авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 4 | 5 || 7 |

«Гуго Глязер ДРАМАТИЧЕСКАЯ МЕДИЦИНА. ОПЫТЫ ВРАЧЕЙ НА СЕБЕ Hugo Glaser Dramatische Medicin ...»

-- [ Страница 6 ] --

Или вдруг появлялся тот мальчик-негр в резиновой лодке... Но возвращалось трез вое сознание, и он видел: земли все нет и нет. Не оставил ли он Антилы в стороне? Ведь, по расчетам, земля должна быть совсем близко!

28 декабря был его день рождения. Но Линдеман не думал об этом. Он думал о пи рожных и о том, что вот уже долгие три недели он сидит в мокрой одежде, да что там в мокрой — вернее сказать, прямо в воде.

А на другой день на горизонте показались тени облаков. Линдеман не мог сдержать радостного крика. Ура! И в самом деле, на следующий день, 30 декабря, то есть на 72-й день путешествия, перед ним встал на горизонте остров. Это была пустынная голая скала, а к северу от нее виднелся остров. Очертания суши подсказали ему правильный курс на филиппсбургскую гавань Сан-Мартин.

И вот лодка входит в порт. Падают тяжелые капли дождя. Все дышит спокойстви ем и тишиной. Пышная зелень тропиков, красные крыши разноцветных домов. Близился вечер, когда Линдеман причалил к пирсу. Цель была достигнута. У него дрожали колени и плохо слушались отвыкшие от ходьбы ноги.

Да и чему удивляться — ведь человек 72 дня не ступал на сушу. Наконец-то он сможет получить то, о чем так долго мечтал: кофе с пирожными.

Значение эксперимента Линдемана Оценивая значение своеобразного опыта, который произвел над собой Линдеман, надо учитывать следующее. Условия, в которых оказывается обычно потерпевший кораб лекрушение, отличаются, конечно, от экспериментальных условий путешествия Линдема на, хотя в каждом отдельном случае обстановка своеобразна. Очень многое зависит от ос нащения спасательного судна, от его конструкции, от запасов продовольствия, от психи ческого склада и морального состояния человека, от его одаренности, умения и знаний.

Психическая нагрузка в эксперименте Линдемана была нелегкой, и у него часто бывал повод к отчаянию. Достаточно вспомнить, как он проводил в воде долгие часы, це пляясь за свою скользкую маленькую опрокинутую «калошу», а на голову в это время об рушивались волны высотой с трехэтажный дом. Нужно было обладать большой волей к жизни, чтобы не отчаяться, не ослабеть, не сдаться.

Потом бессонница, привычка к укороченному сну. Линдеман доказал, что при оп ределенных обстоятельствах достаточно нескольких минут сна, чтобы сохранить жизнь и силы для борьбы.

Без патетики и преувеличений суммировал Линдеман физиологическую сторону своего опыта. Конечно, «кораблекрушение» было «добровольным». Не внес автор ничего нового и в проблему утоления жажды. Он не пил морской воды;

связанное с этим иссуше ние организма и установление допустимой степени его для человека не были предметом опыта. Но проблема питания обогатилась в физиологическом отношении. Линдеман пока зал, что потерпевшему кораблекрушение заполучить в день килограмм рыбы вовсе не так уж трудно. А килограмм рыбы — это около 1000 калорий. Для нормального, здорового человека такого количества калорий в сутки недостаточно. Однако оно надолго предот вращает истощение, хотя человек, конечно, теряет значительную часть веса (как это слу чилось с Линдеманом после потери запаса консервов).

Проблема здоровья во время путешествия почти отсутствовала. Опыт Линдемана показал, что опасность охлаждения организма в морях тропического пояса невелика. Ни постоянно мокрая одежда, ни многочасовое пребывание в холодной воде не вызвали у Линдемана простуды. Зато с пищеварением при столь скудной и очень концентрирован ной диете дело обстояло явно неблагополучно, постоянно мучил ненормальный стул.

Опыт Линдемана возбудил большой интерес общественности, а в научном мире вызвал дискуссию о целесообразности и смысле таких экспериментов.

Врач, который пишет об этом опыте, должен признать, что в нем есть что-то не обыкновенное, захватывающее, ведь риск для жизни экспериментатора был так велик! В наш век мощного развития техники можно было, даже пользуясь такой же маленькой лод кой, сделать рейс относительно комфортабельным и безопасным. Линдеман не пошел по этому пути и решил опереться на одну только человеческую волю. Это самое главное в оценке опыта, хотя и другие результаты физиологического и психологического порядка также представляют определенную ценность. Опыт Линдемана занимает достойное место среди других экспериментов, произведенных на себе современными врачами.

VIII. «УТОПЛЕННИКИ» И «УДАВЛЕННИКИ»

Путешествие доктора Линдемана через океан на лодке-одиночке, несомненно, от носится к категории опытов на самом себе. Однако, имитируя условия, в которых может оказаться потерпевший кораблекрушение, Лиидеман не брал одного: опасности захлеб нуться. Проблемы утопления и удушения дали пищу для опытов, проводившихся другими врачами, причем они доходили до предела подобного эксперимента. В учебнике известно го специалиста в области судебной медицины Эдуарда Хофмана упоминается о враче Флеминге, который сжимал себе артерии на шее до тех пор, пока не впадал в сомнамбу лическое состояние, достигая как бы первой стадии удавления, предшествующей смерти от удушья. Смертельный исход такого эксперимента исключен, потому что в момент по тери сознания пальцы автоматически разжимаются, прекращается давление на глотку.

В 1905 году появилось сообщение об аналогичном опыте французского врача Ни колауса Миновици. Лежа в кровати, он в течение нескольких секунд сдавливал себе шей ные сосуды. Сначала глаза застилало пеленой, пропадало зрение — это было сигналом, что сейчас он должен потерять сознание. Дыхание прекращалось, но оно восстанавлива лось немедленно после того, как освобождались артерии на шее.

Другой опыт воспроизводил незавершенное повешение. К потолку был приделан блок, через который перекидывался шнур диаметром в 5 миллиметров. На одном конце его завязывалась петля. Миновици надевал ее на шею, ложился на пол на левый бок на матрац и тянул правой рукой за свободный конец шнура, воспроизводя повешение. Даже слабое затягивание петли вызывало соответствующие явления: лицо наливалось кровью, затем становилось багрово-синим, перед глазами плыли огненные круги, появлялся шум в ушах.

От «предварительных» опытов Миновици перешел к основной цели исследования;

изучил на себе полный механизм повешения. Сначала он делал попытки «привыкнуть» к состоянию повешения, повторяя описанный выше прием до 6–7 раз по 4–5 секунд. После этого он приступил к прямому повешению на том же блочном приспособлении, так что тело его свободно висело на шнуре. Миновици удалось довести продолжительность опыта до 26 секунд. Однако невыносимая боль в области подъязычной кости справа, вызывав шаяся затягиванием шнура, заставила его прекратить опыты.

Вот как описывал Миновици свои ощущения: «Как только ноги оторвались от опо ры, веки мои судорожно сжались. Дыхательные пути были перекрыты настолько плотно, что я не мог сделать ни вдоха, ни выдоха. В ушах раздался какой-то свист, я уже не слы шал голоса ассистента, натягивавшего шнур и отмечавшего по секундомеру время. В кон це концов боль и недостаток воздуха заставили меня остановить опыт. Когда эксперимент был закончен и я спустился вниз, из глаз моих брызнули слезы».

После опыта боли при глотании держались долее десяти дней, особенно у подъя зычной кости справа. Беспрестанно мучила жажда, горло все время пересыхало. Странгу ляционная борозда на шее была заметна еще неделю спустя.

В чем смысл этих жестоких опытов на себе? Как известно, веревка часто выступает в качестве орудия самоубийства. Поэтому вопросы, связанные с механикой удавления как причины смерти, интересуют судебную медицину. С этой точки зрения описанные опыты, представляющие собой риск для жизни экспериментатора, имеют определенную ценность.

Многие врачи и студенты-медики изучали в опытах на себе также проблему искус ственного дыхания. Соответствующие исследования проводились, например, по просьбе или по крайней мере в связи с интересом военных ведомств в Иллинойсском университе те. В качестве практической задачи ставилась разработка наиболее рациональных методов искусственного дыхания при оказании помощи утопающим. В ходе опытов было установ лено, например, количество кислорода, необходимое для введения в легкие человека, ко торому угрожает смерть от удушья.

Опыт проводился так. С помощью яда кураре парализовались дыхательные мыш цы, естественное дыхание прекращалось, и кислород вводился в трахею подопытного че рез специальную трубку. Теперь можно было установить, каким количеством кислорода компенсируется кислородное голодание организма. Одновременно врачам удалось выяс нить, что распространенный в Америке при спасении утопленников метод искусственного дыхания Шефера менее эффективен, чем метод Холгера — Нильсена. Значение этого практического вывода нельзя недооценить.

Та же самая группа врачей-экспериментаторов из Иллинойсского университета — ее возглавлял доктор Садове — занималась разработкой проблемы искусственного дыха ния по поручению одной электрической компании. Речь шла об оказании первой помощи электромонтеру-верхолазу, пораженному током на линии высоковольтной электропереда чи и беспомощно повисшему на своем поясе. Следовало выяснить возможность такой по мощи на месте поражения, то есть в воздухе, на мачте, чтобы не терять драгоценного вре мени для спуска пострадавшего на землю, так как это крайне уменьшало возможность спасти человека.

