, , ,


 >>  ()
Pages:     | 1 |   ...   | 37 | 38 || 40 | 41 |   ...   | 43 |


-- [ 39 ] --

12 The starting arrangement RESEARCH Influence of rock type and composition on electric current impulse dimensions. The following research material was used:

medium-grained sandstone with high coarse-grained material content clay-hydromica cement;

coarse/medium grained sandstone with calcite cement;

coarse/medium-grained sandstone with calcite quartz cement;

fine-grained sandstone with calcite cement.

Machine with special diamond discs for cutting rock samples was used.

Research results are depicted in Figure 2. According to this histogram, granular composition significantly af fects the electric current impulse dimensions. The smaller the sandstone particles, the more intensive the electric current impulses. This can be explained by the following fact-significant contact area between bit and rocks due to small grain composition size. The cement type also affects the electric current impulse dimension. For example, in samples with quartz cement, the current dimension is more significant than in samples with calcite cement because quartz is harder than calcite (Mohs Hardness Scale). Therefore, rock failure during drilling intensifies the electric current impulses [1].

Fig. 2. Research results - influence of rock type and composition on electric current impulse dimensions Influence of mud type on electric current impulse dimensions. The following rock samples were examined:

fine-grained sandstones with calcite cement;

medium-grained sandstones with calcite cement;

coarse-grained sandstones.

Machine with special diamond discs for cutting rock samples was used.

Research results are depicted in Fig. 3. The following dependences were found:

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) rock failure in drilling mud with salt solution results in maximum electric current impulse dimensions;

next- water solution, SAS and then drilling fluid with clay solution (slurry) which show the least electric current impulse dimensions.

reverse proportional dependence of electric current impulse dimensions to rock granular composition and its strength. The smaller the particle, the more intensive the electric current impulse during drilling, as well as, high sample strength.

Fig. 3. Research results - influence of mud type on electric current impulse dimensions Influence of oil saturation on electric current impulse dimensions. The influence of oil saturation on rock failure was also examined. During drilling electric current impulse significantly decreases in oil-saturated samples rather than in non oil- saturated samples (the results were based on the comparative analysis method). This can be an important factor in controlling and recording electric current impulses.

Influence of axial loading and type of drill bit on constant electric current. Diagrams (Fig. 4) show results of experiments with concrete. Double cone drill bit, diamond bit and PDC bit were used. Diagram illustrates that the big gest electric current is produced at the moment when the process of drilling is the most effective. And the size of electric current shows the types and processes of rock destruction: crushing, gouging and scraping.

Fig. 4. Research results - influence of axial loading and type of drill bit on constant electric current Influence of frequency of rotation drill bit on constant electric current. Spectra were calculated during some experiments. Results for ceramics (Fig. 5) show that we can control frequency of rotation drill bit by electric cur rent. The biggest spectrum shows the prevailing frequency of rotation.

Fig. 5. Research results - influence of frequency of rotation drill bit on constant electric current Analysis of research information and results showed the dependence of electric current impulse on rock type, rock mechanical characteristics, drilling fluids and saturation fluids. Based on above-mentioned results, it is possible to design electric current impulse control and recording systems during drilling. This leads to less expenses and time during drilling into pay zone (by different bits).

References Epikhin A.V., Karneev K.V. Analysis of different factors on electric current impulses during drilling // 1.

: XIII .. . , 2009. C. 929 932.

.., .. 2.

- // : XIII .. . , 2009. C. 510 - 512.

THE IMPROVEMENT OF METHODS FOR SEDIMENTARY ROCK PARTICLE SIZE ANALYSIS G.A. Eremyan Scientific advisors professor A.T. Roslyak, senior teacher N.S. Kemerova National Research Tomsk Polytechnic University, Tomsk, Russia The study of sedimentary rock particle size distribution allows us to establish the change sequence of paleohy drodynamic levels of sedimentation environment in space, to accurately interpret the geophysical research, to evaluate capacitive and hydrodynamic properties of hydrocarbon reservoirs and identify them by the type of the deposit [1].

To substantially improve the methods of granulometric analysis of sedimentary rocks, it is necessary to create a method that provides an analysis of particle sizes in the entire range for a given rock sample. Besides, the physical prin ciples of the analysis should correlate with the physical fundamentals of sedimentary rock formation. The methods of particle sedimentation meet the requirements. However, the commonly applied sedimentation methods of granulometric analysis do not cover the full range of particle sizes and are complemented by the sieve analysis for granular geomaterials and optical microscopy of consolidated sample slices [2].

Preparation of core material for particle size analysis is often carried out by crushing and grinding of cores by means of standard equipment. This significantly distorts the original size of rock particles (the size they had at the time of rock formation), with some particles preserving the agglomerated state, while others being crushed to smaller sizes. In this case, depending on the core sample, the cement composition and the mechanical properties of rock-forming particles, the measured average size can greatly exceed, or be much smaller than the original one. This causes gross errors in esti mation of oil reservoir properties and in evaluation of oil and gas reserves in a particular field.

In this paper we attempt to create a complex granulometric analysis methods along with the study of the same rock sample by sieve analysis, counting microscopy and the weight sedimentation.

Weight sedimentometer WS-3 for automated particle-size analysis of metal powders, alloys, organic and inor ganic compounds. The efficiency of a lot of powder technology processes in various industries as well as quality of final production largely depends on the accuracy of dimension definition of solid particles that requires the improvement of methods and devices for particle-size analysis of powders. This problem is solved successfully by the devices (weight sedimentometers WS-3) developed by the Research Institute of Applied Mathematics and Mechanics at Tomsk State University in collaboration with the Cybernetic centre of Tomsk Polytechnic University. The weight sedimentometer WS-3 is intended for automatized particle-size analysis of powders by the particle sedimentation method in liquids from starting layer under the action of gravity forces. Due to low cost, high accuracy and limited time of analysis WS-3 can be applied successfully in many fields. The results of analysis are presented on the screen of the monitor in the form of tables and graphs.

The preparation of the core sample for particle size analysis was performed using electric pulse crushing. For the experiments we selected a typical homogeneous sandstone with medium-clay cement. Electric pulse method forms the channel of electric breakdown directly inside the solid, rather than in the surrounding fluid. As a result of these processes, solid heterogeneous materials (including consolidated rock) are broken directionally, with minerals (acoustic or electrophysical heterogeneities) being exposed by the destruction of the intergrowth boundary between them. Thus, minerals are separated from each other, retaining their original shape. This effect of selective destruction is one of the main advantages of electric pulse method, which allows us to separate core sample grains with the initial size of the par ticles that were making up the rock during its formation.

It should be noted that the destruction is carried out in a liquid (water). After the destruction the powder under goes filtration and drying. Then sieve analysis is conducted for fractions of 0,5 to 0,005 mm.

The particles in the under-sieve size range were studied by microscopic analysis using the modern compute rized microscope of "Olympus" company with the software that allows us to save the images of rock samples and syste matize the particle size. The microscope is equipped with the software Image Scope S to control a digital camera and preview the images on a PC monitor. The software makes it possible to carry out the scale calibration, the formation of a scale interval on the image, manual counting of the target objects, measuring the lengths of segments and noise filter ing.

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) Another advantage of a microscopic analysis, when estimating if the original particle size during different de struction procedures was preserved, is that it enables a preliminary examination of the particle shape in thin sections of the rock sample before grinding.

This paper presents the results of evaluation of microscopic analysis concerning the reliability of particle size measurements. Since the representativeness of the particles in the microscope with respect to the studied samples is very small, to obtain reliable results it is necessary to study a large number of fields and measuring a large number of particles, which is time-consuming. Our task was to determine the minimum number of fields and particles ensuring the reliability of the microscopic analysis.

In addition to standard software Image Scope S, the method of processing the results of microscopic analysis using MS Excel was developed to enable the representativeness and accuracy of analysis. The method is based on a con stant accumulation of the number and size of the analyzed particles in the sample and calculating the basic parameters characterizing the particle size distribution (average size, variance, distribution width). The standard deviations of these parameters are being calculated during the procedure. The results of the analysis are considered reliable when the para meters become constant within the indicated limits.

Figure 1 shows the bar chart of the numerical distribution of particles by fractions with different amounts of measured fields. In each field, all the measured particles were separated into fractions in accordance with generally ac cepted standards. The number of particles of each fraction in the field was determined. After the study of the next field the number of particles of each fraction was summed up with the number of particles of the previous field.

