкций должны производиться параллельно.

Это требует дополнительных мер по технике безопасности и специальных мероприятий по исключению запыленности рабочих мест. Такое решение возможно при выполнении малых объемов работ в зданиях небольшой этажности.

База нормативной документации: www.complexdoc.ru Рис. 7.4. Технологическая схема замены перекрытий из мелкоштучных блоков по железобетонным балкам 1 - подъем балок на этаж;

2 - подъем блоков системой Lift;

3 подача бетонной смеси автобетононасосом;

4 - распределительные стойки;

5 - подмости На рис. 7.4 приведена организационно-технологическая схема производства работ по устройству междуэтажных перекрытий из пустотных вкладышей по железобетонным балкам с последующим омоноличиванием бетоном или пенобетоном.

Работа по замене перекрытий ведется по захваткам с применением башенного крана. До начала работ по устройству перекрытия должны быть выполнены: разборка, демонтаж и удаление элементов конструкций, пришедших в негодность;

ремонт, перекладка или усиление несущих и ограждающих кирпичных стен;

пробивка и заделка проемов в перекрываемом этаже в соответствии с проектом;

подача на возведенное перекрытие нижележащего этажа материалов и изделий для послемонтажных работ.

Для укладки балок в стенах пробивают гнезда глубиной в 1, кирпича, высотой 4-5 рядов и шириной в 1 кирпич. По нижней грани гнезд, соответствующей проектной отметке, устраивается основание для опор балок. Оно может выполняться из бетонных подушек или цементно-песчаной стяжки. Монтируемую балку подают в наклонном положении, обеспечивающем заведение ее концов в опорные гнезда. При монтаже балок обязательно соблюдаются единый монтажный горизонт и фиксированное расстояние между осями балок. Последнее обеспечивается путем использования шаблонов.

После установки и выверки балок осуществляются их анкеровка к стене и заделка гнезд бетоном или кирпичом на цементно песчаном растворе. При выполнении работ по установке балок используют монтажные подмости и инструмент для выверки в проектное положение. Затем производят укладку плит-вкладышей межбалочного заполнения, пустотелых блоков и других элементов, предусмотренных проектом.

Для обеспечения монолитности перекрытия на верхний слой блоков укладывается арматурная сетка и осуществляется бетонирование. Толщина укладываемого слоя не превышает 10 см.

Используются высокопластичные и литые бетонные смеси, что позволяет с минимальным вибрационным воздействием получать База нормативной документации: www.complexdoc.ru достаточно высокую плотность бетона и горизонтальность поверхности. После приобретения бетоном прочности 1,5-2,0 МПа осуществляются его затирка и последующая шлифовка. Это позволяет получать поверхности, готовые к укладке чистых полов.

Эффективно использование бетонов на легких заполнителях, а также пенобетона.

Последние достижения в области технологии приготовления и транспортирования пенобетона показывают, что использование мобильной установки обеспечивает приготовление и перекачивание смесей на высоту до 30 м и до 300 м по горизонтали. При этом возможно получать поризованные смеси различной плотности - от 300 до 1800 кг/м3 и прочностью от 0, до 20,0 МПа. Пенобетон плотностью 300-400 кг/м3 возможно использовать в виде изоляционного слоя при возведении перекрытий из железобетонных плит по металлическим или железобетонным балкам таврового сечения.

Организация работ по замене перекрытий предусматривает использование звена рабочих в количестве 5 человек: монтажники 4-го разряда - 1, 2-го разряда - 1, каменщики-бетонщики 4-го разряда - 2, такелажники 2-го разряда - 1.

Монтаж балок и заделку гнезд выполняет звено в полном составе, пробивку гнезд и подготовку опорных площадок производят каменщики 2-го и 4-го разрядов, укладку арматурной сетки и бетонной смеси - бетонщики (2 человека). При использовании высокопроизводительного бетононасосного транспорта или пенобетонной установки площадь захваток должна быть увеличена из условия сменной производительности механизмов подачи смеси. Поэтому размер захваток при бетонировании может достигать 400-500 м2, что соответствует площади одного или двух этажей.

При производстве работ необходимо соблюдать правила техники безопасности: запрещается хождение по уложенным плитам;

для передвижения рабочих по балкам должны использоваться временные настилы из досок или щитов;

запрещается перегружать балки сосредоточенными нагрузками от штабелей строительных материалов и деталей;

не разрешается устанавливать монтажные столики или подмости на балки без дополнительного настила.

Оценка качества работ должна производиться пооперационно.

Смещение осей балок и расстояния между ними должны отличаться от проектных размеров не более 15 мм.

База нормативной документации: www.complexdoc.ru Отклонение нижних горизонтальных поверхностей потолка на м длины должно быть не более 2 мм и не более 10 мм на всю длину помещений или его части, ограниченной балками.

§ 7.3. Технология замены перекрытий из крупноразмерных плит Замена перекрытий из крупноразмерных плит является наиболее индустриальным и высокопроизводительным методом ведения реконструктивных работ. При этом используют технологические схемы с опиранием консольных выпусков плит на стены, металлические балки или железобетонные ригели. В связи со значительным увеличением массы перекрытия такое решение допустимо при достаточной несущей способности стен и фундаментов.

Обязательным условием технологии и организации работ является наличие подъемно-транспортных механизмов башенных, стрелковых или кранов на пневмоходу.

До начала монтажа перекрытий из многопустотных плит с консольными выпусками выполняется комплекс работ, включающий: разборку конструкций на захватке;

монтаж перекрытий нижележащих этажей;

ремонт и перекладку отдельных участков стен;

пробивку и заделку проемов в перекрываемом этаже;

подачу на смонтированное перекрытие материалов и изделий для послемонтажных работ.

Для укладки плит при двухпролетной схеме здания (рис. 7.5) пробиваются гнезда во внутренней продольной стене и борозды (штрабы) глубиной 0,5 кирпича в наружной или противоположной стене. Пробивку борозд и гнезд осуществляют с подмостей по предварительной разметке. На нижнюю поверхность гнезд и борозд укладывается цементно-песчаная подготовка, обеспечивающая единую отметку монтажного горизонта. В целях обеспечения устойчивости стен пробивку гнезд и борозд производят участками длиной, равной ширине 5-6 плит.

База нормативной документации: www.complexdoc.ru Рис. 7.5. Технология замены перекрытий из крупноразмерных железобетонных плит а - план участка перекрытий из железобетонного пустотного настила;

б - монтаж с подачей настила в наклонном положении;

в База нормативной документации: www.complexdoc.ru - монтаж с поворотом настила в горизонтальной плоскости;

I, II, III - этапы монтажа Работы по монтажу плит перекрытий производят снизу вверх на участках, ограниченных капитальными стенами. Железобетонные плиты подают в наклонном положении, для чего используют четырехветвевой строп с различной длиной ветвей, обеспечивающий наклон в пределах 20-30°. Монтаж элементов осуществляется с инвентарных подмостей. Последние 2-3 плиты захватки монтируют с установленных плит.

После установки 4-5 плит производят их анкеровку, заделку гнезд и борозд кирпичной кладкой или цементно-песчаным раствором. Должное внимание уделяется устройству теплоизоляции торцов плит, опирающихся на наружные стены, с целью исключения мостиков холода. Швы между плитами заделываются цементно-песчаным раствором с уплотнением вибратором, оснащенным штырьевой насадкой.

На участках недоборов в промежутках между выпусками консолей плит производится омоноличивание. Для этой цели используют подвесную инвентарную опалубку, армирование сетками или каркасами и бетонирование подвижными смесями.

Разборка опалубки производится после достижения 70 %-ной прочности бетона.

Основные требования к качеству работ включают: обеспечение плотного примыкания плит перекрытий;

обязательное замоноличивание швов;

разница в отметках опорных частей плит не должна превышать 4 мм, а в отметке верхней поверхности - мм;

отклонение от горизонтали (разность отметок опирания плит) не должно превышать 8 мм.

Особое внимание в производстве работ должно уделяться вопросам техники безопасности при пробивке гнезд и борозд, своевременному обнаружению деформаций стен, предотвращению потери их устойчивости. При подаче в монтажную зону плит перекрытия должны быть исключены раскачивание и удары о стены.

Замена перекрытий из крупноразмерных плит выполняется звеном в составе 5 человек, из них: монтажники конструкций 4-го разряда - 1, 2-го разряда - 1, каменщики 3-го разряда - 1, 2-го разряда - 1. В звено входит также такелажник 3-го разряда.

База нормативной документации: www.complexdoc.ru При частом расположении внутренних несущих стен используется технология замены перекрытий большеразмерными плитами по металлическим балкам.

На рис. 7.6 приведена организационно-технологическая схема производства работ по замене перекрытий. Из-за частого расположения поперечных стен, различного пролета требуется большое число типоразмеров плит и балок. Это требует использования башенного крана грузоподъемностью до 8 т для обеспечения монтажного процесса наиболее тяжелых и удаленных плит.