В поисках добровольца для подобного опыта Садове обратился к своим сотрудни кам. Вызвался некий Кориц, тот же студент-медик, над которым проводился предыдущий эксперимент.

Главной задачей по-прежнему оставалось найти наилучший способ искусственного дыхания, так как при электрошоке непосредственной причиной смерти является обычно остановка дыхания и тут его нужно быстрее восстановить, чтобы вернуть пострадавшего к жизни. Студента Корица, предварительно наркотизированного, укрепляли на вершине специально поставленной мачты электропередачи в положении пораженного током. Затем профессиональные монтеры-верхолазы поднимались к нему и различными способами де лали искусственное дыхание, чему их заранее обучили. Опыт увенчался успехом. Разра ботанный благодаря самоотверженности будущего врача специальный метод искусствен ного дыхания положительно зарекомендовал себя в Америке и начинает находить все большее распространение в Европе.

IX. НА ВЫСОЧАЙШИХ ВЕРШИНАХ Стремление людей взбираться на горные вершины, несомненно, не является врож денным. Ведь древние народы не знали альпинизма. Они считали высокие и самые высо кие горы обиталищами богов и демонов, и суеверный страх охватывал их при взгляде на эти вершины.

Радость от восхождения на горы люди узнали много позднее, и объяснить ее пси хологически едва ли возможно.

Один из медицинских журналов недавно сообщил следующий анекдот: знаменито го альпиниста Джорджа Ли Маллори однажды спросили, почему, собственно, ему так хо чется подняться на Эверест. Он задумался, а потом сказал: «Потому что он существует».

Без сомнения, это и является причиной, почему большинство людей поднимается на горы, и даже врачи не могут не поддаться этому очарованию. Кроме того, их привлекает и науч ный интерес, заставляющий идти на бесконечные испытания, чтобы изучать и регистри ровать физиологические явления при восхождении на самые высокие горы. С тех пор как вершины Гималайских гор начали привлекать внимание людей, физиология высокогор ных восхождений стала актуальной.

Как только люди стали подниматься на высокие горы, они начали страдать и гор ной болезнью. Известно, почему она возникает. На состоянии человека сказывается по нижение атмосферного давления, наблюдаемое по мере восхождения, а также дыхание разреженным воздухом, содержащим небольшое количество кислорода. Переносчиками кислорода, который должен доставляться всем органам, чтобы клетки могли дышать, а орган — функционировать, служат красные кровяные шарики. Когда они начинают полу чать мало кислорода, это сказывается на всех органах, а особенно на головном мозге, вы зывая расстройства и симптомы, из которых и слагается картина горной болезни.

Наука не удовлетворилась этими начальными сведениями, которые вообще не тре буют особого эксперимента, кроме того, какой может сам на себе провести любой альпи нист, поднявшись выше 3 тысяч метров. Наука требовала более обширных, более точных знаний. Выполнению этого требования способствовали бесчисленные эксперименты.

При восхождении на самые высокие горы главной проблемой является недостаток кислорода. Это ученые узнали, научившись проводить химические анализы. Так, уже Александр Гумбольдт высказал мнение, что при восхождении на горы, которые тогда счи тались самыми высокими из доступных, следует брать с собой кислородный прибор.

Проблема покорения высоты предстала перед людьми в совершенно ином свете, когда возникла аэронавтика и люди стали пытаться не только подниматься на особенно высокие горы, но и достигать в воздушном шаре и на самолете таких высот, где атмо сферное давление и содержание кислорода в воздухе намного ниже той границы, через которую уже не может перейти человек.

Борьба за покорение Гималаев поставила перед многими экспедициями новые во просы. Уже первые альпинисты, подступавшие к Эвересту, могли воспользоваться сове тами физиологов, производивших опыты на животных, на людях и на самих себе. Вскоре почти не было экспедиции, в которой не участвовал бы врач, согласившийся разделить все ощущения и опасности восхождения ради того, чтобы обогатить науку сведениями по фи зиологии человека, находящегося высоко в горах.

Само собой разумеется, не всегда было легко найти врача для экспедиции, хотя очень многие выражали готовность участвовать в подобном приключении, охватывающем и туризм и физиологию. Такой врач, естественно, должен быть знаком с высокогорным туризмом. Но в молодые годы врачи должны изучать свою специальность и потому лише ны возможности тренироваться. Кроме того, их не всегда можно отвлечь от работы в кли никах. Поэтому им приходится, так сказать, отправляться в экспедицию прямо из больни цы.

Мы располагаем сообщениями врачей, участвовавших в экспедициях на Гималаи в течение последних лет: доктора Лохматтера, участника восхождения, совершенного в 1954 году, и доктора Шпирига, участника экспедиции 1955 года. И они, разумеется, стра дали некоторыми расстройствами, но делали все возможное, чтобы предохраниться и вы полнять свои задачи: оказывать врачебную помощь другим и проводить и записывать на блюдения, представляющие интерес для науки.

При восхождении врачи через некоторое время начинали чувствовать разницу в высоте, наступали связанные с более скудным содержанием кислорода в воздухе рас стройства дыхания, которые особенно усиливались по ночам. Всем участникам экспеди ции не хватало воздуха, и приступы удушья нарушали их сон. Они могли приспособиться к пониженному атмосферному давлению только по прошествии некоторого времени, но на высотах более 5 тысяч метров эта способность приспособляться исчезала, и наступал заметный упадок сил.

Среди препятствий, стоявших на пути, следует назвать и холод. Было трудно но чью в спальном мешке сохранить теплыми ноги и руки. При этом оказались полезными втирания трафуриловой мази. По рассказам доктора Шпирига, на этих высотах трафурил оказался самым лучшим снотворным. Ведь всякий знает, как холод мешает человеку за снуть.

Другая проблема — вопросы питания на этих высотах — представляла меньшие затруднения. Вопрос о питании в условиях восхождения еще не вполне разрешен научно, но уже давно известно, что углеводы, то есть сладости, при этом чрезвычайно важны.

Значит, нужно есть возможно больше сладкого, оно и составляет основу высокогорного питания.

Как врач экспедиции Шпириг сделал некоторые наблюдения. Много забот доста вили ему катары. Ведь воспаление легких, которое легко может присоединиться к катару дыхательных путей, в воздухе, бедном кислородом, опасно для жизни. Очень опасным для участников восхождения на Гималаи оказалось и острое воспаление гортани, так как мо жет быстро наступить отек гортани и удушье. Кроме того, не следует забывать о защите глаз, для которых усиленное ультрафиолетовое излучение, наблюдаемое высоко в горах (и в более высоких слоях атмосферы), чрезвычайно опасно. Сам врач однажды в течение ко роткого времени пренебрег защитой, и последствием такой неосторожности была слепота, продолжавшаяся три дня.

На больших высотах следует пользоваться кислородным аппаратом, который по могает также преодолевать инфекции [29]. Врач установил, что на высотах более 7 тысяч метров могут наблюдаться галлюцинации. Человек испытывает порой совершенно не обычные ощущения.

Один из участников восхождения сообщил врачу, что ему кажется, будто он попал на поле, окруженное высокой стеной. Другой утратил чувство пропорций. Словом, поми мо затруднений, которых ожидали, пришлось столкнуться и с многими непредвиденными.

Врач экспедиции страдал от всех этих осложнений, происшествий и опасностей, естест венно, в такой же мере, как и другие участники, хотя он, впрочем, тщательнее других со блюдал необходимые меры предосторожности. То обстоятельство, что, несмотря на все, находятся люди, в том числе и врачи, добровольно идущие на эти лишения и опасности, заслуживает восхищения. Но они бывают вознаграждены величием своих переживаний и созерцанием неповторимой красоты природы, что дано немногим. Для врача, разумеется, ценна и научная сторона дела и сознание, что он предпринял этот туристский опыт на са мом себе, служа своему делу.

Наряду с участием в восхождении на высочайшие горы, когда надо было разрешать вопросы физиологии, врачи участвовали также и в лабораторных экспериментах и опытах на себе. Их ставили с целью изучения этих проблем и, по возможности, создавали усло вия, в которых находились люди, поднимавшиеся на Гималаи. Эти эксперименты часто совпадают с теми, которые служат для изучения условий высотного полета.

Между высокогорным туризмом и высотным полетом, без сомнения, существуют значительные физиологические различия. Организм участника похода на Гималаи имеет возможность во время медленного восхождения приспособиться к пониженному атмо сферному давлению. Напротив, у летчика-высотника приспособление происходит в очень короткое время. В этом существенное различие. Но тем не менее есть известное сходство, и потому данные по этим вопросам, получаемые в лабораториях, используются обеими группами людей: альпинистами и летчиками-высотниками. Им известны различия и сле дующие из них выводы, но черты сходства имеют значение для обеих сторон;

поэтому и те и другие обычно с интересом изучают результаты лабораторных опытов. О том, что врачи часто делают опыты на себе, уже было сказано.

Х. ПОЛЕТ В КОСМОС Менее 200 лет отделяют нас от исторического события, когда два человека — это были французы — проявили необычайное мужество и, покинув землю, доверили свою жизнь воздушному шару, который унес их ввысь. Сначала был пущен пробный воздуш ный шар с тремя животными (бараном, петухом и уткой);

это доказало возможность тако го эксперимента. Через несколько лет воздушный шар, наполненный газом, достиг высоты в 3460 метров — это было началом аэронавтики. Но только через 70 лет, в 1850 году, аэ ронавт пересек границу человеческой приспособляемости.