Fig. 1. Numerical distribution of particles by fractions with different number of measured fields:

1-20 - number of fields In accordance with the stated procedure microscopic analysis of under-sieve fractions of crushed core samples was performed with the estimation of the relative errors in determining the percentage of each faction. As its seen from Figure 2, in the study of 20 fields (about 3500 particles were studied) the relative error of measurements for the given sample is reduced to 2%. In practice, particle size analysis results are considered accurate with a relative error being less than 4%.

Fig. 2. The relationship between the number of measured fields and the relative error of particle size measurements The above-stated microscopic analysis procedure allows us to optimize the number of the particles under study in the automatic mode using MS Excel software and provides the necessary representativeness and accuracy of the analy sis.

References .., .., .. 1.

// : VI : , 2008. C. 379 380.

.. . - : . , 2008. 156 .


3. Hiroaki Masuda, Ko Higashitani, Hideto Yoshida Powder Technology Handbook, Third Edition. 2006, NW: CRC Press.

837 p.

GATHERING PIPELINE OPERATIONAL RELIABILITY INCREASE D.V. Fedin, V.V. Zaykovskiy Scientific advisors associate professor V.G. Krets, associate professor T.V. Korotchenko National Research Tomsk Polytechnic University, Tomsk, Russia Because of water cut increase and the extension of stimulation treatment in recent years, corrosion aggression of transported oil has been increased. It led to significant growth of pipeline system accidents [1]. According to the data of I.I. Mazur and O.M. Ivantsov [2], the proportion of gathering pipeline breakdowns caused by corrosion is from 70 % to 90 % to the total number of steel gathering pipeline failures. The experiments conducted by V.A. Timonin have shown that 42 % of new steel pipes can not be operated for 5 years, and 17 % of pipes have been in operation for to years until first breakdowns happen [3]. In accordance to the data provided by E. Z. Yagubov, more than 50 % of pipelines which transport aggressive fluids are operated from a month to two years [4].

The work [5] discussed the method of gathering pipeline corrosion prevention due to the application of pipeline cleaning and inhibition. Inhibitor is injected in the following way: reagent is pumped simultaneously with a pig between two pistons from a fixed vessel, and then the whole system is launched into the pipeline. In this case, due to transverse slots of the rear pig inhibitor is deposited on the inner pipe surface (Fig. 1). Such a scheme of inhibitor injection is ap plied in Petroleum Company, province of Alberta, Canada [6].

Inhibitor Flow Direction Pig Fig. 1. Inhibitor injection principle diagram However, the method has some disadvantages. One of the main drawbacks is the possibility of inhibitor spilling because of oil flow impact on the pig (cup) membrane. A cleaning pig does not provide enough tightness.

There is another method of inhibitor injection (Fig. 2), when gel separation pigs are applied instead of tradition al ones.

Inhibitor Flow Direction Pig Fig. 2. Inhibitor injection principle diagram Application of gel separation pigs in inhibitor injection is rather efficient. Gel separation pigs provide good tightness and equal inhibitor distribution on the pipeline walls. However, it should be noticed that the cleaning power of a gel separation pig is rather lower and it cannot compete with traditional pigs. Therefore, the application of gel separa tion pigs in a case of abundant impurities and paraffin is not reasonable. Besides, pig control complexity and underex plored process of gel breakdown are also considered to be drawbacks of a gel separation pig.

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) Based on the experiments, conducted in the department of Oil and Gas Transport and Storage, Tomsk Poly technic University, it was stated that the most appropriate inhibitor injection diagram is given in Figure 3.

Inhibitor Flow Direction Pig Gel Seal Fig. 3. Inhibitor injection principle diagram (proposed scheme) Proposed scheme facilitates maximum carryover of water, condensate, mechanical particles, asphalt-resin paraffin deposits due to mechanical pigs. Besides, gel seals provide the tightness and equal inhibitor distribution on the pipeline walls.

In our opinion, the most suitable mechanical pig for the proposed scheme can be the following pigs:

Pigs characterized by high passing capability;

Pigs with resin cone-type cups;

Pigs with polyurethane cups;

Pigs with polyurethane graded stairs.

Proposed pigs are distinguished by simplicity and reliability of the construction, as well as by high endurance and capability of passing through pipe reductions up to 45% from d and 90 degree elbows with the radius up to 1,5 d (d nominal pipe diameter). Furthermore, they can be applied together with gel sealing cups.

For the calculation of inhibitor volume between pigs the following formula is applied:

(1) D pipeline inner diameter, m;

where L pipeline protected section length, m;

m specific corrosion inhibitor consumption, g/m2,(the data are provided by the supplying company);

inhibitor density, g/cm3.

Notice that inhibitor density varies in accordance to times of year (summer, winter). Therefore, we suggest in troducing into inhibitor volume calculation formula the operation coefficient k = 1,1 (operation coefficient for possible operation characteristics) which will take account of volume variation in dependence on inhibitor density under different temperature conditions. Furthermore, the coefficient will account for possible inhibitor losses which can be caused by pig launch. Rearranging the formula, we have the following:

(2) where D - pipeline inner diameter, m;

L - pipeline protected section length, m;

m - specific corrosion inhibitor consumption, g/m2;

- inhibitor density, g/cm3;

k operation coefficient.

Finally, unforeseeable reagent losses, as well as inhibitor volume variation due to temperature drops will be considered.

References .., .. // 1.

. 2006. 1. . 48 52.

.., .. . .: , 2004. 700 .


.. - // : 3.

. -. . ., 2007. . 54 57.

.. - // . 2009.


4. . 55 57.

.., 5.

// XIV ..

. , 2010. . 209 211.

.., .. 6.

. .: , 2007. 342 .

THE USE OF AIR-MECHANICAL FOAMS BY FOAMGENERATORS FOR DUST SUPPRESSION IN THE PROCESS OF BLASTHOLE DRILLING IN THE MINING EXPLORATION PRODUCTION A.V. Filatova Scientific advisors professor V.G. Lukyanov, associate professor A.N. Oleynik National Research Tomsk Polytechnic University, Tomsk, Russia Carrying out of the mine exploration workings differs from other types of the work by greater complexity and cost because carrying out in the rocks is made by drilling and blasting method.

The low negative temperatures in winter period sharply limit application of the common hydro desalting means.

In this connection dustiness of air exceeds maximum permissible concentration in hundreds times. Soaring quartz dust (less than 12 microns) moistened in the water is especially dangerously for health of drifters in drilling and blasting.

According to our data the purposeful researches of foam using for dust suppression in the mining production have been conducted insufficiently, the aim of the present work is the analysis of the experience of its application and the aim of researches as to the construction of transport facilities. The foam is known to be one of the varieties of dispersions.

The foam represents disperse system consisting of cells the bubbles of gas (air) divided by thin membranes of liquid.

Obtaining of the foam with specified properties is an important application problem. To evaluate properties of the foam the following indicators are used such as repetition factor, dispersiveness, stability. Its structure-mechanical, thermo physical properties, density, electrical conductivity are important in many cases. The viscosity of the foam is de termined by viscosity of gas, liquid and volume ratio of gas and liquid.

The foaming on the meshes is the only way of obtaining high-expansion foam. There are several varieties of similar devices. The foam formation by the meshes occurs only in certain interval of the air stream speed, the limiting value of which depends on the concentration of the foam maker and sizes of the mesh cells. Repetition factor of generat ed foam depends on the pressure of the solution, concentration of the foam maker, temperature, sizes of the cells, speed and pressure of the solution. Foamgenerator with perforated inner tube is allowed improve conditions of the foaming by increasing stream turbulization.

Dusting in process of construction of transport facilities in the rocks is connected with blastholes drilling, blast ing and loading of the rock. Dust suppression in the process of blastholes drilling is traditionally realized by the washing of blastholes with water or saline solution and vacuum cleaner.

One should do the following conclusions from foresaid:

1. The information about using the foam for dust suppression in the process of blastholes drilling is absent.

2. The expediency of dust suppression by the foam under conditions of negative temperatures can be determined in the process of laboratory and industrial researches.

3. The essential decrease of the air dustiness in the process of construction of transport facilities is possible when using the combined method of dust suppression, namely:

) at the blasting application of the hydro stemming of blastholes from hydropaste and filling of the working area by the foam with repetition factor 600-800;

B) at the drilling of blastholes washing of blastholes by the foam with repetition factor 80-200.

The aim of this work is development of practical recommendations on industrial introduction of progressive technology in the mining exploration production. The foamgenerator made according to drawings of the mining chairs of Tomsk Polytechnic University is intended for creation of the foamy solution with repetition factor 80-200 from the water solution of sulfonal with concentration 0,05-0,1 % with the aim of effective dust suppression.

The results of tests made at one of expedition in Yakutia confirm the efficiency of the offered way of dust sup pression in the process of blasthole drilling.