База нормативной документации: www.complexdoc.ru Рис. 7.6. Технологическая схема и план площадки по замене перекрытий многопустотным настилом по металлическим балкам 1 - металлическая балка;

2 - многопустотный настил;

3 - бетонная опорная площадка;

4 - штраба омоноличенная Снижение себестоимости работ из-за большой номенклатуры изделий достигается путем использования преднапряженных плит перекрытий, изготовляемых по экструзионной технологии безопалубочного формирования. Резательная технология позволяет получать практически любую номенклатуру изделий в соответствии с принятым планом перекрытия. При этом используются специальные захваты для беспетлевого монтажа плит.

§ 7.4. Возведение сборно-монолитных перекрытий в несъемной опалубке Сборно-монолитные перекрытия с применением оставляемой опалубки являются наиболее эффективной технологией реконструктивных работ. Основным преимуществом таких систем является возможность получения высококачественных потолочных поверхностей.

На рис. 7.7 приведены организационно-технологические схемы возведения перекрытий с использованием железобетонной тонкостенной опалубки.

База нормативной документации: www.complexdoc.ru Рис. 7.7. Технология устройства сборно-монолитных перекрытий в несъемной опалубке из железобетонных плит с выпусками арматуры (а) и пенополистирольных плит (б) с последующим омоноличиванием 1 - несъемная опалубка;

2 - ригели;

3 - телескопические стойки;

4 монолитный бетон При толщине железобетонной несъемной опалубки 4-6 см масса монтажных элементов (ширина 1,2-2 м, длина - 5,8 м) составляет соответственно 0,72 и 1,2 т, что обеспечивает организацию монтажного процесса путем использования башенного крана грузоподъемностью до 3 т.

Технологический процесс возведения перекрытий включает:

устройство штраб по периметру или продольным сторонам стен глубиной 0,5 кирпича и высотой 1 - 1,5 кирпича;

устройство База нормативной документации: www.complexdoc.ru единого монтажного горизонта путем выравнивания опорной поверхности цементно-песчаным раствором;

установку распределительных балок на телескопических стойках и непосредственно монтаж элементов несъемной опалубки.

Установку элементов несъемной опалубки производят при работе крана «на себя», в наиболее удаленном пролете. Свободные концы панелей заводятся в полость штраб, затем осуществляется более плотное примыкание внутренней кромки панели к ранее установленной. Учитывая достаточно высокую гибкость панели, ее горизонтальность обеспечивается установкой 2-3 направляющих деревянных ригелей на телескопических стойках, снабженных винтовыми домкратами. Это обеспечивает проектное положение и точное совмещение потолочных плоскостей. Панели крепятся между собой распределительными стержнями арматуры или временными устройствами. В местах контакта панелей устанавливается дополнительное сетчатое армирование в 2- местах по длине пролета.

По окончании монтажа панелей осуществляется контроль их геометрического положения. Отклонения по горизонтали не должны превышать 3-4 мм на пролет. Перепад высот смежных потолочных поверхностей ± 1 мм. Выполнение этих требований осуществляется путем выверки панелей в проектное положение с помощью винтовых домкратов, устанавливаемых на распределительных балках.

Омоноличивание конструкций перекрытия производится по нескольким технологическим схемам. Если принята крановая подача бетонной смеси, то ее укладка производится по окончании работ на захватке. В случае использования бетононасосного транспорта захваткой может служить один этаж, что позволяет максимально использовать технические возможности бетононасоса.

Укладка бетонной смеси производится по очищенному основанию панелей несъемной опалубки. Перед укладкой смеси должно быть проведено обязательное увлажнение поверхности.

Для укладки смеси используются переходные мостики и временные настилы для расположения рабочих. Обязательным требованием является вибрационная проработка смеси с использованием глубинных или поверхностных вибраторов (виброреек). Карта бетонирования рассчитывается в каждом случае в зависимости от конкретных условий и особенностей планировочных решений. Подача смеси начинается с наиболее База нормативной документации: www.complexdoc.ru удаленной точки. Бетонирование производится на проектную толщину. При этом особое внимание уделяется получению горизонтальных поверхностей, для чего используют систему маяков и маячных досок. После набора прочности бетоном 1,5-2, МПа осуществляют затирку и шлифовку поверхности бетонного покрытия. До начала бетонирования производят работы по прокладке электропроводки, канализационных труб и др.

элементов.

После набора прочности бетоном 30-40 % проектной осуществляется освобождение панелей от поддерживающих элементов.

Работы выполняет звено в составе 4 человек: монтажники 4-го разряда - 1, 3-го разряда - 1;

бетонщики-арматурщики 4-го разряда - 1, 2-го разряда - 1. При подаче смеси бадьями в звено включается такелажник 2-го разряда - 1, а при подаче бетононасосным транспортом - машинист и оператор 5-го разряда.

Применение виброреек позволяет получать горизонтальные поверхности с достаточно высокой вибрационной проработкой смеси. Это обстоятельство способствует повышению адгезии укладываемого слоя с бетоном несъемной опалубки и арматуры.

Особый интерес представляет возможность использования монолитного слоя из пенобетона. Обладая значительной пористостью и достаточно высокой прочностью, он способен существенно повысить звукоизоляционные характеристики перекрытий.

Для указанных целей целесообразно использование пенобетона плотностью 900-1000 кг/м3 при прочности на сжатие 10-12 МПа.

При использовании несъемной опалубки с более высокими физико механическими характеристиками плотность пенобетона может быть понижена до 600-800 кг/м3, что заметно влияет на снижение виброакустических характеристик перекрытия. Подача пенобетона осуществляется трубопроводным транспортом при цикличном или непрерывном его приготовлении.

Отечественной промышленностью выпускаются прицепные мобильные установки производительностью 5-8 м3/ч. При средней толщине монолитного слоя 10-12 см часовая производительность установки позволяет забетонировать 50-60 м2 перекрытия.

База нормативной документации: www.complexdoc.ru Эффект бетонирования повышается при использовании пенобетона с температурой на выходе 30-40 °С. При этом цикл твердения существенно ускоряется. Через 10-12 ч выдерживания пенобетон набирает до 50 % прочности, что достаточно для дальнейшего ведения реконструктивных работ. Регулирование температуры пенобетона достигается за счет подогрева воды до 80-90 °С.

§ 7.5. Технология возведения монолитных перекрытий Комплексный технологический процесс возведения монолитных конструкций включает: подготовительные работы по устройству штраб;

устройство опалубки перекрытия с использованием наиболее эффективных опалубочных систем;

армирование отдельными стержнями или арматурными каркасами;

подачу и укладку бетонной смеси средствами механизации;

ускоренное твердение бетона с применением различных энергоэффективных методов воздействия;

уход за бетоном;

демонтаж опалубки;

контроль качества производства работ, в том числе режимов тепловой обработки;

оценку интенсивности набора прочности и времени распалубочных работ инструментальными методами.

Эффективность технологии достигается во взаимосвязи указанных процессов, обеспечивающих ритмичную работу по захваткам и высокую оборачиваемость опалубки. При этом определяющим фактором интенсивности является процесс набора прочности бетоном.

В качестве опалубок могут быть использованы: опалубочные системы конструкции Алума-Системс (Канада);

Пашал (ФРГ), Утинорд (Франция), Ишебек (ФРГ), Пери, ЦНИИ-ОМТП (РФ) и др.

Основными принципами формирования опалубливаемой поверхности являются: устройство поддерживающих элементов в виде телескопических стоек и фиксаторов, пространственных рам из стоек;

размещение ригельной системы, воспринимающей нагрузки;

устройство палубы из отдельных унифицированных щитов или листов водостойкой фанеры.

На рис. 7.8 приведены конструктивные схемы наиболее распространенных и адаптированных к условиям реконструктивных работ опалубочных систем. Общим элементом База нормативной документации: www.complexdoc.ru систем являются телескопические поддерживающие стойки или рамы. Они снабжены различными элементами, обеспечивающими установку поддерживающих балок или щитов опалубки на данном уровне.

Рис. 7.8. Конструктивно-технологические схемы устройства монолитных безбалочных перекрытий с использованием различных опалубочных систем a - опалубка перекрытия системы Ишебек: 1 - телескопические стойки;

2 - системы балок и подвижных ригелей;

3 - палуба из листов фанеры;

4 - армирование;

5 - бетон;

б - опалубка системы Алума-Системс;

в - опалубка системы Пери: 1 - телескопические стойки;

2 - опорные балки;

3 - прогоны;

4 - палуба из фанеры;

5 монолитный железобетон;

6 - виброрейка;

г - опалубка системы Утинор: 1 - телескопические стойки с оголовником;

2 инвентарные опалубочные щиты;

3 - железобетонное перекрытие;

4 - доборные элементы опалубки Конструкция стоек такова, что она позволяет, изменяя высоту, производить распалубку с сохранением устойчивости всей системы. Ригели и балки, воспринимающие непосредственно нагрузки от бетона, выполняются с возможностью размещения База нормативной документации: www.complexdoc.ru палубы из многослойной водостойкой фанеры с гвоздевым креплением. Это обстоятельство позволяет успешно выполнять работы по устройству перекрытий сложной геометрической формы.