Тогда изучением вопросов высотного полета стали заниматься врачи, которые должны были исследовать выносливость человека.

Вскоре стало вполне ясно, что все эти вопросы нельзя разрешить на месте, то есть в воздухе. Задача была бы трудной, если бы наблюдающий врач находился в таких же усло виях, что и испытуемое лицо, то есть был бы одновременно и субъектом и объектом. По этому понадобилось, так сказать, перенести на землю условия аэронавтики. Эту возмож ность создал еще один француз, физиолог Поль Бер, построив камеру пониженного давле ния, которая позволяла ставить в лаборатории опыты, воспроизводя подлинные условия высотного полета. В этой камере можно было понижать давление воздуха точно так же, как это происходит в верхних слоях атмосферы, а испытуемому лицу произвольно давать кислород в таком количестве, в каком его предоставляет природа на больших высотах.

Поль Бер, игравший важную роль и в политической истории Франции, сначала был юристом. Во время путешествия в Африку он обнаружил большой интерес к естествозна нию и медицине.

Впоследствии он получил в Париже медицинское образование. Его привлекала главным образом физиология, и он стал ассистентом Клода Бернара, известнейшего фи зиолога того времени.

Бер вскоре стал профессором Сорбонны и виднейшим ученым Франции. Французы чтят его память, как отца авиационной медицины, потому что он опубликовал труды о влиянии атмосферного давления на организм, которые в 1878 году объединил в выпущен ной им большой книге.

Опыты, которые Бер проводил в камере пониженного давления, показали, где ле жит граница жизнеспособности человека, как бороться с недостатком кислорода в разре женных слоях атмосферы и как, следя за измерителями высоты, путем самонаблюдения и внимания, а также своевременной подачи кислорода, устранять опасности высотного по лета. С другой стороны, Бер своими опытами в камере хотел доказать, что кислород — элемент, необходимый человеку и животным, — становится ядом, если его вдыхают в чрезмерном количестве. Ученые повторили опыты только через много десятилетий и убе дились в правильности данных Бера.

Когда Бер, занимаясь проблемами аэронавтики, пришел к выводу, что высотная болезнь уже не опасна, он предложил проделать следующий опыт. Снарядили воздушный шар и снабдили всеми необходимыми измерительными приборами и баллонами с кисло родом. Бер обучил пилота воздушного шара, профессора Гастона Тиссандье, как пользо ваться приборами, и подробно разъяснил опасности, какие представляет разреженная ат мосфера. Тиссандье поднялся для нового опыта. Два других врача, Кроче-Спинелли и Си вель, должны были вести наблюдения и обслуживать кислородный аппарат. Тиссандье, крупный ученый, был испытанным аэронавтом. Он уже не раз поднимался в воздух, а в 1870 году отважился на ставший знаменитым побег из осажденного Парижа на воздуш ном шаре. Его полет с названными выше лицами произошел в 1875 году, а перед этим он совершил полет, продолжавшийся двадцать три часа. Второй полет стоил жизни его обо им спутникам. Тиссандье достиг высоты 8800 метров. Затем, вследствие недостатка ки слорода, он потерял сознание, ибо оба его спутника, наблюдая окружающую картину, пе рестали следить за состоянием своим и пилота. Поэтому они пропустили нужный момент для включения кислородного аппарата, потеряли сознание и уже не пришли в себя;

между тем Тиссандье все же удачно приземлился. Они оказались жертвами опыта на себе. Тогда еще не знали, как быстро наступает опасная высотная болезнь, хотя эксперименты Бера были достаточно ясными.

И вот начинается авиация С 1783 до 1905 года в развитии полетов в воздухе не произошло ничего выдающе гося, но затем все сразу изменилось. После первоначальных попыток, первых, без сомне ния, потребовавших исключительной смелости полетов лишь на несколько километров, ныне совершаются не только пассажирские, но и транспортные перелеты, которые пред ставляются нам чем-то само собой разумеющимся. Разработки их вначале требовали ус ловия ведения войны. Понятно, что одновременно люди старались достичь более высоких слоев атмосферы, стратосферы. Люди стремились в слои с пониженным сопротивлением, чтобы увеличить скорость полета и сократить его продолжительность. Впоследствии это оказалось весьма важным для сообщений между континентами и через моря.

Все началось, когда в 1905 году братья Райт совершили свои первые полеты на са молете, приведенном в движение моторами. Они способствовали победе принципа «тяже лее воздуха» и положили начало новой главе в истории человечества. Они тогда летали со скоростью 55 километров в час, которая сейчас кажется смешной и непригодной для воз душного сообщения.

В течение нескольких десятилетий, прошедших после первого полета братьев Райт, развитие авиации было бурным, почти внушающим страх. В 1957 году уже достигли вы соты более 58 километров и скорости 3600 километров в час. Можно было предполагать, что в ближайшее время достигнут высоты в 160 километров и скорости, во много раз пре вышающей скорость звука (1200 километров в час), более того, что наступит состояние невесомости, вначале хотя бы на несколько минут. Тяжесть, приковывающая человека к земле, преодолена, межпланетное сообщение становится возможным, мир фантазии Жюля Верна превратился в науку, в реальность, и тот, кто ныне задумывается над возникающи ми проблемами, делает это «с научно направленной фантазией».

И все началось лишь в 1905 году. «Это доказывает, — пишет Дирингсхофен, — изумительно быструю приспособляемость человека к совершенно новым для него услови ям, которая, однако, оказалась возможной только благодаря участию медицины в техни ческом развитии».

Чем больше увеличивались скорость и высота полета, тем многочисленнее стано вились возникавшие проблемы. Всем было ясно, что достигнутое еще далеко от пределов возможного. Для человеческого ума не существует пределов. Тем временем летательный аппарат уже покинул атмосферу, и мы встали на пороге космических полетов с их новыми вопросами и вновь обострившимся конфликтом между машиной и возможностями чело века, возникшим в результате «взрыва духа изобретательства». В разрешении всех этих вопросов участвовали и участвуют врачи.

Мы столкнулись с огромным, казалось, непреодолимым различием между челове ком и машиной, но не хотели отступить перед пределами, которые сам человек установил для полета в воздухе. Вначале казалось, что физических сил и умственных способностей команды летательного снаряда окажется уже недостаточно, чтобы пользоваться и управ лять последним и применять все достижения техники. Она грозила обогнать человека, и летательный аппарат мог улететь от него.

Разрешить эти проблемы силами одних только техников и физиков уже не было возможности. Они стали общечеловеческими и тем самым перешли в область физиологии, патологии и медицины вообще, от которой и потребовали ответа на возникавшие вопро сы. Это снова привело к многочисленным опытам, которые известные и неизвестные вра чи, посвятившие себя авиационной медицине, стали проводить на себе.

Само собой разумеется, что вопрос о подготовке пилотов и испытание их пригод ности относится к области медицины. Ведь пригодность пилота — предпосылка для ис пользования самолета и его возвращения на землю. Авиационная медицина в Америке, а также в Советском Союзе и Германии развилась в мощную научную дисциплину, зани мающую среднее место между медициной и техникой, находящуюся в контакте с обеими и вербующую из них исследователей и экспериментаторов. Во время совещания, устроен ного в 1953 году в Лос Анжелесе Калифорнийским университетом и Воздушно медицинской инженерной ассоциацией, впервые были исчерпывающим образом рассмот рены все вопросы авиационной медицины.

Главным был следующий: способен ли человек совершить полет в космос, не по гибнув или не нанеся тяжелого ущерба своему здоровью, и что могут сделать медицина и техника, чтобы обеспечить космонавту возвращение на Землю целым и невредимым? Это уже были не вопросы, которые предстояло разрешить в будущем, а проблемы дня, так как авиационная техника уже готовилась к полетам в космос. Развитие ракетных и реактив ных летательных аппаратов зашло так далеко, что ближайшим шагом должен был стать полет в космическое пространство. Таким образом, авиационная медицина уже преврати лась в космическую.

Когда надо было создать предпосылки для полетов в космос, перед врачами и тех никами ставили вопрос, способен ли вообще человек выдержать скорость, с которой его из земной атмосферы перенесет в космическое пространство. Эта скорость составляет не менее 8 километров в секунду, и были сомнения, что человек сможет ее перенести. Все же, на основании проведенных опытов, на этот вопрос ответили утвердительно. Человек в состоянии перенести эту и еще большую скорость — при условии, что кабина, в которой он находится, будет защищена от действия высокой температуры, развивающейся от тре ния воздуха в то время, когда космический корабль пролетает через земную атмосферу.

Более того, расчеты медиков и физиков показали: даже скорость света, составляю щая, как известно, 300 тысяч километров в секунду, не нанесла бы вреда команде косми ческого корабля, но при этом могут наступить физические явления, о которых дают пред ставление наши знания, но не наше воображение.

Дело в том, что по теории относительности Эйнштейна «близкое приближение к скорости света приводит к сокращению пространства, к растяжению времени и к увеличе нию массы». Что означает это для космонавта? Конкретно — ничего, но относительно — все. Внутри кабины космического корабля сердце человека, находящегося в нем во время полета, бьется не чаще и промежуток между двумя ударами пульса, как и всегда, состав ляет около секунды. Но так только здесь, в этой кабине и для этих людей. На земле про межуток между двумя ударами сердца нашего космонавта равнялся бы нескольким мину там, а может быть, даже нескольким часам: это и есть растяжение времени. Таким обра зом, годы жизни человека, мчащегося со скоростью света к звездам, соответствуют сотням и тысячам земных лет. Человек не бессмертен, но его смертный час отдален настолько, что он кажется подобным божеству. Прометей торжествует, Зевс побежден. (При условии, что теория относительности Эйнштейна действительна и для полета в космическое про странство, как это утверждают авторитетные физики.) Но сами физики тотчас же развеивали этот чудесный сон, который уже завтра, ве роятно, станет явью, указывая на большие опасности космического полета, на существо вание метеоритов и космической пыли. Она вследствие огромной скорости космического корабля обладает пробивной силой, против которой не могут устоять даже броневые пли ты.