ROTOR MACHINE DIAGNOSTICS A.A. Gagarin Scientific advisor associate professor V.A. Rudachenko National Research Tomsk Polytechnic University, Tomsk, Russia Vibration refers to mechanical oscillations about an equilibrium point. The oscillations may be periodic such as the motion of a pendulum or random such as the movement of a tire on a gravel road.

Nowadays, compressors are widely used in natural gas transporting industry. A compressor is obviously a rotor machine, and vibrational motions in the operation of rotor part wasting energy, creating unwanted noise and reducing period of safe operating are typically unwanted. Such vibrations can be caused by imbalances in the rotating parts, un even friction, the meshing of gear teeth, etc. Careful designs usually minimize unwanted vibrations. However, the nega tive influence of vibrations is practically unavoidable [3].

For demonstration of the most essential points spectra were used. Real-life spectra do not contain symptoms of fault-identification in a straight-forward way, but at least they highlight difficulties of practical analytical work, and en 20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) courage recognition and acknowledgement of diagnostic software which contains an automated database of rules and is able to apply diagnostic rules similar to those given below.

Machine faults and problems that can be identified by using vibration measurement fall into the following types:

Mechanical faults;

Faults of machines with journal bearings;

Faults of rolling element bearings;

Mechanical looseness;

Phenomena of resonance;

Rotating shaft crack of fracture;

Electrical faults;

Stream induced vibration Faults of belt- and chain-driven machines Gear problems Vibration analysis of reciprocating machines The subject of special study in this article is faults of rolling element bearings as they are considered to be the heart of rotor.

A rolling-element bearing consist of inner and outer race, a cage, and rolling elements. All of them may have faults. Vibrations generated by faulty elements and measured on the housing appear as bearing tones within the spectra, resulting in high-frequency noises in the ultrasonic range. In the course of wear, typical vibration spectra develop. In the majority of cases, the faulty component of a bearing can be identified according to the forcing frequency of vibration.

Faults of races and rolling elements are easy to identify, however, that does not refer to the cage. There are several me thods to find out about faults within bearings, but the most important thing is to decide the extent of bearing faults which can cause a functional failure of the machine. The most suitable method for that is recently developed cepstrum analysis.

Cepstrum analysis is used by the most sophisticated diagnostic expert system for identifying the extent of bearing faults.

Theoretically, bearing fault frequencies can be identified by using the formulas (1) and (2), if the outer race is standing while inner race is rotating.

1 Bd FTF 1 cos RPM ;

(1) 2 Pd Pd Bd (co s ) 2 RPM, (2) BSF 2B d Pd FTF Fundamental train frequency;

Bd Ball/Roller diameter;

Pd Bearing pitch diameter (inch or mm);

Contact angle (degrees);

RPM Rotation/minute.

The following formula can be used to calculate FTF, in case that the inner race is standing while the outer one is rotating:

1 Bd FTF 1 cos RPM. (3) 2 Pd Formula for BSF is the same as (2) [2].

These bearing fault frequencies are often called bearing tones. Their value strongly depends on the stricter of the bearing.

Ball spin or rolling element frequency (BSF) depends on the relative diameter of rolling elements, and it is hard to estimate. Usually, it is between 2X and 4X.

Fundamental train frequency (FTF), the speed of cage seldom appears in the spectrum, but it can often be de tected as the sideband frequency of ball spin frequency (BSF).

It is very important to consider that bearing fault frequencies are non-synchronous frequency components;

therefore, they are not harmonics of 1X rotation frequency. That makes them easy to identify. Extreme bearing wear of faults produce several harmonics of bearing fault frequency in the spectrum, as well as sideband frequencies spaced at 1X or FTF.

A small damage usually occurs on the surface of one of races or rolling elements, which, under stress in the course of time, gradually leads to complete bearing failure.

The assessed frequency range is divided into four parts. Each range has its specific features and measuring par ticularities. Figure 1 shows the analyzed zones:

Fig. 1. Analyzed zones divided by frequency range Frequency ranges of bearing assessment:

A: zone of machine rotation frequency and its harmonics;

B: zone of bearing tones (100 500 Hz);

C: zone including natural frequencies of bearing components (500 Hz 20 kHz);

D: ultrasonic range (above 20 kHz).

The process of bearing wear has several phases. Hereafter is short description of them.

First stage: first sign of bearing wear appears in the range of ultrasound. By using a sensitive ultrasound detec tive device, such as UL101 sensor developed by CTRL Systems [4], even small, incipient faults can be revealed and identified with great reliability.

Second stage: in this phase of fault development, small defects appear in the race rolling elements due to ma terial fatigue. During operation, as rolling elements pass these defects, small wideband excitation is generated in the bear ing, which excites the natural frequency of bearing component. These cause the elevation of natural frequency peaks within the 500 Hz 20 kHz range. Result measured in the ultrasonic range can be twice as much as values of the pre vious stage.

Third stage: bearing tones appears below the 500 Hz frequency range, typically at non-integer multiples of the rotation frequency (1X). If dismounted, traces of bearing wear can already be seen on components. Values measured in the ultrasonic range also show a tendency of increase, compared to the previous phase.

Fourth stage: in this phase of bearing failure, harmonics of bearing fault frequencies appear. The expected re maining lifetime of the bearing gets even shorter, and the bearing produces a big noise. Races and rolling elements get distorted and flaky. Vibration levels in the ultrasonic range get even higher.

Fifth stage: sideband frequencies appear around bearing fault frequencies and their harmonics. Races and roll ing elements become more flaked, there are defects everywhere and the bearing gets warmer. The extent of wear reaches the point where it grows if interstices show the signs of inner looseness, which results in amplitude elevation at rotation frequency and its harmonics. Vibration at natural frequencies and in the ultrasonic range increases even more. Back ground noise-level increases in the high frequency range. Figure 2 shows the changes happened to spectra during this stage.

Fig. 2. Changes of spectra during the fifth stage Stage six: due to extreme bearing wear, amplitudes in all ranges increase. Background noise increases not only at high frequencies, but also around the typical bearing fault frequencies, forming a haystack-shape around peaks, and as it increases, it gradually swallows the peaks. Meanwhile, the bearing vibration level increases extremely, the bearing becomes very hot, and gives off strong unpleasant noises. If the machine is further operated, cage breaks, ball/rolling elements may fall out, collide, pile up, or melt. Races and shaft may be damaged severely. The result is catastrophic.

Finally, background noises swallow characteristic peaks of bearing tones, and the bearing completely falls apart. The shaft and the rotor may also get damaged. Figure 3 shows the changes occurred within the spectra during this stage [1].

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) Fig. 3. Changes of spectra during the sixth stage The most common symptom of rolling element bearing looseness is the presence of strong 1X harmonics, and sometimes elevated peaks of odd harmonics. In extreme cases, 0.5X peak and its harmonics also appear. Very rarely, but in case of extreme looseness, further subharmonics may appear at: 1/2X, 1/3X, 1/4X, Looseness of the rotating part may also produce 1X harmonics and sometimes subharmonics as well. Therefore, in order to define specifically where looseness is, it is necessary to carry out further local measurements and analysis. The knowledge of results of previous repair and maintenance operations may be useful.

References Nagy I. Technical diagnostics. Vibration analysis.


Randall R. B. Frequency analysis. Glastrup, Denmark: Larsen & son, Ltd, 1989. 389 p.


3. http://en.wikipedia.org/wiki/Vibration 4. http://www.ctrlsys.com . 85196 , 2145/00 // .., 5.

.., ., .., .., . (). 06.07.2009. . 10.12.2009. .

12. 7 .

PRODUCTION LOG TEST ANALYSIS IN ZAPADNO-OSTANINSKOE OIL FIELD (WESTERN SIBERIA) 1 G.K. Gerasimovich, A.S. Oshlakova Scientific advisors professor L.Y. Erofeev, associate professor D.A. Terre National Research Tomsk Polytechnic University, Tomsk, Russia National Research Tomsk Polytechnic University, JSC TomskNIPIneft, Tomsk, Russia In recent years more and more oil reserves difficult to extract are developed and most of them are found within mature production fields (depletion exceeds 50%). The general approach to development of mature hydrocarbon fields primarily suggests implementation and application of techniques for monitoring the current deposit condition, as well as evaluation of applied technology efficiency for further planning of operations to increase hydrocarbon production rates.

Therefore, it is impossible to choose the efficient technology for oil recovery without detailed analysis of a formation and well technical condition monitoring. In this respect production log tests are intended to obtain the appropriate informa tion.