Применение инвентарных щитов с палубой из фанеры также весьма эффективно, однако требует дополнительных затрат на устройство доборных элементов. Такие системы могут быть успешно использованы при реконструкции зданий прямоугольной формы.

Наиболее приемлемой для целей реконструкции и технологичной следует считать систему опалубки Ишебек. Ее отличительным признаком является создание балочной системы, опирающейся на телескопические стойки, между которыми располагаются прогоны с изменяемым расстоянием между опорами. Такое решение позволяет за счет изменения шага прогонов возводить перекрытия различной толщины, а также успешно использовать палубу в виде фанерных щитов.

Механическая система крепления балок к опорным стойкам существенно упрощает процесс сборки и распалубки. Комплекс технических новшеств позволяет повысить технологичность системы и довести трудоемкость монтажа опалубки до 0,2-0, чел.-ч на 1 м2 перекрытия.

В целом трудоемкость опалубочных работ зависит от многих факторов: материала опалубки, конструктивного решения, уровня собираемости и точности сохранения геометрической формы, массы отдельных элементов и степени подготовленности инженерно-технического состава и квалификации рабочего персонала.

Анализ трудозатрат на устройство 1 м2 опалубки перекрытий для различных систем показал, что при ручной установке этот показатель колеблется от 0,3 до 1,2 чел.-ч/м2. Наиболее технологичными следует считать опалубочные системы Пашал, Алума-Системс, Пери, у которых трудоемкость возведения опалубки не превышает 0,3 чел.-ч/м2, а масса элементов опалубки составляет 24-17 кг/м2. За счет использования фанерной палубы вместо отдельных щитов трудозатраты могут быть снижены до 0,2-0,22 чел.-ч/м2.

С целью снижения удельной массы опалубочных щитов и поддерживающих элементов используются легкие сплавы из алюминия, а также титана. Это обстоятельство позволяет вручную База нормативной документации: www.complexdoc.ru осуществлять сборку, что делает процессы малозависимыми от кранового оборудования. Таким образом, интенсивность ведения опалубочных работ можно повысить путем увеличения численности рабочих.

Технология производства работ по устройству безбалочных перекрытий ведется по захваткам. Обязательным конструктивным условием является устройство штраб по периметру стен при опирании плит по контуру или при опирании по двум сторонам.

Эта технологическая операция выполняется традиционным способом с использованием приставных подмостей и ручного механизированного инструмента. Затем производится цикл опалубочных работ.

При ручной установке опалубочной системы предварительно на перекрытие нижележащего этажа подается с помощью крана комплект опалубки в соответствии с расстановкой опорных стоек, раскладкой прогонов, балок, щитов или фанерных листов палубы.

Выполнение опалубочных работ сопровождается геодезическим контролем уровней и отметок, контролем качества сборки щитов, оценкой устойчивости стоек и опалубочной системы в целом.

После окончания работ на захватке осуществляют армирование плиты. Как правило, эти работы выполняют из отдельных стержней с ручной вязкой и установкой фиксаторов, обеспечивающих получение заданного защитного слоя. Это обстоятельство позволяет высвободить крановое время на другие операции и обеспечивает заданный цикл работ путем регулирования численности рабочих.

Цикл бетонирования осуществляется с подачей смеси краном или бетононасосным транспортом. Принятие той или иной схемы зависит от объема одновременно укладываемой смеси. Цикл укладки бетонной смеси сопровождается обязательным вибрационным уплотнением, затиркой поверхности и ее шлифовкой.

Фактором, определяющим цикл бетонных работ, является процесс набора прочности бетоном. Для перекрытий распалубочная прочность должна составлять 70 % проектной.

Современные технологии термообработки бетонных смесей в совокупности с использованием химических добавок позволяют достигать указанные пределы прочности за 24-36 ч. На основании данных параметров процесса набора прочности осуществляется База нормативной документации: www.complexdoc.ru выбор потребного количества опалубочных систем с учетом поточного производства работ. Как правило, используются комплекты опалубки на две захватки. На одной осуществляются бетонирование, выдержка и тепловая обработка, а на второй монтаж и арматурные работы. Распалубливаемые конструкции опалубочной системы очищаются, при необходимости восстанавливаются и поступают на монтаж третьей захватки.

Таким образом, осуществляется поточное производство работ по возведению перекрытий.

На рис. 7.9 приведена организационно-технологическая схема возведения перекрытий для здания сложной конфигурации.

Перекрытие каждого этажа реконструируемого здания разбито на 3 захватки, где поочередно или с совмещением ведутся работы по монтажу опалубки, армированию перекрытия и бетонированию.

На фрагменте стройгенплана приведены схема размещения складских зон, участок подготовки опалубочной системы, места приема бетонной смеси. Весь технологический процесс обслуживается башенным краном грузоподъемностью 3,0 т.

Организация работ предусматривает групповую подачу элементов опалубки на ранее возведенное перекрытие и ручную ее установку.

База нормативной документации: www.complexdoc.ru Рис. 7.9. Организационно-технологическая схема возведения монолитных безбалочных перекрытий при реконструкции здания сложной формы плана Захватка 1 - устройство опалубки;

захватка 2 - армирование;

захватка 3 - укладка бетонной смеси На схеме раскладки щитов показаны участки, где требуется возведение индивидуальной опалубки (доборные зоны).

База нормативной документации: www.complexdoc.ru Бетонирование конструкций перекрытия производится с подачей бетонной смеси бадьями вместимостью 0,3 м3. Укладка и уплотнение осуществляются с помощью виброреек.

При достижении распалубочной прочности бетона на захватке № 1 производятся демонтаж опалубки, ее очистка, смазка, ремонт и установка на захватке № 3.

В зависимости от используемых опалубочных систем удельная трудоемкость на возведение 100 м2 перекрытий находится в пределах 32,5-42,6 чел.-ч. При организации электротермообработки бетонных конструкций суммарные трудозатраты возрастают на 15-20 % и составляют 48,7-50 чел.-ч.

§ 7.6. Эффективность конструктивно технологических решений по замене перекрытий Критерием эффективности конструктивно-технологических решений и непосредственно технологии и организации ведения работ служит дополнительная прибыль для строительной организации, получаемая за счет снижения себестоимости строительно-монтажных работ.

Сравнительная экономическая эффективность осуществляется на основе анализа факторов, влияющих на изменение показателей:

трудоемкости строительно-монтажных работ;

продолжительности производства работ;

снижения показателей за счет сокращения прямых затрат (материальных ресурсов, основной заработной платы, эксплуатации машин) и уменьшения накладных расходов.

Снижение трудоемкости, сокращение основной заработной платы и продолжительности реконструктивных работ приводят к снижению затрат по накладным расходам.

В целом эффективность принятой технологии оценивается показателем прибыли.

Оценивая конструктивно-технологические решения по приведенным критериям, можно получить показатель эффективности организационно-технологических решений.

База нормативной документации: www.complexdoc.ru Имеется прямая связь между надежностью реконструируемых зданий и уровнем прибыли. Так, при варианте реконструкции с надежностью, превышающей средний уровень, стоимость и себестоимость работ существенно возрастают и будут влиять на стоимость реализации 1 м2 площади. Важным фактором в стоимостной оценке является долговечность применяемых конструкций, которая, в свою очередь, оказывает влияние на эксплуатационные расходы.

Общий принцип оценки должен осуществляться с учетом требований рыночной экономики.

В таблице 7.2 приведены данные о трудозатратах и расходе материала при замене перекрытий рассматриваемых вариантов.

Таблица 7. Трудозатраты на устройство междуэтажных перекрытий при реконструкции жилых зданий Машины и механизмы для Средства производства работ Описание № Трудоемкость, подачи реконструктивных чел.-дн/м п.п. бетонной работ Грузоподъемность, смеси Наименование т 1 Междуэтажные 0,16-0,37 Башенный 2- перекрытия по кран стальным балкам с заполнением сборных плоскими железобетонными плитами 2 То же, по 0,20-0,27 То же 3-5 Крап-бадья железобетонным балкам таврового сечения с заполнением пустотными блоками База нормативной документации: www.complexdoc.ru 3 Междуэтажные 0,27-0,32 » 3-5 »

перекрытия балочной конструкции с заполнением среднеразмерными железобетонными элементами 4 То же, из 0,20-0,24 » 5- крупноразмерных плит с консольным опиранием 5 То же, 0,19-0,23 7-10 крупноразмерными (0,34)* плитами с опиранием на металлические балки 6 Сборно-монолитные перекрытия в несъемной опалубке:

из железобетонных 0,51-0,59 » 2-3 Кран-бадья, плит бетононасос 0,31-0, из 0,36-0,4 Башенный 2-3 Кран-бадья, пенополистирольных кран бетононасос 0,19-0, армоконструкций 7 Междуэтажные 0,48-0,50 Башенный, 2-3 Кран-бадья, монолитные стреловой бетононасос 0,36-0, безбалочные кран перекрытия База нормативной документации: www.complexdoc.ru 8 То же, с 0,52-0,64 Подъемник Кран-бадья термовкладышами 9 Балочные 0,52-0,64 Башенный, 3-5 Кран-бадья, монолитные стреловой бетононасос 0,39-0, перекрытия кран * С учетом омоноличивания металлических балок.