Но эти опасности не способны убить воодушевления у людей, готовых отважиться на такой полет, и физиологи и физики будут продолжать свои эксперименты и опыты на себе, чтобы узнать, как предотвратить и эту опасность. Борьба между человеком и вселен ной, между микрокосмосом и макрокосмосом, между самым малым и самым большим на чалась и едва ли кто-нибудь или что-нибудь может ее остановить.

Опыты в камере пониженного давления Биологи, знакомые с физикой, обратили внимание на то обстоятельство, что при сильном ускорении, какое необходимо при космическом полете, вес тела летящего чело века увеличивается во много раз. Трехступенчатая ракета, применяемая ныне для дости жения такого ускорения, приводит к увеличению веса тела почти в восемь раз. Именно вопрос, перенесет ли человек такое сильное ускорение и увеличение своего веса, которое при сгорании последней ступени ракеты сменяется состоянием невесомости, именно этот вопрос уже давно заставил исследователей воспользоваться камерой пониженного давле ния, некогда построенной Бером, и усовершенствовать ее, чтобы ставить такие опыты, ко торые позволили бы изучать вопросы огромных скоростей, физиологии человека на вер шинах высочайших гор и в летательном аппарате. Здесь, в камере пониженного давления, как уже было сказано, соприкасаются одна с другой обе области: высокогорный альпи низм и высотная авиация.

Начало этим исследованиям было положено в Советском Союзе выдающимся фи зиологом Орбели, который предпринял в 1933 и 1938 годах два опыта на себе, имевших большое значение. Первый был проведен в его лаборатории. Из пневматической камеры был выкачан воздух. Оставшееся в камере количество воздуха соответствовало примерно его плотности на высоте 12 километров. Орбели, который сидел в камере, вскоре начал задыхаться, его губы посинели, и, наконец, он потерял сознание. Тотчас же ему начали делать искусственное дыхание, однако прошло четыре часа, прежде чем он пришел в себя.

Второй опыт также преследовал цель изучения физиологии процесса дыхания. Он прово дился на Черном море, неподалеку от побережья Крыма. Орбели заперся в кабине подвод ной лодки, лишенной подачи кислорода, и пробыл в ней продолжительное время. Он ос тавался в кабине, когда наступило удушье. Лишь после того, как он потерял сознание, его вытащили наверх — таково было предварительное указание Орбели. Через два часа к уче ному вернулось сознание. Однако на протяжении шести последующих дней он чувствовал себя больным.

Леон Орбели умер в 1958 году. В последние годы своей жизни он был директором института имени Павлова и Ленинграде и как военный врач имел чин генерал-полковника.

Он был одним из учеников Павлова.

С началом второй мировой войны (правильнее, с началом подготовки к ней), разу меется, и медицинская сторона высотного полета стала предметом тщательных исследо ваний. Во всех государствах, в значительной степени заинтересованных в развитии авиа ции, были построены камеры пониженного давления по принципу Бера, предназначенные для лабораторного изучения физиологии высотного полета, и всюду врачи и студенты медики изъявляли желание поставить на себе опыты, так как хотели внести свой вклад в разрешение этих вопросов. Тогда же, незадолго до второй мировой войны, была, напри мер, построена камера пониженного давления в исследовательском институте авиацион ной медицины Германского министерства авиации, камера, которая, естественно, имела совсем другой вид, чем у Бера, и была предназначена для опытов уже не только на живот ных, но и на людях. Это было большое, герметически закрытое помещение, в котором можно уменьшить давление воздуха на любую величину, а также воссоздать и другие ус ловия высотного полета — холод, изменение влажности, излучение и так далее. Теперь молодые врачи могли садиться в такую камеру и позволять проделывать над собой все, что сопряжено с высотным полетом.

Все эти исследования и опыты в камере пониженного давления проводились сис тематически. Изменения крови, возникающие на больших высотах, были в общих чертах уже известны на основании исследований при высокогорном туризме. При быстром подъ еме в высоту, происходящем при полете, вследствие разрежения воздуха наблюдаются, как показали и опыты в камере, значительные воздействия различного рода. Оказалось что сердце и кровообращение выдерживают недостаток кислорода дольше, чем централь ная нервная система, мозг, который на критических высотах затемнением сознания и на мечающимися судорогами показывает, что состояние испытуемого лица может стать опасным.

Дальше, когда разрежение воздуха еще не особенно значительно, частота пульса внезапно уменьшается. Этот кризис пульса объяснили раздражением блуждающего нерва, действие которого, как известно, противоположно действию симпатического нерва, выра жающемуся в учащении пульса. Падение частоты пульса и приводит к затемнению созна ния и коллапсу, непосредственной причиной которого является недостаток кислорода.

Вследствие этого и погибли когда-то спутники Тиссандье.

Все эти явления можно было наблюдать в камере пониженного давления. Причем, разумеется, границ допустимого не переходили;

в момент опасности давление снова по вышали и подводили кислород. Интересно, что в камере ранний коллапс (уже при или 5000 метров) наблюдался почти исключительно у молодых людей, а лица старшего возраста переносили и более высокие «полеты». Если воздух в камере влажный или слиш ком теплый, коллапс наступает скорее, что соответствует и обычным наблюдениям. Точно так же можно было заметить, что стояние повышает предрасположение к обмороку, в то время как сидячее и особенно лежачее положение способствуют ослаблению такого пред расположения.

Уменьшение содержания кислорода в воздухе влияет и на мышечную силу. Мыш цам для работы нужен кислород. С помощью динамометра соответствующие опыты не трудно было провести в камере пониженного давления. Динамометр — простой инстру мент с пружиной, которая при нажатии сжимается. До 4 тысяч метров мышечная сила почти не меняется. Но на 5 тысячах метров кривая измерения силы заметно падает. Неко торое время она остается стабильной, но на высоте 6 тысяч метров падает вновь, так что вскоре наступает полное бессилие и одновременно значительное затемнение сознания.

Эти экспериментальные результаты совпадают с недомоганиями, на которые жалуются летчики и альпинисты, взбирающиеся на высокие горы, например участники гималайских восхождений.

То обстоятельство, что центральная нервная система — головной мозг так быстро реагирует на недостаток кислорода затемнением сознания и другими явлениями, не долж но вызывать удивления. Ведь это самый чувствительный орган, и всякая задержка поступ ления кислорода или крови (по своему действию это одно и то же) сказывается мгновен но. Врачи в опытах на себе могли достигать всех степеней таких влияний и регистриро вать их. Уже при разрежении воздуха, соответствовавшем высоте в 4 тысячи метров, ме дики, находившиеся в камере пониженного давления, говорили, что все начинало им ка заться более темным, а затем после дачи кислорода свидетельствовали, что все стало лу чезарно ярким, словно раскрыли занавеси на окнах. На этой же высоте появлялась неспо собность различать цвета, что не менее характерно.

На высоте от 4 до 5 тысяч метров отмечается понижение функции и со стороны других органов чувств. Это относится к слуху, обонянию, вкусовым ощущениям, а также к восприятию движений членов тела. В камере пониженного давления, разумеется, иссле довались и мыслительные способности, внимание и способность сосредоточиться. Ведь это важная проблема для безопасности полета. При медленном подъеме нарушения начи наются уже на высоте в 3 тысячи метров, при быстром — на высоте 5 тысяч метров, а на высоте 6 тысяч метров, как выразился специалист, математика становится книгой за се мью печатями даже для математика. Все это очень важно для практики, для действитель ных полетов на более значительных высотах.

Важным является и время реакции. Опыты, проведенные в камере пониженного давления над молодыми врачами, показали, что на высоте в 5 тысяч метров простые реак ции едва ли нарушаются. Если летчик (или испытуемое лицо) знает: при зеленом цвете надо совершить одно действие, а при красном другое, и это у него отработано настолько, что происходит, так сказать, автоматически, то даже на высоте 5 тысяч метров никакого изменения не будет обнаружено. Положение иное, если испытуемый на этой высоте дол жен принимать решения. Тогда видно, что его воля угнетена. Чем выше подъем, тем более ясной и полной становится утрата импульса. Насколько эти данные важны для безопасно сти полета, понятно без особых рассуждений. Одновременно возникает рассеянность, пропадает заинтересованность. Это может привести к тому, что даже поставленная задача не будет выполнена и пропадет весь смысл высотного полета, так как в решительный мо мент активная воля сведена к нулю. Примеры этого содержатся в отчетах врачей, участво вавших в полетах или обследовавших такие случаи.

Образцы записей, сделанных в камере пониженного давления на разных «высотах», ясно свидетельствуют о влиянии уменьшенного давления и недостатка кислорода. Хоро ший, четкий почерк очень быстро превращается в трудночитаемый, и, наконец, его уже совершенно невозможно разобрать. Нарушения начинаются на высоте 7 тысяч метров, а на высоте 8 тысяч метров почерк уже почти нельзя разобрать.