The objective of this survey is formation depletion analysis conducted on Zapadno-ostaninskoe oil field which required:

evaluation of completeness and efficiency of production log tests;

detection of the current state of the target development and analysis of the effect of multiple well production by means of flow measurements;

analysis of oil-saturation over the time.

Zapadno-Ostaninskoe oil field development monitoring has been conducted since 1987. Productive horizon is J1 (J11, J12, J13, J14). The major deposit is located within the layer J11 which contains about 90% of original oil-in-place reserves. The variety of relationships between the individual layers of the reservoir produces a rather complex hydrody namic system within the oilfield.

The basic suite of methods includes flowmeter survey both thermoelectric and hydrodynamic, temperature log ging, density logging, moisture logging, resistivity logging, casing collar logs and radioactive methods (gamma-ray log ging;

neutron logging;

gamma-cement logging). The chosen set of measurements may be used to determine inflow inter vals and injectivity profile, water encroachment sources, fluid composition throughout the wellbore, annular circulation sections, leakages in the casing, current oil-water contact level, technical condition of wells and the location of perfora tion intervals, performance indications of developed targets. Moreover, it can be applied as to assess attitude and reser voir depletion degree in uncased boreholes when combined with geophysical methods.

Considering the stock of drilled well bores and amount of investigations it may be assumed that the survey cov erage during the entire period of development constitutes only 76 % (Table). However, it is necessary to carry out pro duction log tests annually on 50 % of producing well stock. Moreover, the scope of investigations conducted on other fields in Western Siberia is insufficient to yield appropriate information.

Table Summary of production log tests Type of testing Survey coverage water encroachment source injectivity profile fluid-movement profile technical condition Total: Efficiency analysis results indicate that 36% of the investigations do not reach the desired objectives due to a number of reasons. In some instances the perforations are blocked by sediments or production string. In other cases flow rate or injection capacity can be lower than instrument threshold or probe cannot be lowered into the observation zone.

The insufficient sump depth can be the reason as well. The survey coverage of beds J 12, J13 and J14 is not sufficient there fore production analysis is carried out only for J11.

Flowmeter survey data were plotted to produce maps of net pay zone coefficients (K.n.p.) and stimulation cov erage coefficient (Ks.c.), which indicate unused productivity potential of the well. Productive intervals according to RGT (mechanical flowmeter survey) results and STD (thermal flowmeter survey) data are almost identical and coincide with perforated oil-saturated zones of enhanced reservoir properties identified by the radioactive logging method and sponta neous polarization log. The largest Kn.p. and K.s.c. of production and injection wells are confined to the center of the western part of the deposit.

To estimate the relative field amplitude of spontaneous polarization (APS), which causes the inflow, the values of the relative field amplitude of the spontaneous polarization in the productive section and non-productive one were compared. The Figure reveals the following regularity for production wells: if Aps 0,75 there is a great possibility that the interval will provide the inflow and vice versa. However, in injection wells a large number of non-productive inter layers may have good Aps properties (Aps 0,75).

Injection wells Rate, % 0 0,2 0,4 0,6 0,8 Productive Aps Fig. Dependence of the frequency of productive and non-productive intervals on the relative field amplitude of the spontaneous polarization for injection and production wells The net pay zones coincide and they correspond to perforated oil saturation zones, subsequently, one may con clude about high degree of formation penetration by perforation. The profile analysis shows that highly permeable inter layers are depleted first. It should be noted that intervals with low reservoir properties (top and bottom layer zones) are little involved into development.

The performed production log tests allowed to define productive sections within the layer J11. The comparison of the net pay zone coefficients within wells with behind-casing flows and without them shows that in injection wells there occurs fictive increase of net pay zone coefficient in the process of cross-flow formation. On the contrary behind casing flows in a production well result in decrease of these values.

Zapadno-Ostaninskoe oilfield development within the layer J11 is accompanied by water saturation increase, thus making it difficult to give quantitative estimate of oil saturation on the basis of electrical logs. In this regard, the detection of flooded reservoirs requires interval by interval comparison of geological and geophysical characteristics of wellbore surroundings with logging data obtained over different time periods. Since 1995 there appeared only 7 wells drilled in 2007. Besides, six of them are side holes, thus, their parameters cannot be compared. The single hole surveyed with a standard suite of methods was drilled in 2007. However, it is located near the external producing limit of the field and far away from existing well stock, so the comparison of electrical log variations over time period with the new data is impossible. Thus, to evaluate formation saturation and establish the basic regularities of waterflooding of deposits, it is advisable to conduct special surveys: pulsed neutron logging, carbon-oxygen logging and nanoelectrical logging in a cased string [2].

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) References 1. Ipatov A.I., Kremenetskiy M.I. Geophysical and hydrodynamic control of the development of hydrocarbon deposits. Moscow: NIC "Regular and chaotic dynamics", Institute of Computer Science, 2005. pp. 107 126.

2. Kuznetsov G.S., Leontiev E.I., Rezvanov R.A. Geophysical methods for monitoring the development of oil and gas fields. M.: Nedra, 1991. pp. 81 126.

WASSERVERSORGUNG VON OAG "SIBIR" S.V. Grikow Wissenschaftliche Betreuerinnen Dozentin M.V. Reschetko, Lehrerin S.V. Schestakowa Nationale Polytechnische Forschungsuniversitt, Tomsk, Russland Offene Aktiengesellschaft "Sibir" ist ein Unternehmen der Stadt Tomsk. Das Werk befindet sich im nrdlichen Industriebezirk der Stadt, der frher ein Sgewerk besitzt hat. Die Hauptprodukte, die das Werk hergestellt, sind ver schiedene Marken von Wodka. Es ist logisch, dass 59,9% der Werkproduktion nur Wasser ist. Die Besonderheit dieser Herstellung ist ein groes Wasserrckhaltevermgen. Diese Produktion erfordert nicht technisches Wasser mit geringerer Qualitt, sondern trinkbares, hochqualitatives Wasser [4,6].

Mgliche Quellen der Wasserversorgung des Unternehmens sind die zentrale Wasserversorgung von der Ein lauf Tomsk, Aufnahme der erforderlichen Wassermengen aus dem Fluss Tom oder aus Aquiferen. Grundwasserleiter zu Abhebungen innerhalb der Stadt knnen als zwei Systeme verteilt werden:

Aquifer in den quartren Ablagerungen aQ3-4 (Aquifer-Typ "Vadosen", Aquifer niedriger Terrassen, Aquifer hoher Terrassen). Innerhalb der Stadt wird dieser Wasserleiter fr den Privatgebrauch durch einzelne Brunnen und Bohr lcher benutzt. Die Tiefe der Aquiferlage ist von 0 bis 20 Meter. Natrlich ist dieser Aquifer von der Oberflcheverschmutzung nicht geschtzt. Dabei, die Ausbeute dieser Aquifer variiert und kann in der Industrie verwen det werden nicht. Es reicht von 0,07 bis 6,94 Liter/ Sek.

Aquifer-System im Palogen Abhebungen:

- die lagernosadsko-Jurkowski-Novomikhailovsky Suiten. Dieser Komplex ist weit innerhalb der Stadtgrenzen in der Trinkwasserversorgung eingesetzt. Innerhalb der Stadt betreibt Bereichen Wasser, abrufen aus dieser besonderen Komplex. Das Gesamtvolumen der registrierten Handbuch ist ber Mio. m3 pro Jahr. Felde (Bohrloch) sind entlang des Umfangs der gesamten Stadt. Darber hinaus ist Tomsk Aufnahme, Ausbung zentrale Wasserversorgung, Wassergewinnung aus dem Komplex. Auerdem fhrt das Tomsker Unterneh men, das die zentrale Wasserversorgung verwirklicht, die Entnahme des Wassers aus diesem Komplex. Das betreffende Unternehmen als auch ausnutzen Horizont mit ihren eigenen Brunnen. Aus nach dem Bohren und der Einfhrung der Arbeit zeigten, dass Wasser in diesem Bohrloch erfllt nicht die Qualittsstandards des Trinkwassers fr Eisengehalt durchgefhrt. Dies ist charakteristisch fr die Grundwasserleiter.

Bestehende Trinkwasserversorgung im Unternehmen lautet wie folgt: Die Spalte (Tiefe von 75 Metern, von Horizont betrieben - Pg 3nm-P2jr) - Vorreinigung Station - das System der Erweichung und fein - Lagertanks - Shop Blending.

Das Wasser fliet durch das Stadium vor der Behandlung und dann trifft Standards der Wasserqualitt fr die Trinkwasserversorgung. Dieses Wasser wird in der Fabrik in der Trinkwasserversorgung fr die Splung der Verpackung verwendet. Aber das Wasser fr die Herstellung von Wodka, der aus strengere Anforderungen an die Struktur und den Inhalt einiger Elemente, die wiederum einen groen Einfluss auf den Geschmack und das Aussehen Merkmale des Pro dukts. Daher ist das Wasser System der Produktion auch die Installation von Feinreinigung und Erweichung enthalten.