Принимать к руководству данные таблицы 7.2 можно только с определенными оговорками. Прежде всего следует отметить, что не всегда трудоемкость работ определяет экономическую эффективность. Так, при возведении перекрытий по балкам таврового сечения с заполнением пустотными блоками около 50 % трудозатрат приходится на ручной труд. Но несмотря на это, общий эффект такого конструктивного решения достаточно высок, так как исключает ряд дополнительных трудоемких процессов, связанных с утеплителем и звукоизоляцией перекрытия.

Другим примером может служить устройство монолитных перекрытий с термовкладышами (рис. 7.3). Здесь, кроме подачи бетонной смеси, все процессы ведутся вручную. Несмотря на это, эффективность технологических решений достаточно велика.

Анализ таблицы показывает, что использование монолитных и сборно-монолитных систем по трудозатратам в 1,5-2,0 раза выше, чем в сборном варианте. При этом следует учитывать, что оценка трудоемкости работ с использованием элементов сборного железобетона не учитывает трудозатрат на их изготовление.

Комплексная оценка технологической эффективности возведения перекрытий должна учитывать помимо этого прямые затраты, связанные с использованием транспортных и подъемно транспортных средств. Их доля повышается при нерациональном использовании, например, башенных кранов. Так, снижение грузоподъемности кранов с 10 до 3 т приводит к сокращению расходов в 2-2,5 раза.

Достаточно высоки колебания прямых затрат в виде заработной платы. В этой связи возможно определить дополнительную прибыль за счет более дешевой рабочей силы.

База нормативной документации: www.complexdoc.ru Себестоимость работ по статье затрат «Эксплуатация машин»

вносит существенные колебания в зависимости от принятой технологии ведения работ. Так, использование бетононасосного транспорта может снизить себестоимость работ и сократить их продолжительность при условии максимального использования его производительности.

Снижение накладных расходов достигается прежде всего сокращением трудоемкости работ. В то же время переход от механизированных процессов к ручным может привести к повышению прибыли. Примером может служить армирование с ручной вязкой по сравнению с каркасами заводского изготовления.

Изменение заработной платы непосредственно связано с трудоемкостью работ. В монолитном и сборно-монолитном вариантах этот показатель имеет тенденцию роста.

Анализ европейского опыта (таблица 7.3) использования различных конструктивно-технологических схем показывает, что при возведении перекрытий преимущественно используют сборный и сборно-монолитный варианты и в меньшей степени монолитный. Рациональный диапазон перекрываемых пролетов для сборных перекрытий достаточно велик и достигает 20 м;

для сборно-монолитных - 7-9 м и монолитных - до 7 м.

График производства работ по устройству сборно-монолитных перекрытий показан в таблице 7.4.

Таблица 7. Область эффективного применения различных конструктивных схем перекрытий Схема перекрытия Пролет Высота, Нагрузка, Ширина кН/м мм элементов, мм 9 100-300 2,1-4,0 300- База нормативной документации: www.complexdoc.ru 20 100-500 2,0-4,8 7,2 100-200 2,4-4,8 600- 9,0 150-350 1,0-3,0 600- 7,2 200-300 1,8-2,4 600- 7,0 140-180 1,8-2, Таблица 7. График производства работ по устройству сборно-монолитных перекрытий База нормативной документации: www.complexdoc.ru ГЛАВА ПОВЫШЕНИЕ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ РЕКОНСТРУИРУЕМЫХ ЗДАНИЙ § 8.1. Эксплуатационные характеристики ограждающих конструкций Функция ограждающих конструкций - поддерживать внутри здания заданный температурно-влажностный режим, который влияет на комфортность проживания и зависит от теплотехнических свойств строительного материала, из которого выполнены ограждающие конструкции.

Ограждающие конструкции - многофункциональные и многоэлементные системы. Их функции обеспечиваются определенными свойствами материалов и конструкций:

База нормативной документации: www.complexdoc.ru теплозащита - теплопроводностью и теплоемкостью;

водозащита - воздухопроницаемостью, герметичностью узлов и стыков конструкций;

звукозащита - звукопоглощением и звуконепроницаемостью;

физико-механические свойства долговечность стенового ограждения. Кроме того, ограждающие конструкции выполняют архитектурную функцию, которая связана с приданием поверхности ограждающих конструкций заданной формы и цветовой гаммы.

Изменение во времени свойств материала ограждающих конструкций приводит не только к нарушению тепловлажностного режима помещений, но и повреждению конструкций, снижению их несущей способности и долговечности. Недостаточная теплоизоляция стен способствует увеличению влажности, которая, конденсируясь и распространяясь на несущие конструкции, приводит к изменению их физико-механических свойств.

Наружные стены должны обеспечивать не только защиту от проникновения атмосферной влаги, но и свободную диффузию водяных паров из внутренних помещений в наружную среду.

Важнейшее условие нормального режима состоит в том, чтобы атмосферная влага, конденсат и диффузия паров имели возможность испаряться во внешнюю среду. Эффективность защиты от переувлажнения атмосферными осадками имеет свои положительные и отрицательные аспекты. Для стен с различными видами наружной отделки динамика влагопереноса зависит от многих факторов. Так, защита в виде штукатурного покрытия способствует постоянному накоплению влаги, в то время как для стен без наружной отделки влага быстро отдается наружу. Такое явление особенно ярко проявляется для стеновых ограждений из пористого материала (газосиликата, газо- и пенобетона).

Устройство покрытий из керамической плитки препятствует попаданию атмосферных осадков, но не обеспечивает миграции влаги из помещений.

Скорость водоотдачи зависит от паропроницаемости материала конструкции и от упругости пара. При нанесении на наружную штукатурку ограждения защитного слоя краски или облицовочной плитки снижается паропроницаемость, что приводит к конденсации воды под изоляционным слоем и разрушению поверхностных слоев при цикличном воздействии отрицательных температур.

Жидкая и газообразная фазы атмосферной влаги воздействуют на ограждающие конструкции под действием капиллярных сил, База нормативной документации: www.complexdoc.ru ветрового напора, градиента давления и проникают во внутренние слои, что приводит к увеличению влажности материала и ухудшению теплотехнических и прочностных свойств.

Эксплуатационные качества несущих и ограждающих конструкций в значительной степени зависят от величины деформаций. Их суммарные параметры являются следствием возрастания вертикальных нагрузок в период возведения и длительных процессов усадки и ползучести в окончательно сформированной системе здания. Вторая составляющая полных деформаций может превышать расчетные значения первой.

Определяющее влияние на эксплуатационные характеристики зданий оказывают температурно-влажностные деформации. При перепадах температур наблюдаются перемещения в горизонтальной и вертикальной плоскостях. Наиболее опасными для панельных зданий являются деформации, вызванные перепадом температур по сечению стен. Деформированное состояние панели представляется в виде сферы, выгнутой в сторону нагреваемой поверхности. Наличие напряжений растяжения в нагреваемом слое и сжатия в ненагреваемом вызывает деформации и напряжения, которые могут превышать предел прочности материала, что приводит к трещинообразованию. Циклические воздействия постоянно увеличивают число трещин и ширину их раскрытия.

Эксплуатационные показатели зданий значительно ухудшаются в связи с возникновением отказов в результате инфильтрации воздуха под действием градиента давления между наружной и внутренней средами. Основным полем воздухопроницаемости в помещение являются стыки панелей и примыкания оконных и балконных заполнений. Воздухопроницаемость значительно повышается при изменении свойств герметиков в результате их старения и для домов первых массовых серий выше нормативных значений в несколько раз. Это обстоятельство создает дополнительный инфильтрационный тепловой поток, нарушая комфорт помещений.

Важное значение для воздухозащиты помещений имеет правильная технология установки окон и балконных заполнений, т.к. теплопотери через их примыкания достигают до 50 % общих.

Увеличение герметичности окон должно повышаться с ростом этажности зданий. Так, для зданий высотой до 17 этажей герметичность должна быть повышена в 2-3 раза по сравнению с пятиэтажными.

База нормативной документации: www.complexdoc.ru Большое влияние на процесс воздухообмена оказывают вентиляционные системы и системы инженерного оборудования (лифтовые шахты, мусоропроводы). Отклонения от проектных решений приводят к интенсивному воздухообмену, что незамедлительно сказывается на температурно-влажностном режиме жилых помещений.

В то же время недостаточный воздухообмен приводит к ряду негативных явлений.