В камере пониженного давления у испытуемых лиц исследовались также и рефлек сы. Как известно, в норме голень быстро принимает горизонтальное положение при ударе ребром ладони или молоточком по сухожилию коленной чашечки. В камере пониженного давления при подъеме до 2 или даже до 3 тысяч метров этот рефлекс не изменяется. Но затем он становится более слабым, а на высоте 5 тысяч метров ослабление внезапно сме няется повышением чувствительности, которое в дальнейшем усиливается и, наконец, превращается в судорогу. Мышечные судороги вообще один из болезненных процессов на высотах.

У животных и у человека эти явления тщательно изучались только в их начальных стадиях. Во всяком случае, у медиков, находившихся в камере пониженного давления, возникали высотные судороги большей частью в кистях рук, которые вначале становились малоподвижными, а затем принимали типичное судорожное положение. Подергивания лица и судорожное сжатие губ могут также указывать на то, что перейден порог предрас положения к судорогам и нужно быстро дать кислород.

Необходимость особой защиты от холода при высотном полете уже давно доказана практикой. Но температура может возрастать и даже становиться нестерпимой прежде всего при повышении влажности в кабине, что оказывает неблагоприятное действие. В камере был проведен следующий опыт над медиком: температуру быстро повысили с до 40 градусов по Цельсию, и это вызвало особенно сильную нагрузку на сердце, хотя по требление кислорода не увеличилось.

Как уже было сказано, описанные опыты проводили в конце тридцатых годов, то есть когда о космических полетах еще не думали, а ставили перед собой прежде всего во енные цели. Все же физиологи изучали и состояние живого организма на исключительно больших высотах, естественно, сначала на животных, в частности на мышах. Поскольку эти опыты дополняют те, что медики производили на себе, мы упомянем о них вкратце, ибо они позволили сделать несколько выводов, которые — хотя и с ограничением — можно было перенести на человека. Так, оказалось, что совсем молодые мыши, в возрасте около одного месяца, очень хорошо переносили высоты более 16 тысяч метров, а если у них и появлялись некоторые изменения деятельности сердца и функций центральной нервной системы, то это было несущественно, так как они быстро проходили при спуске.

Их центры, видимо, еще недостаточно развиты. У более старых мышей наблюдалась по ниженная выносливость к высоте. То же самое, как уже говорилось, было обнаружено у очень молодых медиков. Впоследствии выносливость мышей улучшалась, но в возрасте двух лет они снова обнаруживали сниженную выносливость к полету.

Применяя камеру пониженного давления, ученые пытались ответить еще на один вопрос. Ведь может случиться, говорили они себе, что кислородный аппарат испортится или вдыхание кислорода по какой-либо иной причине прекратится. Что же произойдет то гда и как скоро скажутся последствия этого прекращения подачи кислорода?

Два врача, которые тогда занимались вопросами авиационной медицины, Руфф и Штругхольд, сообщили об опытах в камере. Вдыхая кислород, они поднимались на из вестную высоту. Затем, оставаясь на этой высоте, они снимали дыхательную маску. Те перь можно было изучать влияние высоты, как при обычном подъеме. Как уже говори лось, представление о снабжении тканей кислородом проще всего получить, исследовав коленный рефлекс. Оказалось, что качественной разницы между обоими опытами, то есть между обычным подъемом и подъемом в кислородной маске, нет. Но как велик промежу ток времени между удалением кислородного прибора и началом расстройств? Как велик этот запас времени у пилота, находящегося в затруднительном положении?

Опыт с записями, проведенный над очень стойким к высотам молодым медиком, который на высоте 9 тысяч метров выключил у себя подачу кислорода, показал весьма яс но, что расстройство наступало через две минуты. Уже через две минуты почерк свиде тельствовал, что могут появиться судороги в кистях рук, то есть об опасности положения.

Но и здесь наблюдаются весьма значительные индивидуальные колебания. Так, у лица с меньшей выносливостью резерв времени был истрачен на высоте 5–6 тысяч метров, и уже на этой сравнительно небольшой высоте расстройство стало заметным. Если одновремен но выполнялась какая-нибудь работа, то картина снова изменялась, становилась более вы раженной. Работа сокращает резерв времени.

Для практики эти данные очень важны. Если на высоте от 8 до 9 тысяч метров вдыхание кислорода прервется, нельзя медлить ни минуты. Здесь дело уже в секундах, и пилот должен немедленно спуститься, чтобы достигнуть атмосферного давления, которое человек еще может переносить. Или же пилот должен выпрыгнуть с парашютом. Следует знать, что при нераскрытом парашюте падение происходит очень быстро: для тысячи мет ров необходимо 18 секунд. Это очень мало. Итак, раскрывать парашют следует скоро или он должен раскрываться автоматически;

тогда спуск сильно замедляется: на тысячу мет ров требуется уже 3 минуты и 20 секунд. Если принять (на основании опытов) резерв вре мени на высоте 9 тысяч метров равным одной минуте, то ясно, как велика опасность для человека, прыгающего с такой высоты. Поэтому задача врачей изучить, как быстрее ис пользовать имеющееся время, чтобы повысить или укрепить резервы организма и дать летчикам возможность спускаться на землю невредимыми.

Реакция организма на полет в условиях большой высоты отличается от его реакции в период восхождения на гору. Если в первом случае организм должен приспосабливаться к изменениям высоты в течение нескольких минут, то во втором — это происходит в те чение дней и даже недель. В условиях полета приспособляемость — это замечательное свойство человеческого организма — должна осуществляться мгновенно.

Патологические изменения в организме, наступающие на большой высоте, возни кают быстро, однако столь же быстро и исчезают. Очень скоро после окончания экспери мента, проделанного студентами в камере пониженного давления, чтобы изучить поведе ние организма на большой высоте, их физиологическое состояние приходило в норму. В крови, дыхании и нервной системе не наблюдалось каких-либо остаточных явлений, на ступивших на определенной высоте. Иначе обстоит дело у альпинистов, в частности по корителей гималайских вершин. Подъем на вершины длится неделями, организм медлен но приспосабливается к высокогорным условиям, столь же медленно наступают болез ненные ощущения, о которых говорилось выше. После спуска с вершины и даже дости жения высоты уровня моря явления горной болезни исчезают не сразу — нужны недели, чтобы организм избавился от них.

От планеты к планете С начала второй мировой войны прошло немного лет, однако за этот период разви тие авиации проходило очень быстро, подобно взрыву. Человек начал готовиться к полету на другие планеты. И можно с уверенностью утверждать, что в ближайшее время такой полет станет возможным. Ракетный двигатель позволил самолету штурмовать все более далекие высоты, невероятно возросла скорость полета. Все эти успехи были достигнуты в пределах жизни одного поколения. Актуальными стали вопросы: готов ли к полетам в космос человек, а именно его тело, его мозг, его способность приспосабливаться к окру жающим условиям, короче — его организм?

Выше уже говорилось о трудностях, которые возникают перед организмом челове ка по мере увеличения скорости полета самолета или спутника. Врач — специалист по авиационной и космической медицине до 1959 года еще не мог ответить на все вопросы, возникающие в этой связи. Не хватало эксперимента с участием человека, и, хотя подоб ные полеты уже совершили животные — крысы, мыши и обезьяны, нельзя было сделать достоверных выводов о поведении организма человека в условиях космического полета.

Однако кое-что о влиянии ускорений, связанных со скоростными полетами, врач мог ска зать уже тогда. Дело в том, что путем опытов на себе врачи уже получили некоторые све дения, раскрывающие эту важную часть проблемы авиации будущего.

Еще в 1934 году братья Бернд и Хейнц Дирингсхофены создали большую центри фугу, с помощью которой можно было исследовать влияние ускорения на организм чело века. Диаметр центрифуги составлял пять с половиной метров. Молодой врач, по имени Бюрлен, занимавшийся проблемами авиационной медицины (он погиб во время войны), уселся в это сооружение, и центрифуга начала вращаться. Этим опытом врач доказал, что в течение двух минут человек способен переносить ускорения, вызывающие четырнадца тикратную перегрузку (14 «g», как говорят специалисты). Сколь-либо вредных последст вий для организма не возникает при одном условии: давление должно быть приложено в направлении грудь — спина. В своем опыте Бюрлен пошел еще дальше и развил семна дцатикратную перегрузку — воистину героический эксперимент на себе, который он вы держал, не потеряв зрения и сознания.

Представляет интерес и тот факт, что, как показали опыты в камере пониженного давления, самки мышей значительно лучше переносят влияние большой высоты, чем сам цы. Однако каких-либо аналогий с человеком здесь проводить было нельзя.

С помощью камеры пониженного давления можно также исследовать воздействие алкоголя на летчика. Во всяком случае, такие исследования проще и доступнее тех, что проводятся в обычной обстановке. Было установлено: если врач, прежде чем его поместят в камеру, примет алкоголь, то уже на небольших высотах снижаются физические и умст венные способности. С другой стороны, на больших высотах даже малые дозы алкоголя приводили летчика в состояние опьянения. На высоте 3500 метров достаточно было ста кана пива, то есть очень небольшого количества алкоголя. С помощью камеры понижен ного давления выяснили также, что усиленное курение непосредственно перед полетом или в ночь накануне снижает умственные способности пилота. В то время эти выводы имели большое значение, поскольку летчики зачастую проводили ночь перед полетом в веселой компании, много пили и курили и мало спали, то есть совершали поступки, кото рые на другой день могли привести к роковым последствиям.