So hat das Unternehmen ganz verlassen das System der zentralen Wasserversorgung als die Wasserqualitt der zentralen Wasserversorgung fr die Reinigung "kommt" fr die Verbraucher mit schlechter Performance und zustzliche Verunreinigungen. Dies ist darauf zurckzufhren Chlorierung und den schlechten Zustand der Wasserversorgung der Stadt. Abstraktion aus dem Fluss jetzt Tom ist durchaus mglich. Dieses Werk ist nicht sehr weit vom Fluss (300 Meter).

Aber der Zustand des Wassers des Wasserlaufs wird weniger ressourcen-intensive Behandlung, dass die gesamten Pro duktionskosten des Unternehmens wre wirtschaftlich unsolide erfordern. Kurz vor der 500 Meter ist eine Kstenstadt Oberflche Einleitung von Abwssern Tomsk Fleisch. Darber hinaus die allgemeine Qualitt des Flusswassers in die Ausrichtung unter der Stadt weit schlimmer. Nicht umsonst Trinkwassergewinnung aus dem Fluss oberhalb der Stadt mit dem Fluss gebaut wurde (mehr Betrieb in den 70 Jahren). Zustand des Flusses in [8] ist als "mig belastet" bewertet.

Wasserversorgung wird aus dem Quartr Aquifer aufgrund der Variabilitt des Wassers unpraktisch, seine An flligkeit fr Verschmutzungen von der Oberflche und zu niedrige Produktionsraten. Darber hinaus haben die Daten Fliegeschwindigkeiten eine signifikante Amplitude der Schwingung, die sich auf die Saison abhngt. Die Exposition gegenber Verunreinigungen von der Oberflche und Lateral-Flow ist ein besonders berzeugendes Argument gegen die Ausbeutung der quartren Grundwasserleiter. Dies wird durch die Lage des Unternehmens erlutert.

Erstens, die im Gebiet whrend die Sowjetunion gebracht Holz verarbeitenden Fabrik, in geringem Abstand (ca. 1km.) Funktioniert Schwellenwerk (bis jetzt). In den 70er Jahren des letzten Jahrhunderts aufgezeichnet Verschmut zung Daten Zeithorizont (einschlielich Pg 3nm-P2jr) Kreosot, das fr die Imprgnierung von Schwellen verwendet wird. Der Grund dafr ist, dass die Kreosot im Abgas Schwellenwerk einfach in den See auf dem Territorium des Unter nehmens gegossen. Tonschicht Sedimenten des Sees konnte nicht mit den Volumina der Verschmutzung zu bewltigen.

Wenn eine Kontamination festgestellt wird Grundwasserzustroms Abflle aufgehrt, den See und getrnkt in Kreosot Sedimenten gelst. Spuren von Phenol in den Brunnen wurden in der 1998m gefunden wurde, in der Analyse nach der Inbetriebnahme. Im Moment waren Phenole in Wasser aus diesem Brunnen nach der Erstbehandlung nicht gefunden.

Zweitens, arbeitet die Datenpunkt in einem Radius von 1 km von der Anlage eine Menge "schmutzige" Indust rie. Dies sind 2 Tankstellen, Parsing, Recycling Sammelstellen, etc. Dies deutet die Mglichkeit einer Kontamination ist nicht genug Schutz des Grundwassers, wie das Wasser des Quartr Grundwasserleiter. Wenn wir hydrogeologischen Querschnitt aussehen, ist es leicht zu berprfen, ob die Palogen Aquifer vor Verunreinigungen geschtzt ist wie Unter nehmen aus der Deckschicht aus undurchlssigem Lehm.

Basiert auf der Arbeit getan und Informationen ber die Besonderheiten der Wasserwirtschaft in Sibirien, die Art von Produkten und Produktionsprozessen Technologie gesammelt, knnen wir verschiedene Schlussfolgerungen ziehen. Erstellen Sie Ihre eigenen Wasserversorgung fr ein solches Unternehmen muss wirtschaftlich gerechtfertigt sein, da das Wasser fr die Produktion von hoher Qualitt (vor allem auf den Geschmack Indizes) Wodka streng in der Kom position ist geregelt. Die Zusammensetzung des Wassers ausgenutzt Aquifer ist normal fr die Region. Wasser bentigt keine zeitaufwendige und kostspielige Sanierung. Es ist erwhnenswert, dass die Regulation des Wasser Wodka machen nicht immer positiv. Es gibt Tatsachen, wenn sie ein besseres Produkt aus dem Wasser entspricht nicht den Anforderun gen der heutigen Normen, anstatt Wasser-bezogenen Vorschriften und Normen eingegangen.

Literatur 1:200 000, , 1.

-, . . .: . ., . ., . .;

: - , 2000, 207 .

. ., . . . 2. . : 2.

, 2000. 258 .

. . . .:2000.


51355-99 .

4. . 5.


10-04-03-09-88 - 6.

.., .., .., .. :


, // - . -.. , 26.11.2004. :

, 2004. . 208 - 209.

. 2007 / 8.

, :

, 2008. 24 .

HYDRODYNAMICS AND HEAT TRANSFER IN CYLINDRICAL CHANNEL ENTRY I.Sh. Islyamov Scientific advisors professor S.N. Kharlamov, associate professor T.V. Korotchenko National Research Tomsk Polytechnic University, Tomsk, Russia Study of friction and heat transfer includes a thorough research in molar momentum and heat transfer regulari ties. The development of thermal and dynamic layers which is accompanied by rearrangement of turbulent flow structure makes difficulties in modeling of these processes.

However, the problem of flow model in the channel entry tends to be solved within the momentum approach in a turbulence theory. Despite the complexity of models, including differential equations of any given second- or third order momentum, the approach is increasingly applied not only in exploratory research, but also in the calculations con cerning engineering applications.

The peculiarities of heat transfer in a channel entry are defined by hydrodynamic effects of the entry. Unlike developed heat transfer, the heat transfer in this zone is characterized by penetration of a thermal boundary layer into the central zone flow, with thermal layers interacting more rapidly than dynamic ones. However, temperatureprofiledeforma tiondoesnotendwithinteractionofthermalboundarylayers;

the zone it covers is slightly larger than nominal length of ther mal entry zone.

Let us assume that the flow is axisymmetric at an average. The axial heat and momentum transfer by means of diffusion is neglected. Heat sources are absent. Then, system of equations describing flow and heat transfer in the entry zone of a channel is as follows:

1 rur ( uz ) (1) 0;

r r z 20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) ur ur ur P ur uz t r z r (2) 1 ur ur ur r( t) [( t) ]( t) 2 ;

rr r z z r u u u ur u ur uz t r z r (3) u u u r( t) [( t) ]( t) 2 ;

rr r z z r uz uz uz P ur uz t r z z (4) uz uz r( t) [( t) ];

rr r z z T T 1 T (u z ur ) [r ( t) ] z r rr r (5) uz T p [( t) ] uz ( t )( );

z z z r R 2 u z rdr G (t ) (6) R,, f (T );

(7) The most detailed description of the visual pattern of a turbulent flow has been given by E.R. Corino and R.S.

Brodkey [2]. The main feature observed in all experiences appeared to be an intermittent nature of the flow regime. Slow moving fluid layers, form 10 / u* to 20 u* in thickness ( u* - dynamic velocity, - kinematic viscosity), were regular ly observed close to the walls along the flow. The distance between the layers was about 100 u*.

According to the observations, slow-moving layer was occasionally distorted by turbulent vortices which were penetrating from the flow core and then jumped out from a slow-moving zone toward the pipe axle. Due to these processes, friction stress from time to time increased at the surface of the slow-moving layer, where turbulent vortices jumped out from, and intermediate flow. It was accompanied by a small-scale speed fluctuation characterized by small amplitude and flow trajectory agitation of the marked particles.

These jumps and speed fluctuations, leading to turbulence increase, is the most distinguished feature of the near-wall region in a turbulent flow which is kept up by it along the whole flow range.

Let us show that periodical energy increase of turbulent fluctuation near solid surface leads to pulsation energy variation near an average value.