Так, опыт эксплуатации санированных панельных жилых зданий в Германии показал, что около 30 % квартир подвержены образованию грибковой плесени. Основная причина интенсивного роста грибковых колоний состоит в недостаточном воздухообмене при утеплении фасадов панельных домов. Применение герметичных окон и стремление снизить энергозатраты за счет сокращения вентиляционных потерь существенно повышают влажность воздуха. Другой причиной служат ошибки в проектах, способствующие возникновению мостиков холода, что при повышенных влажности и температуре внутренней поверхности наружной стены являются причиной выпадения конденсата.

Достаточно высока вероятность появления конденсата в угловых комнатах, что связано с аэродинамическим эффектом, способствующим более эффективной теплоотдаче и снижению теплоизоляционных свойств материала.

Важным условием комфортного проживания является показатель звукоизоляционных свойств конструкций. Изоляция смежных помещений оценивается звукоизолирующей способностью разделяющих ограждений и интенсивностью передачи звука прямым и косвенным путями. В этом плане большое влияние оказывают архитектурно-планировочные решения, материал разделительных стен и перекрытий, а также конструктивное решение узлов и примыкающих элементов.

Звукоизолирующие качества конструкций со временем эксплуатации ухудшаются в результате изменения их физико механических характеристик: упругости, деформативности, образования и раскрытия трещин.

Особое влияние на виброакустические параметры помещений оказывают структурные шумы и вибрации, которые передаются по каркасу стен и перекрытий. Основным методом борьбы с ними является создание узлов с демпфилирующими прокладками, обеспечивающими гашение колебаний, разрезных конструктивных систем с виброизоляцией, плавающих полов и т.п.

База нормативной документации: www.complexdoc.ru Наибольшая дискомфортность жилых помещений появляется в результате воздействия воздушных шумов от автомобильного и других видов транспорта. Она определяется интенсивностью движения и удаленностью зданий от основных магистралей.

Снижение этого воздействия осуществляется методами звукоизоляции поверхности стен, устройством 3-слойного или пакетного остекления, снижение воздействия звуковых колебаний достигается путем посадки шумозащитных зеленых насаждений и возведения специальных отражающих барьеров.

В соответствии с нормами МГСН 2.04-97 «Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях» активизируется борьба с воздушными и ударными шумами методами строительной физики.

При выполнении реконструктивных работ необходимо учитывать процессы и явления, направленные на повышение технической и эксплуатационной надежности зданий, снижение вредного воздействия окружающей среды, применение энергосберегающих конструкций, эффективных материалов и технологий, существенно оздоровляющих условия комфортного проживания.

§ 8.2. Повышение энергоэффективности ограждающих конструкций Энерго- и ресурсосбережение являются главными направлениями технической политики в различных отраслях производства.

На диаграмме рис. 8.1 приведены усредненные значения получаемой энергии топлива на различных технологических этапах и потери при транспортировании, генерации, коммуникации и в жилищно-коммунальном хозяйстве. Анализ графика показывает, что максимальные потери наблюдаются в секторе ЖКХ. Это обстоятельство ставит задачу резкого снижения энергозатрат в первую очередь за счет максимального исключения теплопотерь при строительстве нового и эксплуатации старого жилого фонда.

База нормативной документации: www.complexdoc.ru Рис. 8.1. Потери полезной энергии топлива на различных технологических этапах В энергосбережении большое значение отводится повышению теплозащиты ограждающих конструкций. Сравнение видов потребления энергии показывает, что на жилищно-коммунальное хозяйство расходуется около 117 млн. т усл.т., из которых 75 - на отопление, что составляет около 43 % общего расхода энергии.

Анализ существующего положения в строительном секторе показал, что вновь построенные жилые здания в средней полосе России расходуют на нужды отопления многоквартирных зданий от 350 до 800 кВтч/м2. В целом по РФ расходы на отопление составляют 55 кг усл. т/м2 в год и на горячее водоснабжение - 19 кг усл. т/м2, т.е. суммарно 74 кг усл. т/м2 в год. Для сравнения: в ФРГ расходуют 260 кВтч/м2 в год, Швеции и Финляндии - 135 кВтч/ м2 в год. Или, если сравнивать по расходу условного топлива, то в ФРГ - 34 кг усл. т/м2 в год, Швеции - 18 кг усл.т/м2 в год, что в 2,0-2,5 раза превышает средние показатели по РФ.

Следует отметить, что с 1986 года нормативы по теплозащите зданий в нашей стране не менялись, в то время как западные страны за этот период времени несколько раз ужесточали требования.

На рис. 8.2 приведены сведения о динамике изменения теплопроницаемости стен на примере европейских стран. Резкий скачок в сторону энергоснабжения приходится на период энергетического кризиса 1970-1980-х годов. Начиная с этого периода ведется планомерная работа по увеличению термического База нормативной документации: www.complexdoc.ru сопротивления ограждающих конструкций и, как следствие, достигнуто существенное снижение энергозатрат.

Рис. 8.2. Динамика изменения сопротивления теплоотдачи для ряда европейских стран и РФ в соответствии с действующими нормами 1 - Россия;

2- Франция;

3 - Германия;

4 - Нидерланды;

5 Великобритания;

6 - Швеция;

7 - Норвегия;

8 - Дания Для уменьшения неоправданно большого эксплуатационного энергопотребления зданий Госстроем РФ введены новые нормативы, которые предусматривают снижение энергопотребления на 20-40 % путем увеличения до 3,5 раза сопротивления теплопередаче стеновых конструкций и снижения теплопотерь различных конструктивных элементов. Особое место в решении данной проблемы отводится не только новому строительству, но и эксплуатируемому и реконструируемому жилому фонду.

Актуальность проблемы энергосбережения повышается при реформе жилищно-коммунального хозяйства, когда уменьшается или прекращается дотация государства на содержание жилых зданий.

Снижение энергопотребления может быть решено комплексом архитектурно-планировочных приемов путем повышения теплотехнических характеристик ограждающих конструкций, сверхпрозрачных элементов, совершенствования вентиляционных систем, использования отопительных систем с управляемыми тепловыми режимами и др. решениями.

База нормативной документации: www.complexdoc.ru Для повышения энергоэффективности зданий требуется комплексный подход, учитывающий все источники теплопотерь.

Поэтому выполнение неполного цикла работ по теплоизоляции, например, только стенового ограждения, не может привести к положительным результатам. На рис. 8.3 приведены диаграммы теплопотерь через различные конструктивные элементы зданий, что подтверждает необходимость комплексного подхода в решении данной проблемы.

Рис. 8.3. Распределение теплопотерь через различные конструктивные элементы Особенностью новых нормативных положений является то обстоятельство, что приведенное сопротивление теплопередаче ограждающих конструкций следует принимать в зависимости от градусо-суток отопительного периода, но не менее Rотр, которое определяется из санитарно-гигиенических и комфортных условий R0 Rотр Величина ГСОП (градусо-сутки отопительного периода) зависит от климатических условий местности и определяется по зависимости ГСОП = (tв – tот.пер)Zот.пер, где tв - расчетная температура внутреннего воздуха согласно СНиП 31-01- «Здания жилые многоквартирные», tв =18 °С при расчетной температуре наружного воздуха до -30 °С, tв = 20 °С при расчетной зимней температуре наружного воздуха от -31 °С и ниже;

tот.пер - средняя температура периода со среднесуточной температурой воздуха t 8 °С;

Zот.пер - продолжительность периода (в сутках) со среднесуточной температурой воздуха t 8 °С.

Требуемое сопротивление теплопередаче различных TР ограждающих конструкций R0 при выполнении реконструктивных работ определяется в зависимости от величины ГСОП.

База нормативной документации: www.complexdoc.ru В новых нормативах ограничен температурный перепад для зданий различного назначения и конструктивных элементов.


При выборе конструктивной схемы ограждающих конструкций учитывается коэффициент теплотехнической однородности.

Внесены новые требования по ограничению воздухопроницаемости ограждающих конструкций.

В результате использования новых конструктивных решений оконных заполнений и балконных дверей приведенное сопротивление теплоотдаче должно находиться в определенных пределах. Выполнение комплекса нормативных требований позволит не только повысить комфортность проживания жильцов, но и обеспечить существенное снижение эксплуатационных расходов на отопление, которое, по данным Госстроя РФ, составит до 40 % нынешнего потребления.

Методика теплотехнического расчета осуществляется как для многослойных конструкций, определяется требуемая толщина теплоизоляционного слоя dут при заданных теплоизоляционных свойствах материалов и конструктивных слоев где - требуемое приведенное сопротивление теплопередаче стен;

r - коэффициент теплотехнической однородности;

Rl,…,Rn - термическое сопротивление конструктивных слоев;

lв, lн - нормируемые коэффициенты теплоотдачи внутренней и наружной поверхностей.

Для проверки правильности принятой толщины утепленного слоя dут выбирается фрагмент стены с проемом, и для него определяется приведенное сопротивление теплопередаче.