Наконец, опыты в камере пониженного давления позволили установить, на какой высоте летчик вынужден прибегать к кислородному питанию. Эта высота начинается примерно с 4 тысяч метров. Здесь, правда, еще нет опасности для жизни, однако некото рые расстройства жизнедеятельности организма могут наступить уже на этой высоте. Вы сота же 7 тысяч метров является абсолютно критической. При применении кислородного питания граница высоты, вредно влияющей на организм, составляет 11 тысяч метров.


Опасна именно эта высота. Несколькими сотнями метров выше, и критическая граница, за которой летчика поджидают потеря сознания и смерть, будет перейдена.

Таким образом, большая высота (превышающая 11 тысяч метров) оставалась не доступной, несмотря на применение кислородных приборов. Здесь нужна была кабина по вышенного давления. Однако во времена второй мировой войны этим мало кто интересо вался: кислородные приборы и данные, полученные при испытаниях в камерах понижен ного давления, вполне удовлетворяли летчиков-практиков.

В то же время центробежная сила человеческого тела за 30 секунд возросла в раз и тем самым более чем на 1000 килограммов увеличила вес тела. Это вызывало тем большее удивление, что и вес крови соответственно увеличился: она текла по сосудам бу квально как ртуть.

Дыхание значительно затруднялось, когда перегрузка возрастала в десять раз. Это происходило потому, что утяжеленная в десять раз грудная клетка с трудом могла следо вать за движениями вдоха и выдоха. Однако диафрагмальное дыхание было возможным и при четырнадцатикратной перегрузке;

движением диафрагмы кислород подавался в лег кие, освобождая их от переработанного воздуха. Видимо, это было возможным лишь по тому, что как Бюрлен, так и другие врачи, производившие аналогичные опыты, были очень сухощавыми.

Последующие за дирингсхофенской центрифуги имели значительно большие раз меры, так как возросли требования, предъявляемые к человеческому организму. Одной из крупнейших центрифуг, известной в научных кругах, была построенная в Соединенных Штатах, а именно в Джонсвилле. Ее диаметр составлял 30 метров, мощность вращающего мотора — 4 тысячи лошадиных сил. С помощью этой центрифуги можно было достигать фантастического ускорения, вызывающего в течение одной секунды двадцатикратную пе регрузку. Эту центрифугу можно было комбинировать с камерой пониженного давления и, таким образом, исследовать воздействие на человека сразу двух факторов: высоты, а следовательно, пониженного давления и ускорения.

Опыты вновь проводились на молодых врачах и студентах медицинских коллед жей. С помощью соответствующих аппаратов снимались электрокардиограмма и электро энцефалограмма. Таким образом, контролировались деятельность сердца и биопотенциа лы мозга. Врач, находившийся, естественно, вне центрифуги, видел все изменения в кро вообращении и дыхании человека, подвергнутого испытанию. С помощью телевидения он наблюдал все происходящие в организме изменения. Короче говоря, чтобы ответить на вопросы, интересующие авиационную медицину, использовались все новейшие методы исследования физиологической деятельности организма человека.

На новой аппаратуре американцы провели следующий мужественный опыт на се бе: центрифуга включалась, а затем на полном ходу резко затормаживалась. Возникала ситуация, характерная для случаев авиационных катастроф. Нечто подобное часто проис ходит и при автомобильных катастрофах, правда в несколько ослабленном виде, однако нередко с роковыми последствиями. Экспериментаторы пошли еще дальше. Была взята установленная на рельсах тележка. С помощью ракетного двигателя она в течение не скольких секунд развивала скорость, равную нескольким тысячам километров в час. Затем резко включалось торможение.

Результаты этого опыта во многом зависели от положения тела человека, подверг нутого испытанию, в момент торможения. Если он сидел спиной к направлению движе ния, то шестидесятикратное отрицательное ускорение, возникающее в течение 0,2 секун ды времени торможения, не приносило ему никакого вреда. Если перевести эти цифры на общепонятный язык, то картина будет примерно аналогичной той, какая возникает, когда едущий со скоростью 180 километров в час автомобилист тормозит на четырех метрах до роги. Результат опыта поразил всех специалистов. Считалось, что человек может вынести максимум тридцатикратное отрицательное ускорение.

При следующем опыте человек был посажен лицом к направлению движения и привязан ремнями к сиденью. В этот раз он выдержал пятидесятикратное отрицательное ускорение, возникающее при торможении. Голубые полосы на теле, в том месте, где рем ни давили особенно сильно, еще несколько дней спустя напоминали об этом эксперимен те, в процессе которого на ремни давила тяжесть, в 50 раз превосходящая вес тела.

Широкую известность получил опыт доктора Стаппа. Для постановки этого опыта в Нью-Мексико, близ авиабазы Холломан был проложен двенадцатикилометровый, абсо лютно прямой рельсовый путь. Руководитель испытательной станции доктор Джон Стапп привязал себя к тележке, которая была запущена с огромной скоростью с помощью реак тивного двигателя и затем неожиданно остановлена. В момент резкого торможения глаза Стаппа застлал туман и он потерял способность видеть что-либо вокруг. Однако через два дня он был здоров. Его лицо, невероятно искаженное в момент торможения, вновь приоб рело нормальный вид, только веки еще оставались набухшими. В момент торможения он испытал на себе сорокашестикратное отрицательное ускорение. Это означает, что в опре деленный момент его вес составлял 3500 килограммов.

Однако своим опытом Стапп ответил на вопрос, который авиаторы ставили перед физиологами: человеческий организм в состоянии перенести внезапное торможение при полетах на ракетах, то есть в условиях максимальных ускорений. Организм человека в со стоянии справиться с этой задачей.

В знаменитой клинике Мейо в Рочестере (США) есть отдел биофизических иссле дований, располагающий также центрифугой гигантских размеров. Крыло этой центрифу ги составляет шесть метров. Три врача клиники привязались один за другим к сиденью центрифуги, после чего она была включена. Это были врачи Вуд, Ламберт и Код. Предва рительно испытанию подвергли обезьяну, которая не выдержала напряжения и умерла от разрыва сердца. Однако это не испугало врачей. Их привязали к креслу и включили цен трифугу. Все три врача благополучно выдержали испытание.

Этот опыт на себе был повторен несколько раз, так как исследователи ставили за дачу разработать для пилота такой костюм, который бы ослаблял неприятные ощущения и опасности, возникающие в процессе ускорения. Но для врачей этот опыт был отнюдь не приятным развлечением. Порой они теряли сознание или испытывали приступы судорог, в связи с чем эксперимент приходилось немедленно прекращать.

«Больше всего мы боялись, — писал впоследствии доктор Ламберт, — что возни кающий в ходе опыта отлив крови из мозга будет иметь далеко идущие последствия и приведет к стабильному нарушению нашей мыслительной деятельности».

В готовности принести себя в жертву науке Вуд и Ламберт пошли еще дальше. Они согласились ввести себе через вену в сердце катетер (выше мы уже рассказывали об этом героическом методе) — тонкую трубочку из синтетического материала. Цель эксперимен та — исследовать деятельность сердца и изменения крови, наступающие в результате сильного ускорения. Таким образом, врачи подвергли себя двойной опасности.

Аналогичные лаборатории, занимающиеся изучением проблем межпланетных по летов, созданы после 1949 года в Техасе на авиационной базе близ Рандольфа и в Огайо.

Естественно, что в Советском Союзе также были организованы подобные лаборатории. В каждой такой лаборатории молодые врачи и студенты усаживались в кабины, чтобы со вершить путешествие в ад и внести свой вклад в науку.

Врачи исследовали поведение организма человека не только в условиях скоростно го полета по прямой, но и при полетах по искривленным линиям. В последнем случае час то наступает потеря зрения и помутнение сознания, если ускорение действует на тело в продольном направлении. Это происходит потому, что, как уже говорилось, кровь под влиянием ускорения тяжелеет и скапливается в нижней части тела, особенно в ногах. В результате сердце работает вхолостую, а мозг совершенно лишается притока крови. Было подсчитано, при каком ускорении наступают подобные явления. Некоторые врачи испро бовали это на себе. Так, имеются отчеты доктора Дирингсхофена и его ассистентов о та ких экспериментальных полетах.

Сам Дирингсхофен выдержал 8,5-кратное ускорение без нарушения зрения и по мутнения сознания. Правда, он от природы обладал большой выносливостью. Кроме того, Дирингсхофен сидел у руля не прямо, а согнувшись. Тем самым сокращалась разница ме жду уровнями сердца и мозга и обеспечивался лучший приток крови в мозг. Однако дру гие экспериментаторы, сидевшие в кабине, как обычно, прямо, претерпели неприятные ощущения. За ними наблюдал один из ассистентов, сидевший также согнувшись и фикси ровавший с помощью кинокамеры поведение и состояние участников эксперимента. В пе риод спуска самолета по спирали экспериментаторы должны были наблюдать за прибора ми, показывающими ускорение, и сообщать постоянно их показания по бортовому теле фону до тех пор, пока были в состоянии это делать. Когда же у экспериментаторов начало темнеть в глазах и они потеряли способность различать цифры, каждый сообщил по теле фону: «Плохо вижу, плохо вижу, плохо вижу». Затем наступила потеря сознания, и связь экспериментаторов с внешним миром оборвалась.

Опыт был тотчас же прекращен, то есть полет из спирального был переведен в го ризонтальный, и через несколько секунд сознание вновь вернулось к участникам опыта.