As K-L model is more effective in result acquisition and description of low-Reynolds processes, it is used in closure of the defining equations. Neglecting kinetic energy variation along the azimuth coordinate, the balance equation of turbulent fluctuation kinetic energy near a solid surface is as follows:

u z 2 b2 ( b1 t ) E E dE 1 E (8) (u z ur ) (r ( t b1 ) ) t( ) E;

L z r dt rr r r L L L 1 L (u z ur ) (r ( t b3 ) ) z r t rr r (9) L uz L b4 t( ) Bb5 E (1 );

(R r) E r Values of constants bi (i = 1, 2, 3, 4, 5, 6, 7) and expression for K-L model are the following: b1=0,4;








Typical turbulence scale is set by empirical Prandtl--Nikuradze formula:

L 2 l0 l1 ( ) 2 l 2 ( ) 4, l0 0,37;

l1 0,23;

l2 0,14;

(10) R R R Molar heat and momentum transfer coefficients were defined by Kolmogorov-Prandtl formulas:

du z ( u 'v ' ) ;

(11) t dr 2 0,5 t Re t [1 exp( 2 Re t ) 3 Re t exp( 1 Re t )];

(12) 4 *10 4 ;

2,1*10 4 ;

2 *10 2 ;


(13) 1 2 (14) Ret EL/ ;

(15) tcp / Prt ;

t Prt 1 {( / t ) 2 /( 2 1 Pr)2 [1 ( / t ) 2 2 ] / 2 0, 3} /( t 2 1 Pr);

(16) Equation system is integrated under the following condition:

t t0, z 0 : u z u0,T T0, E E0, L L0, 0;

(17) (18) r R1 R2 : u z ur E L 0, T Tw, u ( R1 ) 1, u ( R2 ) 2;

where index 0 refers to entry section, w fluid boundary - wall.

Sweep method and three-point scheme are used for equation system integration.

Thus, the main influence peculiarities of the heat, transferred from the wall to the medium, on the laminar flow steadiness are easily observed even in a case of incompressible flow. With Reynolds numbers being from 105 to 106, heating leads to significant increase of friction resistance. Hence, heating decreases critical region of Reynolds number which, in turns, leads to apparent increase of friction resistance in Reynolds number region corresponding to the transfer of laminar flow into turbulent one. Stabilizing and disturbing effects of heat transfer on the wall is mainly determined by the dependence of viscosity coefficient from temperature.

References .., .., .. 1.

. : .- . -, 1993. 178 .

Corino E.R., Brodkey R.S. Journal of Fluid Mechanics. 1969, vol.37, N 1. 130 p.


DIE NEUE TENDENZEN ZUR TECHNOLOGIE DER ANREICHERUNG VON KARBONAT-UND MANGAN- ERZEN T.A. Kauzman Wissenschaftliche Betreuerinnen Dozentin I.W. Frolowa, Lehrerin S.V. Schestakowa Nationale Polytechnische Forschungsuniversitt, Tomsk, Russland Das Manganerz ist die Art von mineralischen Bodenschtzen und Naturschtzen, in denen der Mangangenhalt gengend fr die wirtschaftlich ergiebig Extraktion dieses Metalls oder seiner Vereinigungen ist.

Manganhaltige Mineralien sind Psilomelan (nΕnO22O) und Mangancalcit [(n, ) 3] haben die inkonstanten chemischen Zusammensetzung, dabei wird sich der Inhalt des Mangans von 35% bis zu 60% und von 7% bis zu 25%, verndert. Der Pyrolusit (n2) und der Manganit (n232O) haben die bestndigen chemischen Zu sammensetzung, und der Inhalt des Mangans erreicht 60%. Der Phosphor in den Manganerzen ist mit den Erz- und Ber ge- Mineralien verbunden. Der Phosphormodul (im Verhltnis des Phosphors zum Mangan) ist hher in karbonathaltigen Mineralien und ien bichen niedriger in den voluminsen Differenzen von Oxidmineraliem (in Psilomelan) und und auch im Pyrolusit und Manganit.

Die Besonderheit der stoffliche Zusammensetzung von Manganerzen, diverse Anreicherung der mineralischen Texturabarten und die Einlagerungbedingungen bestimmen die Technologie der Abarbeitung von Erzvorrten und die Reihenfolge der Entwicklung Bereicherungschemen von elementar- (Zerkleinern und Aussplung) bis verzweigte Mag net- und Flotations- Schwerkraftmethode. Es ermglicht bei der Verschlechterung von stofflicher Zusammensetzung des Rohstoffs hohen Grad der Mangansextraktion zu untersttzen.

Der Prinzipschaltplan der Bereicherung wird auf der Abbildung dargestellt.

Abb. Der Prinzipschaltplan der Manganerzbereicherung 20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) In den letzten Jahren in Russland gibt es das scharfe Defizit von Manganprodukten im grotechnischen Ma stab wird die Manganlagersttte nicht exploitiert. In den Bilanzvorrten von Russland dominiert schwer aufbereitetes karbonathaltiges Erz (90,8%) mit dem relativ niedrigen Mangangehalt (18-22%), dem hohen Phosphorgehalt (0,2-0,3%) und der Kieselerde. Die aktuellen Bedrfnisse der Httenindustrie in Russland, die 90% des summarischen Landesbe drfnisses ist, wird 1,3-1,5 die Millionen Tonne von Warenmanganerzen bewertet, und im wesentlichen mit dem Import abgedeckt.

Deswegen ist die Senkung der Importabhngigkeit die industrielle Verarbeitung Karbonaterzlager in Russland.

Die Forschungen werden in Tininskoe (Swerdlowsk) und Usinskoe (Kemerowo) Lagersttten durchgefhrt. Nach Pro gramm Das russische Mangan (1995-2005) wird die Rohstoffbasis mit moderner Verarbeitungtechnologie Karbonat und Mangan- erze gebildet.

Karbonathaltiges Erz ist schwer aufbereitet. Sie werden mit niedrigen Mangangehalt (18-20%), der Vielfalt der Mineralformen, die sich von der Qualitt und den physikalischen Eigenschaften unterscheiden, und auch mit der schdli chen Begleitstoffen - in erster Linie Phosphor kennzeichnet.

Die Bildung der effektiven Technologie nach Verarbeitung hilft Russland vom Import der Manganprodukte (Ferromangan, Manganmetall etc.) zu befreien, voraussichtlich deren Konsum im 2005 Jahren 550 000 t sein wird.

Zur Zeit gibt es neue Technologie, die nach folgenden Prinzipien erforschen wurden:

Vorbereicherung Erzmasse mit der radiometrischen grobportionischen Sortierung fr die Absonderung von rei chen und leicht aufbereiteten Erzen;

1) Einsatz der Kombinationstechnik mit traditionellen mechanischen Methoden fr Erzverarbeitung mit der ra diometrischen Scheidung auch mit der chemischen und biochemischen Anreicherung;

2) Einsatz der Schontechnologie, die aus der Absonderung und Erhaltung bei der Erzbereicherung von grobstckigen Produkten nach der Qualitt und granulometrischen Zusamennsetzung dementsprechend der Anweisungen zu Beschickung bei dem Schmelzen der Manganlegierungen bestehet;

3) Erhhung der Bereicherungeffektivitt der magnetischen Scheidung mit den Apparaten von intensittsrei chem Magnetfeld fr Material 10 mm;

4) Absonderung aus den Phosphorerzen der radiometrischen Scheidung des phosphorhaltigen Manganprodukts und seine Verarbeitung (Entphosphorung) mit den Methoden der chemischen oder biochemischen Bereicherung;

5) Einsatz vom industriellen Bereicherungsprodukt mit der Manganokalzitzusammensetzung fr die Vormi schungsproduktion;

6) Komplexbereicherung des Rohstoffs fr die Bereitung der grobstckigen und krnigen Mangankonzentrate;

7) Chemisch-technologische Konzentrat -verarbeitung und -bereicherung mit der Bereitung des Kaliumper manganats, elektrothermischen Mangandioxides, Manganmetalls etc.

Aufgrund dieser Prinzipien ist technologische und effiziente Verarbeitungtechnologie von Karbonat- und Man gan- erzen (98,51Mio t oder 65,2%) von Usinskoe Erzlager in Russland entwickelt.

Im Usinskoe Erzlager gibt es Haupterzentypen: Rhodochrosit-, Manganokalzit-, Kalksteine- erze und die Bilding der effektive Komplextechnologie hat wichtige Bedeutung auch fr andere karbonathaltige Erzlager.

Also, kann man die Schlussfolgerung machen, dass die Technologien der Erzbereicherung setzen fort. Die Er forschung und Auffinden einer Lagersttte werden durchgefhrt und die Entwicklung der neuen Technologien haben den Einfluss nicht nur auf die Wirtschaft von Russland, sondern auch auf die Auenwirtschaft.

Literatur .. : /. . ;


(), . p : - , 2007. 124 .: . - .: . 106 108.

.. .