Фрагмент стены разбивается на участки. Для каждого участка определяется приведенное сопротивление теплопередаче с учетом влияния включений с различными термическими сопротивлениями (перемычек, противопожарных рассечек, оконных откосов и т.п.):

База нормативной документации: www.complexdoc.ru Для полного фрагмента стены где SF - площадь фрагмента стены за вычетом проемов;

F1, F2,...,Fn - площади участков фрагмента стены;

F01, F02,..., F0n приведенные сопротивления теплопередаче участков фрагмента стены;

п - число участков.

Если то конструкция стены считается удовлетворяющей требованиям строительной теплоизоляции.

§ 8.3. Характеристики теплоизоляционных материалов Выбор теплоизоляционных материалов для повышения теплотехнических характеристик ограждающих конструкций основан на учете наиболее важных физико-механических, эксплуатационных, технологических и экологических параметров.

Помимо этого теплоизоляционный материал должен отвечать требованиям огнестойкости.

В настоящее время спектр теплоизоляционных материалов достаточно ограничен и состоит из материалов, которые можно разбить на несколько групп.

I. Волокнистые материалы в виде матов, плит и других элементов плотностью от 50 до 350 кг/м3. В качестве волокон используется минеральное сырье, а для придания геометрической формы различного рода связующие (на синтетической, битумной или База нормативной документации: www.complexdoc.ru крахмальной основе). Наибольшее распространение получили минераловатные и плиты из базальтового волокна, у которого более низкий коэффициент теплопроводности и достаточно широкий диапазон физико-механических характеристик (эластичные маты, полужесткие и жесткие плиты). Основными производителями теплоизоляционных материалов этой группы являются фирма «Партек» (Финляндия), «Изовер» и «Ирса»

(Германия) и др.

Для теплоизоляции наружных стен целесообразно применение только минераловатных плит из базальтового волокна плотностью 90 кг/м3 с перпендикулярным направлением волокон и 150 кг/м с горизонтальным направлением волокон. Содержание фенольного связующего не должно превышать 3,5 %. Для повышения долговечности теплоизоляционного слоя его поверхность пропитывается водоотталкивающим составом.

Наибольшее распространение при решении вопросов теплозвукоизоляции нашли теплоизоляционные материалы на основе базальтового и стеклянного волокон. Полужесткие изоляционные плиты могут выполняться с водоотталкивающей обработкой. Они отвечают самым высоким требованиям:

несгораемые, экологически безопасные, с низким коэффициентом теплопроводности (0,044-0,047), обладают физико-механическими характеристиками, обеспечивающими высокую эксплуатационную надежность при утеплении вертикальных поверхностей.

Мягкие эластичные маты марок ММ и МП имеют плотность и 22 кг/м3, выпускаются в виде плит и рулонов длиной 4000- мм, шириной 500-1400 мм и толщиной 50, 60, 80, 100, 120, 140 мм.

Они предназначены для утепления горизонтальных поверхностей (полы, чердачные перекрытия, кровля и т.п.), экологически и пожаробезопасные. Их высокие технологические параметры обеспечивают широкий диапазон применения.

II. Синтетические вспученные материалы и их композиции:

пенополистирол, пенополиуретан, пенопласт. Они обладают достаточно низкой плотностью и являются эффективным утеплителем. Основной их недостаток - горючесть и плавление при температуре 120-150 °С. При горении могут выделяться вредные химические соединения.

Основным материалом этой группы следует считать пенополистирольные плиты марок ПСБС-25 и 35. Они применяются в комбинации с минераловатными плитами, когда База нормативной документации: www.complexdoc.ru поверхности по периметру проемов стен изолируются негорючим материалом, а остальное пространство - пенополистирольными плитами.

К группе пенолистирольных вспученных теплоизоляционных материалов следует отнести продукцию ТИГИ Knauf, которая производится по технологии австрийской фирмы «Визер»

беспрессовым способом из суспензионного вспенивающегося полистирола. Пенополистирол состоит из 95-98 % воздуха и 2-5 % полистирола. Это позволяет получать изделия с плотностью от до 50 кг/м3 с прочностью на сжатие от 0,05 до 0,2 МПа и на изгиб 0,07-0,35 МПа с водопоглощением 3,0-2,0 %.

Для повышения огнестойкости изделий в состав вводятся добавки антипирена, а для борьбы с грызунами - специальные биодобавки. Продукция ТИГИ Knauf из-за широкого диапазона теплотехнических и физико-механических характеристик может быть использована как тепло- и звукоизоляционный материал. По данным исследований фирм-производителей, долговечность материала превышает 50-70 лет, что вызвано отсутствием или весьма слабыми химическими реакциями с окружающей средой.

Теплоизоляционным материалом, отвечающим современным требованиям, является экструдированный пенополистирол Styroform, который разработан фирмой The Dow Chemical Co.

Отличительными особенностями данного плитного материала являются его сравнительно высокая прочность на сжатие, которая составляет 0,4-0,5 МПа, а также нечувствительность к атмосферным воздействиям. Эти показатели расширяют диапазон рационального использования, включая теплоизоляцию заглубленных конструкций зданий, кровли, дорожных покрытий и т.п.

III. Строительные конструкционно-теплоизоляционные композиционные материалы, выполняющие функции утепления и ограждения конструктивных элементов. К ним относятся:

пенополистиролбетон;

пенобетон;

газосиликат и другие материалы, имеющие достаточно высокие теплотехнические и механические характеристики. Они могут широко использоваться при реконструкции зданий с надстройкой этажей. Ограждающие конструкции при этом могут выполняться многослойными в комбинации с эффективным утеплителем, облицовкой кирпичом или штукатурным покрытием.

База нормативной документации: www.complexdoc.ru Наиболее перспективными и долговечными являются теплоизоляционные плиты из базальтовой ваты, вспененного экструзионного полистирола, пеностекла и др.

§ 8.4. Технологии утепления фасадов зданий с изоляцией штукатурными покрытиями Технология утепления конструкций жилых зданий включает несколько самостоятельных технологических процессов. Их число и последовательность выполнения определяются технологическим регламентом, взаимоувязаны общей продолжительностью работ и согласуются с ведущим процессом. Независимо от материала конструкций стенового ограждения обязательным является период подготовительных работ, который включает очистку поверхностей и восстановление внешних слоев, имеющих дефекты. К ним могут быть отнесены сколы кирпичной кладки, трещины, разрушения отдельных элементов и т.п. Для крупнопанельных зданий кроме восстановления поверхностных слоев необходимо обеспечить водо и воздухонепроницаемость стыков и межпанельных швов. Эти процессы выполняются известными из практики ремонтных работ приемами и материалами.

Кроме этого, осуществляется процесс замены оконных и балконных заполнений. Эти работы должны выполняться с небольшим опережением основного процесса или отдельным строительным потоком. Замена светопрозрачных заполнений на энергоэффективные состоит в извлечении старого оконного блока, подготовке проема и установке нового блока. Его установка осуществляется с использованием струбцин и домкратов, что обеспечивает проектное геометрическое положение.

Пространство между коробкой и проемом заполняется теплоизоляционным материалом и оштукатуривается.

Утепление наружных поверхностей стен осуществляется, как правило, плитным утеплителем (минвата, пенополистирол) с креплением с помощью распорных дюбелей или на мастике с промежуточной установкой и креплением направляющих к поверхности стен.

При устройстве утепляющего слоя из пенополистирольных блоков их выполняют пазо-гребневыми, что обеспечивает плотное сопряжение. Нижний ряд блоков располагается на направляющих База нормативной документации: www.complexdoc.ru из перфорированного уголка, устанавливаемого на заданной отметке и фиксируемого к поверхности стены дюбелями. Затем устанавливаются очередные ряды с креплением полимерными распорными анкерами. При размере блока 4060 см используются 4-5 анкеров. Для обеспечения плотного примыкания блока к поверхности стены верхняя головка распорных дюбелей выполняется диаметром не менее 50 мм с перфорированной поверхностью.

При отклонениях плоскости стены образуемый зазор заполняется полимерцементной мастикой. Это исключает образование вентилируемых зон и дополнительные теплопотери.


Особое место отводится укреплению угловых элементов здания и откосов оконных заполнений. Для этой цели используется полимерная сетка с угловым элементом из металлического профиля, которые объединяются с утепляемым слоем с помощью полимерцементной мастики. По окончании установки утепляющего слоя яруса или захватки производят крепление полимерной сетки на поверхность утеплителя. Она также закрепляется с помощью полимерной мастики или полимерных дюбелей, ввинчиваемых в теплоизоляционный слой. Затем осуществляется оштукатуривание поверхностей. В утеплителе из пенополистирола необходимо устройство поэтажных противопожарных рассечек полосой из минераловатных плит шириной не менее 200 мм. По периметру оконных и балконных проемов также применяют невозгораемый утеплитель.