На заре развития авиации уже думали и над тем, как создать условия для прыжка из самолета, например, в случае опасности. Надо сказать, что работники авиации скепти чески относились к этой мысли. Иного мнения был врач, по имени Эрнст Кошель. Он сконструировал парашют и совершил прыжок из кабины привязанного воздушного шара.

Когда он несколько раз повторил свой прыжок, всем стало ясно, что это начинание имеет практическое значение. В 1916 году доктор Кошель сделал доклад о своем эксперименте.

Его пример вселил мужество в других, и многие врачи совершили прыжки с парашютом.


Как говорил Дирингсхофен, их побуждало к тому двоякое чувство: «спортивного удо вольствия и научного любопытства».

Накопленные при этом наблюдения послужили началом исследования проблемы невесомости, в ходе которого врачами проводились и опыты на себе, — проблемы, при влекшей внимание авиационной медицины лишь тогда, когда встал вопрос о космических полетах.

Дело в том, что, как уже говорилось, ускорение иногда приводит к потере тяже сти — состоянию, длящемуся, правда, лишь несколько секунд. Состояние организма че ловека в этих условиях представляет большой интерес для врача-физиолога, специалиста по авиационной медицине.

Дирингсхофену удалось добиться состояния невесомости, длившегося почти семь секунд, на самолете фирмы «Юнкерс» в условиях пикирования, в процессе которого со противление воздуха было преодолено силой моторов. При этом Дирингсхофен не испы тывал неприятных ощущений и, в частности, ощущения проваливания, знакомого пасса жирам самолета, попадающего в воздушную яму. Напротив, Дирингсхофену казалось, что он парит в воздухе.

После окончания второй мировой войны ученые стали больше интересоваться про блемами невесомости, поскольку на очередь дня встал вопрос о полете в космос. Одним из первых этой проблемой заинтересовался доктор Хубертус Штругхольд, бывший руко водитель Научно-исследовательского института авиационной медицины в Берлине. После войны он работал в Америке, и как профессор по вопросам авиационной медицины осо бенно упорно занимался проблемами космических полетов. Он и его сотрудники продела ли много опытов с целью выяснения на самих себе сущности состояния невесомости. Не которые из них затем утверждали, что, добившись с помощью определенной методики полета состояния невесомости, они не ощущали ничего необыкновенного. Другие, однако, заявляли, что в эти секунды они чувствовали себя очень плохо.

Опасные лучи Со времени высотных полетов стало ясно, что нельзя пройти мимо другой пробле мы — проблемы облучения. Вначале это была проблема облучения солнечными лучами.

Известно, что поток тепловых лучей солнца в состоянии растопить окружающий полюса Земли гигантский ледяной панцирь. Однако до Земли доходит, видимо, не более одной пятой тепловых лучей Солнца. Бльшая их часть задерживается и отражается облаками.

Это звучит как парадокс, однако является фактом: лишь после того как солнечные лучи нагреют земную поверхность, тепло распространяется в воздух, причем с увеличением высоты понижается температура. Дилетанту это может показаться странным, поскольку он полагает, что чем дальше от земли, тем выше должна быть температура. В действи тельности же на высоте в 11 километров, которая вполне доступна высотным самолетам, температура составляет примерно минус 55 градусов по Цельсию. Таким образом, здесь господствует ледяной холод и, поскольку воздух на этой высоте не содержит воды, здесь не существует и такого понятия, как «погода», к которому мы привыкли на земле.

Высотный полет и действие облучения — неразрывно связанные между собой яв ления. Всем известна сила ультрафиолетовых лучей, проявляющаяся прежде всего на вершинах высоких гор. Против этих лучей вынуждены искать защиту и летчики. Чем вы ше, однако, поднимается летчик, чем дальше он уходит из атмосферы, тем заметней ста новится облучение другого рода — космическое.

Оно представляет огромную опасность, аналогичную облучению лучами рентгена и радия, которое люди научились одновременно благословлять и проклинать и которое приобрело совершенно новое значение с той поры, когда развитие ядерной физики при несло человеку столь роковое знакомство с атомным облучением. Само собой разумеется, что в интересах авиации будущего врачи начали исследовать эту проблему. Облучение в условиях высотного полета и космическое облучение поставило перед ними множество вопросов.

В 1957 году американский врач, майор Давид Симонс, известный специалист в об ласти авиационной и космической медицины, поднялся на воздушном шаре на тридцати километровую высоту и провел там несколько часов. В целом его полет продолжался пол тора дня. Он сидел в гондоле воздушного шара в небольшой камере повышенного давле ния, окруженный со всех сторон пространством, почти лишенным воздуха. На этой высо те давление составляет всего лишь 0,01 атмосферы. Правда, он не достиг еще границы ат мосферы и состояния невесомости и не был полностью отдан во власть космического об лучения. Тем не менее восприятие этой гигантской высоты оказалось достаточно впечат ляющим.

Даже днем все было погружено в темноту. Горизонт представлялся мерцающей кривой, которую никогда не видят люди. На этой высоте можно самому убедиться в том, что Земля круглая. Симонс видел одновременно Солнце, Луну и звезды. «Он испытал чув ство грандиозной отрешенности от земли, и, когда за ночь шар опустился и на следующее утро Симонс оказался на такой высоте, где снова были день и ночь, он почувствовал себя наконец-то дома».

Достигнув при спуске атмосферы, Симонс вновь подвергся большой опасности:

бушевала гроза. Правда, он мог вместе с драгоценной гондолой спуститься на парашюте, но не сделал этого и в конце концов благополучно приземлился на воздушном шаре.

После приземления доктор Симонс запротоколировал свои переживания и впечат ления и поведал, таким образом, миру о том, что чувствует человек, сидя в гондоле воз душного шара на высоте 30 тысяч метров над Землей, когда вес его тела составляет всего лишь один килограмм и когда гондола реагирует на малейшее движение, как на порыв штормового ветра. Если ему необходимо было нагнуться слегка вперед к вмонтированно му в стенку кабины телескопу, с помощью которого Симонс хотел преодолеть мрак, то гондола реагировала на это движение очень быстрым вращением в течение 10–15 минут, Симонс точно регистрировал все: пульс, дыхание, пищеварение. В своих записях он рас сказал, какое захватывающее впечатление произвели на него заход солнца и гроза, разра зившаяся глубоко внизу. На этой гигантской высоте весьма значительной была также и скука. А вот голода он почти совсем не ощущал. Были периоды, когда Симонс терял му жество, испытывал страх, даже панику. Каждый поймет его. И тем не менее какой замеча тельный герой этот врач!

В процессе своего высотного полета доктор Симонс не получил полной дозы кос мического облучения. Однако значительному облучению он все же подвергся.

Проблема космического облучения является необычайно важной для будущих космических полетов. Решению этой проблемы в значительной степени способствуют созданные в СССР и США искусственные спутники Земли, снабженные большим количе ством автоматически действующих приборов. Вблизи Земли невозможно провести такое исследование космического излучения, которое можно было бы использовать на практике.

В то же время эта проблема является одной из основных в деле космических полетов. Из вестно, насколько опасно излучение при взрыве атомной бомбы, созданной человеком.

Известно также, что космическое излучение в миллионы раз мощнее излучения самой большой атомной станции. Сопоставляя эти факты, можно понять, какую опасность пред ставляют для человека космические лучи.

Врачи, занимавшиеся этим разделом авиационной медицины, исходили из предпо ложения, что в течение года летчик-космонавт проведет примерно 1000 часов на высоте, лишенной атмосферы. Определение длительности пребывания в условиях космического облучения имеет большое значение, так как от этого зависит степень биологических на рушений. Кроме того, сравнимый масштаб позволяли найти рентгеновы лучи [30], так как излучение рентгеновского аппарата в какой-то степени соответствует космическому. Хотя многое в этой области еще неясно, но некоторые достоверные данные опытным путем уже получены. О них недавно сообщил профессор Калифорнийского университета доктор Корнелиус А. Тобиас. Американский национальный комитет по вопросам защиты от об лучения считает, что допустимой дозой для летчиков, проводящих 1000 часов в год в верхних слоях атмосферы и вне ее, является 0,3 бэра (биологического рентген эквивалента), оказывающих такое же биологическое воздействие на организм, как и облу чение в условиях высотного полета. Однако это предельная доза [31]. Согласно научным подсчетам упомянутая выше категория летчиков будет подвергаться воздействию облуче ния, равного 0,07 бэра, то есть лишь четвертой части допустимой интенсивности [32].

Однако наука еще не дала ответа на все вопросы, имеющие значение для врача и для летчика. Известно, какую опасность представляет атомное излучение, известно его влияние на продолжительность жизни человека, на заболеваемость раком, на потомство.

Что же касается высотных полетов, то, несмотря на предпринятые по инициативе лабора тории по вопросам авиационной медицины в Райт Фильде исследования, о которых сооб щил профессор Тобиас, точных данных до сих пор не получено. Таким образом, вопрос о защите от космического облучения продолжает оставаться открытым. Существует, одна ко, мнение, что несовершенство человеческого организма и особая опасность облучения не помешают осуществлению космических полетов при условии, что будут соблюдены все меры предосторожности, на которые обращают внимание специалисты.

Костюм «G»

История костюма «G» началась в первые годы второй мировой войны. Для его раз работки и совершенствования многие врачи подвергали себя порой самым жестоким экс периментам. В частности, австралийский врач Коттон поставил с помощью центрифуги опыты, на основе которых им были разработаны принципы одежды, призванной противо действовать последствиям понижения давления, а также ускорения. Его идеи были под хвачены и развиты врачами военно-воздушных сил США. Основными требованиями, ко торым должен отвечать этот костюм, были легкость, удобство, тепло. Одновременно надо было добиться, чтобы костюм предотвращал отток крови в нижние конечности, насту пающий в процессе скоростного полета и в особенности при полете по спирали.

Вначале врачи думали лишь о том, чтобы повысить давление в области ног, а не живота и поясницы. Костюм доктора Коттона был сделан именно так. В дальнейшем, од нако, от этих принципов отошли и хотели сконструировать костюм, в котором бы обеспе чивалось равномерное давление на все части тела, расположенные ниже сердца. Создать такой костюм было не только проще, но и целесообразней, поскольку он обеспечивал лучшее кровообращение в организме, а также помогал пилоту преодолевать усталость на виражах.

Эти основные положения легли в основу разработки костюма, рассчитанного на обычный полет. Естественно, что потребовались значительные изменения, как только на очередь дня был поставлен вопрос о космическом полете.

Чем больше изучались реальные проблемы космического полета, тем настоятель ней перед специалистами — летчиками и врачами — вставала задача разработки одежды космонавта. Каково снаряжение космонавта — человека, который должен был в ближай шее время вторгнуться в межпланетное пространство? Исчерпывающий ответ на этот во прос дать пока невозможно. Многое ведь в этой области держится в секрете. Ясно лишь одно: что в основу одежды космонавта лег костюм «G», разработанный для полетов в стратосфере. Необходимо, однако, было внести в него некоторые изменения и дополне ния, и естественно, что закройщик «небесных брюк и пиджаков» — не портной в обычном смысле этого слова, а скорее своего рода кузнец, советчиками которого станут инженеры и врачи.

Немецкий специалист в этой области X. Оберт составил перечень требований, предъявляемых к снаряжению (отныне нельзя больше говорить о «костюме»), которыми оно должно обладать, чтобы космонавт смог соорудить межпланетную станцию, напри мер на Луне или другой планете, и работать там. Возможно, что оно будет более всего по хожим на снаряжение средневекового рыцаря. Действительно, ведь поверх костюма нуж но, вероятно, надеть панцирь, призванный прежде всего защищать от космической пыли, об опасности которой мы уже говорили выше. Однако эта задача отнюдь не самая важная.

Важнейшая проблема — обеспечить подвижность конечностей, что требует при менения очень сложной механики, чтобы работающий на Луне человек вообще мог что либо делать. Разумеется, прикрывающий голову космонавта шлем должен иметь иллюми натор. А вдруг он покроется каким-нибудь налетом? Может, нужно поставить «дворник», как на машинах? А вдруг космонавт захочет почесать себе нос? Об этом и обо всем ос тальном подумал доктор Оберт;

о температуре, о том, чтобы космонавт мог свободно дви гаться, для чего ему понадобился бы пистолет с отдачей, о возможности повреждения скафандра. Дыра в скафандре, разумеется, должна быть немедленно заделана. Такой де фект влечет опасность для жизни, ведь мы имеем дело со скафандром повышенного дав ления.

Когда в Советском Союзе была закончена подготовка к первым полетам в космос и затем они были совершены, на практике кое-что из тщательно продуманного ранее оказа лось непригодным. Но это надо было делать, надо было создавать и испытывать снаряже ние, и снова врачи должны были надевать снаряжение космонавтов и в безвоздушной ка бине испытывать, пригодна ли такая одежда для путешественников на планеты, удовле творяет ли она требованиям физиологии.

Уже тогда люди несведущие задавали вопрос: так ли уж велика необходимость в подобных исследованиях? Но ученые тотчас же разъясняли, что всякие споры на эту тему излишни, так как бессмысленны.

4 октября 1957 года подготовительные мероприятия советских ученых, техников и биологов продвинулись в такой степени, что можно было сделать первый шаг в космос.

Когда мир узнал, что искусственный спутник Земли был в Советском Союзе успешно за пущен и в соответствии с расчетами совершил полет вокруг Земли (всего 1400 оборотов), сенсация была огромной. Признавали, что гигантское значение этого события еще невоз можно правильно оценить.

Но человечество вскоре убедилось, что дело не закончится посылкой искусствен ного спутника в космос. Хроника этих полетов имеет всемирно-исторический интерес. ноября 1957 года был выведен на орбиту второй искусственный спутник Земли, 15 мая следующего года — третий, который уже весил более 1300 килограммов, в то время как первый несколько больше 80 килограммов. А 2 января 1959 года с успехом запустили в сторону Луны первую в мире космическую ракету;

это была первая искусственная плане та солнечной системы. Через несколько месяцев советским ученым удалось включить ав томатику аппаратов ракеты, пущенной вокруг Луны, сфотографировать ее невидимую сторону и передать изображение на Землю.

15 мая 1960 года начинается новая глава романа об исследовании космоса. В этот день был отправлен первый в мире космический корабль, причем это снова осуществила советская наука. Три месяца спустя в космос послали второй советский космический ко рабль с подопытными животными на борту, и среди них собаками Стрелкой и Белкой.

Благодаря огромной предварительной работе не только инженеров, но и врачей и физио логов оказалось возможным послать живые существа в особых кабинах космического ко рабля так, что это не нанесло ущерба их здоровью. Животные благополучно возвратились на Землю. Затем были запущены другие космические корабли. Их вес уже доходил до не скольких тонн, и они были построены так, что их приземлением управляли с Земли и оно происходило к намеченном месте.

Это были большие успехи, но каждый знал (и не только в Советском Союзе, но и во всем мире), что это только подготовка к первому полету человека в космос. Это собы тие произошло 12 апреля 1961 года, когда летчик майор Юрий Гагарин на космическом корабле отправился в космос и благополучно возвратился на советскую землю. Его кос мический полет стал триумфом советской науки и техники и доказал, что усилия всех лю дей, которые подготовили такое событие, не были напрасными.

Человек проник в космос и возвратился оттуда. Этого достигли через три с поло виной года после запуска первого советского спутника, и нигде — даже в лагере вели чайших реакционеров и противников Советского Союза — не нашлось никого, кто бы усомнился в неизмеримом значении этого события. История науки и техники могла запи сать: с величием этого успеха несравнимо ничто. История человеческого героизма обога тилась новой блестящей главой. В этой главе можно было с гордостью рассказать и о вра чах, с опасностью для жизни проводивших опыты на себе, чтобы установить условия, при которых возможен полет человека в космос. Врачи также принадлежат к мирным героям науки, и величие их подвига не уступает героизму солдат на войне.

Ведь прежде всего надо было установить, как полет в космос влияет на функции организма, на сердце, на дыхание, на головной мозг, каково состояние организма человека во время полета и после выхода из космического корабля. Огромную ответственность, связанную с подобным экспериментом, разделили и врачи. Их доля была, разумеется, не малой.

В начале полета ракеты, то есть во время запуска, организм человека должен одно временно испытать на себе ряд совершенно необычных для него влияний. Таковы огром ное ускорение, грозная вибрация, множество сильнейших шумов, какие только можно во образить. Затем, когда механизм запуска сработал и выключен, организм человека попа дает в условия невесомости, а это была совершенно неизвестная нам величина. Мы не знали, как живой организм выдержит ее. Это надо было сначала выяснить на животных, а затем в искусственно созданных условиях и на человеке, прежде чем думать о первом по лете человека. Все эти необычные условия высотного полета надо было испытать в опы тах на модели. К таким опытам могли быть привлечены только сами врачи. Советские врачи, согласившиеся на такие опыты на себе, были и остались безыменными героями, сыгравшими в драматических событиях первого космического полета ту роль, какая вы пала на их долю и какую они сами себе выбрали. Полет Гагарина продлился около минут. Это немногим больше полутора часов. Но как велик этот отрезок времени, когда дело идет о таком полете, о первом полете человека в космос!

Разумеется, тотчас же стали думать о возможно более скором повторении удачного полета Гагарина, но с более продолжительным пребыванием в космосе. Этот второй полет во вселенную был начат 6 августа 1961 года в 9 часов по московскому времени. Мощная советская ракета вывела на орбиту новый космический корабль. Его пилотом был майор Герман Титов. Космический корабль с майором Титовым на борту совершал полет вокруг земного шара в течение 25 часов и, наконец, в соответствии с программой счастливо опус тился на родную землю. Титов повторил великий подвиг Гагарина, но на сей раз полет был гораздо продолжительнее. Это был новый триумф человеческого ума, новая победа техники и науки и новое доказательство великой мощи народа, ясно сознающего свои мирные задачи. Центральный Комитет КПСС, Президиум Верховного Совета СССР и правительство Советского Союза могли с полным правом написать в своем Обращении:

«Космические полеты советских людей знаменуют собой непреклонную волю, не преклонное желание всего советского народа к прочному миру на всей земле. Наши дос тижения в исследовании космоса мы ставим на службу миру, научному прогрессу, на бла го всех людей нашей планеты».

Титов мог приступить к полету с чувством полной уверенности. Он не только был прекрасно подготовлен, но и знал, что его космический корабль имеет на борту все уст ройства, обеспечивавшие жизненные функции человека, находящегося в кабине, что на земле и в воздухе были проведены многочисленные опыты для испытания всех предохра нительных приспособлений и устранения неожиданных осложнений. При таких подвигах человека, естественно, играет важную роль также и моральный момент — сознание, что во всей стране, во всем мире люди с гордостью воспримут известие об удаче этого полета во вселенную.



Pages:     | 1 |   ...   | 4 | 5 || 7 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.