.., .., .., .., .., .., .., 3.

.. .

.., .., .., .., .. 4.


, .. : / .. , .. ;


(). : , 2008. 132 . - .: . 123. : . 124 130.

PORTABLE SUPPORT SURFACES IN OIL AND GAS PIPELINE REPAIR-AND-RENEWAL OPERATIONS UNDER SWAMP CONDITIONS D.F. Khasenova Scientific advisors associate professor V.G. Krets, associate professor A.B. Strelnikova National Research Tomsk Polytechnic University, Tomsk, Russia The majority of large-diameter (1020, 1220 mm) oil and gas pipelines located in Siberia pass through a swampy area. The length of these areas accounts for tens and hundreds of meters, and sometimes tens of kilometers.

On a world scale, in fact, a swamp classification is rather different. Within this paper, the types of swamps are considered according to the SNIP III-42-80* Major pipelines. Rules of procedure and acceptance of work. The division occurs by movement character of construction equipment on the surface of a swamp. Thus, it is acceptable to use specific technical equipment on the first type swamps, ordinary technical equipment with application of boards, platforms or tem porary road beds on the second type swamps and floating technical equipment or ordinary technical equipment from floating structures on the third type swamps.

The following temporary road beds are applied in pipeline construction on the watered ground, first and second type swamps according to the VSN 2-105-78:

The roads with the lowest type surface:

made of soils ameliorated by additives;


collapsible (track and uniform) roads and platforms with wooden surface;

winter roads;

ice crossings.

The roads with transitional surface:

gravel and crushed-stone roads;

1. collapsible roads with surface made of reinforced-concrete slabs.

The structures of temporary road beds are provided by work plan and selected by standard scheme depending on soil bearing capacity, type of swamp, peat bed thickness and compressibility, estimated values of unit and axial loads with allowance for freight turnover, traffic density, period and pace of construction, availability of local road-building materials and riding-quality road. Optimal alternative is determined by technical and economic assessment and compari son of the results. The analysis of oil pipeline repair works under swamp conditions shows that the most labor-consuming parts of repair works are preparatory work and construction of temporary roads and platforms.

Oil pipeline repair works under swamp conditions has the following special features:

deterioration of swamp surface bearing capacity after repeated movement of technical equipment;

increased watering and low soil density;

restriction of technical equipment maneuvering within area of repair works owing to forest coverage of swampy areas;

necessity of undue usage of building materials;

labor intensity of technical equipment delivery for an accident area;

Relying on above-listed special features of repair works in a swamp conditions, it can be claimed that construc tion of temporary roads made of soils ameliorated by additives and plank-roads are irrelevant owing to the following reasons:

time consumption ;

unsustainability (usage of wood accounts for 1,3-3 thousands m3 per km);


Therefore, it is recommended to use specific technical equipment or collapsible surfaces which possess suffi cient bearing capacity and fast assemblage pace.

The analysis of existing configurations of collapsible surfaces devised in both Russian Federation and foreign states shows that, basically, they have a track and uniform type construction with hingedly or freely united elements.

According to the RD 153-112-014-97, several types of collapsible surfaces are applied, especially SRDP-1, SRNP-1, SRRP-2, SRNP-3 and PSRP-1 [2]. There are technical characteristics of above-mentioned collapsible roads and platforms in Table.

The constructions of standard collapsible surfaces allow:

to construct temporary road beds on swamps without special leveling of a swamp surface;

to improve passability of swamps;

to reduce laboriousness of the installation works during construction of access roads and platforms;

to shorten a period of repair-and-renewal operations and outage downtime.

However, the manufacturing of standard collapsible surfaces demands a quantity of sorted wood and metal.

Therefore, in practical work, it is easier to make a plank-road from cut trees, but after some time the wood sinks into marsh. It is inadmissible.

Table Summary of main technical characteristics of portable surfaces Type of surface SRDP-1 SRNP-1 SRRP-2 SRNP-3 PSRP- Specifications Width of carriageway, m 3,2 3,2 3,2 3,2 5, Bearable wheel load, kN 200 200 200 100 Bearable crawler load, kN N/A 365 250 150 N/A 3,53,20,3 5,44,40,6 5,05,00,47 5,05,00,6 2,475,920, Dimensions (LWH), m Assembly time, min 3(per junction) N/A 88 (100 m) N/A N/A Within the research, novel constructions of collapsible surfaces are considered on basis of book materials [1] and patents numbered [3], [4], [5] and [7]. In our opinion, the most relevant and portable construction is the one devised by IPTER, Ufa (Fig.). The platform consists of a central board 1 and peripheral boards 2 jointed by hinges 3, automatic catches 4, bearing stands 5 and staples for slinging 6.

The platform can be delivered to work location by the helicopter [2].

The main advantages of the collapsible platform:

20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) made of non-scarce polymeric material;

allows to deliver additional equipment in the container formed by collapsed platform;

has a short-duration period of delivery and assembly;

high bearing capacity.

Fig. Platform: 1 central board;

2 peripheral board;

3 - hinge;

4 - catch;

5 - stand;

6 staple for slinging Conclusion In the paper, the methods of temporary road and platform construction under swamp conditions are regarded, and the questions related to standard and novel types of portable support surfaces for use in oil and gas pipeline laying and repair-and-renewal operations are dealt.

The following results were obtained:

It was determined that the application of portable support surfaces is the most relevant and effective approach to use in oil and gas pipeline repair-and-renewal operations;

The application advantages of novel portable support surfaces in comparison with the standard one were ascertained.

Following the results, it can be said that the subject of collapsible support surfaces has wide implications in oil and gas transport industry, but actually it has not been developed since the Soviet times and requires structural novel solutions. Furthermore, it is ought to be noted that the adoption of new technology is primarily urgent for the area of ac cident response service.

References .., .., .., .. - 1.

. .: Nedra, 1998. 271 .

. 2013487 E01C9/08. - 2.

. .. . 04.02.1992;

. 30.05.1994.

. 2183701 E01C9/08. - . .. . 23.04.2001;


. 20.06.2002.

KORROSIONSSCHUTZ DER ERDLLEITUNGEN J.S. Kissajewa Wissenschaftliche Leiterinnen Dozentin N.W. Tschuchoreva, Dozentin L.S. Ratner Nationale Polytechnische Forschungsuniversitt, Tomsk, Russland Jhrlich kommen in Erdlfeldern Russlands etwa 50-70 Tausend Havarien an den Pipelines vor, 90% von de nen Folge der Korrosionsschden sind. Korrosion ist der natrliche Abbau von Werkstoffen wie Rohrleitungsstahl, der aus einer Reaktion mit seiner Umgebung herrhrt. Die Korrosion von Pipelines kann durch Kohlendioxid, Wasser, Sedi mente und Bakterien verursacht werden.

Erdverlegte Rohrleitungen und Pipelines sind kostspielige Investitionsobjekte. Um einer Zerstrung durch Kor rosion entgegenzuwirken, werden sie durch Anstriche und Umhllungen geschtzt. Doch schon kleinste Beschdigungen im Anstrich oder Risse in der Umhllung fhren zur gefrchteten Lochfrakorrosion. Korrosion bewirkt eine elektro chemische Reaktion, welche Metall abtrgt. Das Ergebnis sind leck gewordene Rohrleitungen, die enorme Sach- und Umweltschden verursachen knnen. Um die hohe Zuverlssigkeit zu erzielen und die Schadenhufigkeit zu senken, muss man Komplexmanahmen treffen. Die Korrosionschutzverfahren werden in technische (mechanische), chemische und technologische eingeteilt.

Technische Korrosionsschutzverfahren. Unter allen Methoden des technischen Korrosionsschutzes ist in ers ter Linie der Wechsel des Rohrmaterials auf die korrosionsbestndigen Stoffe zu nennen, z.B. Kunststoffe, die fr ver schiedene Druckverhltnisse ausgelegt sind:

Niederdrcke bis 1,0 MPa, die aus Niederdruckpolythylen, Polypropylen, Polyvinilchlorid, Polybuten hergestellt werden;

Drcke von 4.0-6.0 MPa und hher, die aus Kompositstoffen produziert werden: glasfaserverstrkte Kunststoffe, biplastische, armierte, thermoplastische Materialien.

Chemischer Rohrleitungsschutz schliet die Anwendungsmethoden der Korrosionsinhibitoren ein. Die Inhi bitoren verhindern (verlangsamen) den Prozess der korrodierenden Rissbildung und gelten als eine effektive Schutzme thode. Viele Inhibitoren sind imstande, in die Spitze des entstehenden Risses einzudringen und seine Entwicklung zu bremsen. Es ist wichtig, den Inhibitor richtig zu whlen. Er soll den lokalen und gleichmigen Korrosionsprozess we sentlich verzgern und die Bildung und Entwicklung der Ermdungsrisse effektiv unterdrcken.