При использовании в качестве утеплителя минераловатных плит технология их крепления к стенам осуществляется с использованием клеющих мастик и механического крепления дюбелями. Необходимое количество дюбелей на 1 м2 фасада определяется расчетом, учитывающим массу системы и ветровую горизонтальную нагрузку (откос воздуха).

Различают фасадные системы с тяжелой и облегченной штукатуркой. В первой системе 3-слойное штукатурное покрытие наносят с помощью пневмонабрызга, с последующим устройством накрывочного и финишного слоев. Несущими элементами являются арматурная сетка и анкера, располагаемые в толщине стенового ограждения. Толщина покрытия может составлять 30- мм.

Для облегченной системы используется полимерная сетка, которая крепится через утеплитель к несущей части стены. При База нормативной документации: www.complexdoc.ru этом трехслойное покрытие составляет 15-20 мм по толщине.

Технологическая схема производства работ по утеплению стен с защитой штукатурным покрытием приведена на рис. 8.4.

Рис. 8.4. Технологическая схема утепления фасадов плитным утеплителем (а) с креплением распорными анкерами и (б) защитой штукатурным покрытием 1 - утепляемая стеновая конструкция;

2 - направляющая первого ряда блоков;

3 - пенополистирольный пазогрсбневый блок;

4 полимерный анкер;

5 - направляющая порядовка;

6 - анкер дюбель;

7 - подмости;

в, г - рабочие моменты нанесения штукатурного покрытия Наиболее трудоемкими являются процессы утепления и оформления оконных примыканий и проемов. Для повышения эксплуатационной надежности места примыкания обрабатываются уплотнительной лентой, а для усиления откосов - уголковым профилем. Поверхность откосов усиляется сеткой из стеклоткани и оштукатуривается.

Оценка долговечности и эксплуатационной надежности различного рода покрытий показала, что наиболее эффективными следует считать известково-цементные дисперсно-армированные составы, наносимые с помощью пневмоустановок.

Подбор состава штукатурного покрытия должен осуществляться с учетом паропроницаемости. Это обстоятельство способствует База нормативной документации: www.complexdoc.ru созданию нормального тепловлажностного режима и предотвращению увлажнения граничных слоев утеплителя.

Влагомассоперенос в этих условиях оказывает существенное влияние на долговечность покрытия, так как постоянное увлажнение в сочетании с воздействием отрицательных температур приводит к интенсивному разрушению изоляционного слоя.

Для климатических условий РФ наиболее надежными и долговечными являются 100 %-ные минеральные связанные системы теплозащиты стен. Синтетические или полусинтетические технологии за счет содержания пленкообразующих компонентов (клей, смеси, краски) не обладают требуемыми паро- и влагопроницаемостью и подвержены отслаиванию слоев.

В теплоизоляционных системах должны применяться крепежные дюбеля из полиамида с аксидированным или нержавеющим сердечником. Все цокольные и шахтовые защитные профили должны применяться из нержавеющей стали или щелочестойкой стекловолокнистой ткани. Применение армированной или оцинкованной стали приводит к распаду материала через 2-3 года.

При выполнении штукатурного покрытия необходимо строгое соблюдение технологических регламентов по составу, методам нанесения, температуре и влажности окружающей среды.

Выполнение работ по теплоизоляции должно осуществляться в комплексе с надстройкой, заменой инженерного оборудования и восстановлением эксплуатационной надежности элементов здания. После производства работ достигаются более высокие эксплуатационные характеристики жилых домов, а также повышается архитектурная выразительность фасадов и их многообразие (рис. 8.5).

База нормативной документации: www.complexdoc.ru Рис. 8.5. Общий вид крупнопанельного дома после утепления и оштукатуривания фасадных поверхностей § 8.5. Теплоизоляция стен с устройством вентилируемых фасадов Жилые дома с вентилируемым фасадом начали возводиться в конце XIX века в России. Было обнаружено, что если создать относительно наружной поверхности стен воздушную прослойку с защитной системой из дощатой сплошной обрешетки с утеплением войлоком и последующим штукатурным покрытием, то теплотехнические характеристики таких домов резко возрастают, а несущая конструкция стен из бревен сохраняет длительное время физико-механические характеристики, исключаются процессы гниения и другие повреждения.

Подтверждением тому явилась оценка состояния срубов после эксплуатации более 100 лет, когда в результате разборки установлено отсутствие каких-либо видимых повреждений древесины. Причиной тому явилось постоянное проветривание наружной поверхности стен, что исключало замачивание и обеспечивало воздухообмен между внутренней и внешней поверхностями жилых домов.

Начиная с конца 80-х годов XX века эта идея была распространена на современные здания путем строительства вентилируемых фасадов. Впервые такие фасады появились в Германии, это было связано со стремлением снизить энергозатраты на их отопление и обеспечить более высокую долговечность ограждающих конструкций.

База нормативной документации: www.complexdoc.ru Принципиальная схема зданий с вентилируемым фасадом иллюстрируется рис. 8.6.

Рис. 8.6. Схема создания вентилируемых фасадов для жилых домов из дерева (а) и композиционных материалов (б) 1 - наружные стены;

2 - воздушная прослойка;

3 - сплошная обрешетка;

4 - утеплитель из войлока;

5 - штукатурное покрытие;

6 - плитный утеплитель;

7 - защитный элемент фасадной поверхности Учитывая, что воздушная прослойка является хорошим теплоизолятором, ее создание обеспечивает снижение теплопотерь, а движение воздуха создает условия воздухообмена между внутренней и внешней средой. Эффект вентиляции позволяет удалить избыток влаги при атмосферных осадках с поверхности стен, что обеспечивает повышение долговечности как несущих конструкций, так и защитного слоя в виде штукатурного покрытия или слоя теплоизоляции.

Современные конструкции вентилируемых фасадов состоят из каркаса в виде кронштейнов, прикрепляемых к теплоизолируемой поверхности с помощью распорных анкеров, и направляющих с вертикальным или смешанным размещением. На элементы каркаса навешиваются мелкоштучные изделия или крепятся с помощью заклепок, кляммер или специальных приспособлений облицовочные плиты.

В отдельных случаях в качестве направляющих могут использоваться деревянные брусья. Расчетная схема кронштейнов представляет собой консоль с опорной площадкой, которая крепится дюбелем к наружной поверхности стен (рис. 10.8).

База нормативной документации: www.complexdoc.ru Вертикальный профиль, который крепится к кронштейну, рассчитывается на вертикальные нагрузки от массы облицовочных панелей (а) и горизонтальные - ветровые нагрузки (б). Расчетная схема горизонтального профиля при толщине утеплителя более 100 мм может представляться неразрезной многопролетной балкой.

Горизонтальный профиль кроме объединения каркаса выполняет функции регулирования сечения вентиляционного канала и, соответственно, скоростного потока воздуха.

В зависимости от материала облицовки параметры системы «шаг размещения вертикальных и горизонтальных направляющих»

может меняться. Большое значение оказывает толщина утепляемого слоя, которая в целом определяет размер кронштейна и создает соответствующие моменты от нагрузок.

Исследования взаимодействия элементов анкера для крепления кронштейнов с материалом стены позволили выявить ряд весьма важных параметров, к которым относятся: наружный диаметр анкера;

глубина заложения в стену;

угол наклона распорной пробки и др. Как следует из полученных зависимостей, перечисленные конструктивные параметры распорных анкеров зависят прежде всего от материала стен и их физико-механических характеристик (рис. 8.7).

Рис. 8.7. Взаимодействие распорных анкеров с материалом стен а - расчетная схема;

б - взаимодействие сил при разрушении материала;

в - зависимость параметров анкера от несущей способности для: 1 - бетона классов В12- В20;

2 - кирпича;

3 керамзитобетона При испытаниях системы «кронштейн-нагрузка» установлено, что анкеры обладают определенной величиной податливости. В База нормативной документации: www.complexdoc.ru этой связи проведены экспериментальные исследования, которые показали, что при нагрузках на кронштейн соединение работает как сдвиго-устойчивое.

Площадь сечения болтовой части анкера можно определить по зависимости где N - нагрузка, действующая на кронштейн;

Ra - расчетное сопротивление болтовой части растяжению;

тн = 1,7 коэффициент надежности;

тy.p = 0,8 - коэффициент условия работы соединения;

а - расстояние от стены до точки приложения нагрузки;

l - расстояние от анкера до нижнего края пяты кронштейна.

На основании проведенных исследований установлены параметры анкеров для установки в стенах из тяжелого и легких бетонов и кирпича.

Очевидно, увеличение прочностных характеристик материала стен приводит к уменьшению диаметра анкеров и глубины заложения. В то же время была установлена взаимосвязь глубины заложения анкера с его диаметром. Это соотношение находится в пределах 4-6. На расклинивающий эффект определенное влияние оказывает угол наклона стенок расклинивающей пробки. Для высокопрочных материалов стен из бетона и железобетона угол наклона составляет 6-8°, в то время как для менее прочных (кирпичная кладка, ячеистые бетоны, керамзитобетон) этот параметр возрастает до значений 11-12°.

В результате проведения экспериментальных исследований и их статистической обработки получены зависимости, позволяющие произвести выбор или конструирование распорного анкера для определенного вида материала стен с учетом их физико механических характеристик, определяемых методом прямых испытаний.

База нормативной документации: www.complexdoc.ru При этом учет погрешностей испытаний, колебания прочностных характеристик стен и отклонения в технологии производства работ требуют дополнительного запаса прочности, в 2-3 раза превышающего расчетные значения.

В практике теплоизоляционных работ используются различные конструктивные системы, обеспечивающие получение эффекта вентилируемых фасадов.

Рис. 8.8. Системы вентилируемых фасадов «Словения» (а) и «Марморок» Швеция (б) 1 - стена;

2 - дюбель для крепления бруса (3) или кронштейна (3);

4 - воздушный зазор;

5 - утеплитель;

6 - направляющие;

7 облицовочная плитка;

8 - крепление вертикальных направляющих к кронштейну;

в - профиль и размеры облицовочных плит База нормативной документации: www.complexdoc.ru На рис. 8.8, а приведены варианты, когда в качестве несущих конструктивных элементов используется деревянная обрешетка, промежуток между которой заполняется минераловатным утеплителем. В продольном направлении крепятся вертикальные направляющие из профильного листового металла с выступающими кронштейнами. На них навешиваются цементно песчаные мелкоразмерные плиты, профиль которых повторяет профиль направляющих. Цементно-песчаные плиты изготавливаются по экструзионной технологии, что обеспечивает стабильную постоянность поперечного сечения. Конструкция плит такова, что вышележащий ряд частично перекрывает нижележащий. Такое решение исключает прямое попадание атмосферных осадков и в меньшей степени влияет на процесс увлажнения утеплителя.

Развитием данной технологии явилась система «Марморок»

(Швеция), которая основана на использовании горизонтальных направляющих, выполняющих роль кронштейнов, вертикальных направляющих в виде специального профиля из оцинкованной стали (рис. 8.8, б) и облицовочных плиток двух типоразмеров.

Процесс создания вентилируемого фасада состоит в установке горизонтальных и вертикальных профилей, заполнении теплоизоляцией с креплением дюбелями и навеске облицовочных плит.

Основными преимуществами данной системы являются малый расход металла, ограниченное число типоразмеров плитки и их самофиксация. Используя различную цветовую гамму, возможно достичь необходимой архитектурной выразительности фасадов зданий. По данным разработчиков, долговечность системы превышает 50 лет.

Система «Этернит» (Германия) базируется на использовании алюминиевого каркаса на кронштейнах с вертикальными и горизонтальными направляющими. Это обстоятельство позволяет осуществлять облицовку фасадов с применением цементно волокнистых плит. Их крепление к полкам каркаса осуществляется с использованием заклепочных соединений.

Для создания вентилируемого фасада крупнопанельных зданий с наружными стенами из 3-слойных панелей используются специальные анкеры, соединяющие наружную и внутреннюю несущие железобетонные части. Затем к этому анкеру крепятся База нормативной документации: www.complexdoc.ru кронштейны с последующей установкой вертикальных и горизонтальных направляющих (рис. 8.9).

Рис. 8.9. Утепление фасадов крупнопанельных зданий с облицовкой панелями из этернита (Германия) а - дефекты фасадных поверхностей;

б - схема утепления с облицовкой;

в - рабочий момент производства работ;

г - общий вид фасада;

в - конструктивная схема вентилируемого фасада;

1 3-слойная стеновая панель;

2 - анкер;

3 - утеплитель;

4 кронштейн;

5 - направляющие;

6 - этернитовая панель;

7 заклепки;

8 - продольная направляющая;

9 - подмости Конструктивное решение кронштейна позволяет регулировать вертикальность облицовки в случае неровности стен. Применение База нормативной документации: www.complexdoc.ru взаимно пересекающихся горизонтальных и вертикальных направляющих обеспечивает гидроизоляцию вентилируемого пространства. В то же время такое решение требует расхода металла на 1 м2 поверхности до 5 кг. Использованием различных разрезки фасадов и цветовой гаммы достигается обновление архитектурной выразительности зданий.

Системы вентилируемых фасадов с применением только вертикальных направляющих Т-образной формы и облицовки плитами из стекла или керамогранита представлены фирмами Aliva (Италия) и BWM (Германия). Принципиальные технические решения представлены на рис. 8.10. Для крепления фасадных панелей используются кляммеры или заклепочные соединения.

Рис. 8.10. Конструктивные технологические схемы утепления фасадов с облицовкой листами из керамогранита и стекла Aliva Италия (а) и BWM Германия (б) 1,9 - облицовочные панели;

2 - направляющие Т-образной формы;

3 - кронштейны;

4 - распорные анкеры для крепления кронштейнов;

5 - минераловатный утеплитель;

6 - ограничитель оконного проема;

7 - заклепки;

8 - кляммеры Отличительной особенностью данных систем является наличие горизонтальной щели между плитами, что создает База нормативной документации: www.complexdoc.ru дополнительный вентиляционный эффект. В зависимости от скорости внешнего воздушного потока, перепадов атмосферного давления и других факторов существенно снижается скорость потока в вентилируемой зоне, что исключает применение горизонтальных разделительных диафрагм. Высокие физико механические характеристики облицовочных плит позволяют использовать шаг вертикальных направляющих от 600 до 1200 мм.

Использование только вертикальных направляющих способствует снижению расхода металла до 2,0-2,5 кг/м вентилируемого фасада.

Широкому распространению данной технологии препятствует высокая стоимость облицовочных плит (от 30 до 80 $ США).

Технически подобные решения разработаны в РФ фирмами «Пластоун, РФ» - система «Броня», ПКФ «Профис»-«Красколор», «Фаест», которые используют цементно-волокнистые плиты «Ферпост» с декоративным покрытием из минеральной крошки, плиты «Красколор» - окрашенные цементно-волокнистые, асбоцементные, фиброцементные, цементно-стружечные плиты и другие, стоимость которых по известным причинам существенно ниже.

Большой практический интерес представляет технология утепления и облицовки фасадов из дисперсно-армированных бетонных плит, разработанная в МГСУ. Данная технология основана на использовании только вертикальных направляющих, которые крепятся традиционным способом, но имеют специальные прорези для навески плит (рис. 8.11).

База нормативной документации: www.complexdoc.ru Рис. 8.11. Конструктивные технологические схемы утепления и облицовки фасадов армоцементными плитами 1 - стеновая панель;

2 - распорный анкер;

3 - кронштейн;

4 вентилируемый зазор;

5 - утеплитель;

6 - направляющая;

7 облицовочная панель;

8 - объемный элемент оконного обрамления Отличительной особенностью облицовочных плит кроме цветовой гаммы является возможность создания рельефной поверхности. Это обстоятельство позволяет разнообразить архитектурные решения фасадов при достаточно низкой себестоимости работ.

База нормативной документации: www.complexdoc.ru Рис. 8.12. Схема дождевальной установки (а) и испытываемые стыки (б) Для практической оценки водонепроницаемости различных типов стыков облицовочных панелей (рис. 8.12) аспирантом П.

Монастыревым использована специальная методика исследования с использованием дождевальной установки. Она позволяла изменять угол дождевого потока, интенсивность, диаметр панели, а также менять расстояние между утеплителем и облицовочной панелью. Обработка экспериментальных данных позволила оптимизировать конструктивные и теплотехнические решения теплозащиты. Испытания проводились для горизонтальных и вертикальных стыков. В экспериментах регистрировалось отношение объемов влаги, попадающей в пространство между облицовочными панелями, к объему влаги, оставшейся снаружи, в зависимости от ширины зазора между панелями, размера фаски на торцевых гранях облицовочных плит, направлении ветродождевого потока.

Построена регрессионная модель следующего вида:

у = 43,11 - 4,75х1 + 14,64х2 + 1,22х3 + 2,2х4 + 8,07х12-6,31х22-1,56х32-14,7х42.

Анализ уравнения регрессии показал, что наибольшее влияние оказывает фактор х2 - ширина зазора между облицовочными панелями. Доля проникающей влаги составляет от 22 до 51 % при изменении ширины зазора от 3 до 9 мм.

База нормативной документации: www.complexdoc.ru На втором месте по влиянию оказался фактор х1 - размер фаски на торцевых гранях облицовочных плит. Водопроницаемость с увеличением размера фаски от 0 до 5 мм снижается с 56 до 43 %.

Установлено, что диаметр панели х3 практически не влияет на водопроницаемость стыка.

Максимальное значение проникающей влаги имеет место при перпендикулярном направлении ветродождевого потока (фактор х4). Водопроницаемость стыков редко снижается при уменьшении (х4 = 45°) или увеличении угла падения потока (х4 = 135°).

По результатам исследований математической модели построены области факторного пространства и графики зависимости у=f(х1, х2) (рис. 8.13).



Pages:     | 1 |   ...   | 6 | 7 || 9 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.