Technologischer Rohrleitungsschutz beruht auf der Technologieauswahl der Aufbereitung und des Trans ports von Rohl mit minimalem Kontakt Wasser-Oberflche. Das sind Technologien der differenzierten Wassertren nung in Form einer freien Phase.

Rohrleitungsschutz gegen elektrochemische Korrosion. Unterirdische Rohrleitungen sind der Korrosion elektrochemischen Typs ausgesetzt. Die im Boden verlegten Rhren befinden sich wegen der vorhandenen Salze und Feuchtigkeit in einer elektrolytischen Wanne. In einem trockenen Sand kommt die Korrosion nicht vor. Die Schutz manahmen der Rohrleitungen gegen die uerliche Korrosion werden in passive und aktive gegliedert.

Passive Schutzverfahren sehen die Isolierung der Auenseite des Rohrs vor der Grundwasser- und Streus tromberhrung vor, die mit Hilfe der dielektrischen korrosionsverhtenden Behandlung ausgefhrt werden. Die Rohr schutzbeschichtung ist wasserdicht, mechanisch fest und wird gut an das Metall gehaftet. Zur Isolierung der Erdlleitun gen werden die Beschichtungen auf der Grundlage des Bitumens und der Polymere verwendet. Bitumenvergumasse zur Beschichtung enthlt einen Mineralfllstoff oder Gummikrmel, um ihre Zhigkeit im heien Zustand zu erhhen und die mechanische Festigkeit der Beschichtung zu steigern. Die Beschichtungen auf der Grundlage der Polymere stellen Polyethylen- oder Polyvinylchloridfolien mit Klebstoff dar. Das Folienband wird auf die gereinigte und grundierte Roh rleitung gewickelt. Beim Dauerbetrieb der Rohrleitungen, die nur durch Isolationsbeschichtung geschtzt werden, entste hen Durchgangskorrosionsschaden schon in 5-8 Jahren nach der Rohrverlegung, da die Isolation mit der Zeit ihre Festig keitseigenschaften verliert und in ihren Rissen intensive Prozesse der Auenkorrosion beginnen.

Aktive Schutzmethoden der Rohrleitungen gegen die Auenkorrosion sehen vor, einen solchen elektrischen Strom zu schaffen, bei dem das ganze Rohrleitungsmetall trotz der Inhomogenitt seiner Einsprengungen zu einer Katho de wird, und als Anode dient das zustzliche im Boden unterbrachte Metall. Es gibt zwei Arten des aktiven Rohrleitungs schutzes gegen die uerliche Korrosion Protektorschutz und Kathodenschutz.

Beim Protektorschutz wird neben der Rohrleitung ein aktiveres Metall (Protektor) angeordnet, das man mit der Rohrleitung durch einen isolierten Draht verbindet. Die Wirkungsweise des Protektorschutzes ist der Wirkung eines gal vanischen Elements hnlich. Die Protektoren werden aus den Stoffen hergestellt, an die die folgenden Anforderungen gestellt werden:

Potentialdifferenz des Protektormaterials und des Eisens soll mglichst gro sein;

der bei der elektrochemischen Lsung der Protektormasseneinheit produzierte Strom (Stromlieferung) soll maximal sein;

das Verhltnis der Protektormasse, die zur Produktion des Schutzstromes bentigt wurde, zum Gesamtverlust der Protektormasse (Ausnutzungsgrad) soll maximal gro sein.

Die genannten Anforderungen erfllen im hchsten Grad Magnesium, Zink und Aluminium, deren Legierungen fr die Herstellung von Protektoren verwendet werden. Eine Technologie, die das Metall in seiner Struktur vor Korrosio nen schtzt, ist der kathodische Korrosionsschutz, eine Technik, die blicherweise bei unterirdischen Pipelines zum Ein satz kommt und dank elektrochemischer Vorgnge die Metall-Korrosion verhindert. Korrosion ist immer auf Potentialun terschiede zwischen einem metallischen Werkstoff (z.B. Rohrleitungen) und seiner Umgebung zurckzufhren. Sie ist ein elektrochemischer Vorgang, bei dem es an der Metalloberflche zu einem Materialabtrag kommt.

Abb. Prinzipielles Schema des Kathodenschutze: 1 elektrische Fernleitung;

2 Transformatorhuschen;

3 Kathodenschutzstation;

4 Schutzobjekt (Rohrleitung);

5 Anodenerdung;

6 Kabel Mit Hilfe einer Gleichstromquelle, Kathodenstation (Abb.) wird die Potentialdifferenz zwischen der Rohrlei tung und dem hier angeordneten Metallstck so erzeugt, dass an die Rohrleitung eine negative Ladung gelangt, und an das zu lsende Metall positive Ladung. Die Gleichstromquelle ist die Kathodenschutzstation 3, wo der Wechselstrom, der von der elektrischen Trassenfernleitung 1 durch den Transformator 2 kommt, mit Hilfe der Gleichrichter in den Gleichstrom umgewandelt wird. Unter der Wirkung des angelegten elektrischen Feldes der Quelle setzt die Bewegung von halbfreien Valenzelektronen in der Richtung Anodenerdung Stromquelle Schutzobjekt ein. Es gilt, dass fr 20. GEOLOGY, MINING AND PETROLEUM ENGINEERING (ENGLISH, GERMAN) Korrosionsschutz der unterirdischen Rohrleitungen ihr Potential nicht grer als Minus 0,85 sein soll. Kathodischer Kor rosionsschutz bewirkt eine Potentialabsenkung und reduziert so die Korrosionsgeschwindigkeit auf einen technisch zu vernachlssigenden Wert.

Elektrischer Stromabfhrungsschutz der Rohrleitungen. Die Methode des Rohrleitungsschutzes gegen Zer strung durch Streustrme sieht ihre Abfhrung von dem Schutzobjekt auf die Anordnung Streustromquelle oder spe zielle Erdung vor. Diese Methode heit elektrischer Stromabfhrungsschutz. Man unterscheidet gerade, polarisierte und intensive Stromabfhrung. Die gerade elektrische Stromabfhrung ist eine Einrichtung mit zweiseitiger Leitfhigkeit. Die gerade elektrische Stromabfhrung wird in den Fllen verwendet, wenn das Rohrleitungspotential stndig hher als das Potential des Schienennetzes ist, wohin die Streustrme abgefhrt werden. Die polarisierte elektrische Stromabfhrung ist eine Einrichtung mit einseitiger Leitfhigkeit. Sie unterscheidet sich von der geraden Stromabfhrung durch das Vor handensein eines Ventilelements. Bei der polarisierten Stromabfhrung fliet der Strom blo von der Rohrleitung zur Schiene, was die Zustrmung von Streustrmen durch einen Drnagedraht ausschliet. Die intensive Stromabfhrung wird in jenen Fllen ausgenutzt, wenn man Streustrme nicht nur von der Rohrleitung abfhren muss, sondern auch darin die notwendige Gre des Schutzpotentials zu sichern. Die intensive Stromabfhrung stellt eine gewhnliche Kathoden station dar, die mit dem Minuspol an das Schutzobjekt angeschlossen ist und mit dem Pluspol nicht an die Anodener dung sondern an die Schienen der elektrischen Strombahnen.

Nach der Inbetriebnahme der Rohrleitung werden die Parameter des Korrosionsschutzsystems eingestellt. Not wendigerweise knnen mit Rcksicht auf reale Situation die zustzlichen Stationen des Kathoden- und Stromabfhrungs schutzes in Betrieb genommen werden.

Literatur Aliev R.A., Beloussov W.D., AG Nemudrov A.G. Pipeline Transport von Rohl und Erdgas. M.: Nedra, 1988. 1.


Ischmuchametov I.T., Issayev S.L., Lurie M.V., Makarov S.P. Pipeline Transport von Erdlprodukten. Moskau: l 2.

und Gas, 1999. 300 S.

Swarowskaya N.A. Aufbereitung, Transport und Speicherung von lproduktion. - Verlag TPU, 2004. 298 S.



associate professor L.M. Bolsunovskaya National Research Tomsk Polytechnic University, Tomsk, Russia Water flooding is a common method of reservoir pressure maintenance. Thus the efficiency of water flooding system is a very important problem in oil industry, because injected water should sufficiently maintain reservoir pressure and provide good sweep efficiency of oil toward to production wells.

Pages:     | 1 |   ...   | 37 | 38 || 40 | 41 |   ...   | 43 |
 >>  ()


<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .