авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 5 | 6 ||

«Янко Слава (Библиотека Fort/Da) || 1 Сканирование и форматирование: Янко Слава (Библиотека Fort/Da) || slavaaa || yanko_slava ...»

-- [ Страница 7 ] --

http://www.bioethics.net/news.php http://www.biotech.sunysb.edu/educWork/ibrp/index.html http://ucbiotech.org/ природа теломер Уяснение нами природы теломер — пример того, как знание работы генома (протеома) можно перевести на язык технологий. Повторяющийся участок в конце хромосомы, именуемый теломерой, часто состоит из повторяющейся много раз последовательности ТТАГГГ, которую можно было бы уподобить словам «и т. д., и т. д., и т. д.»... В некотором смысле эти повторяющиеся последовательности можно рассматривать как «бросовую» ДНК, поскольку в них не кодируется сборка белков. При каждой репликации ДНК одна из повторяемых последовательностей физически отделяется от молекулы ДНК, укорачивая ее. После отбрасывания всех повторяющихся последовательностей при следующей репликации ДНК отпавшие основания оказываются уже не «шапочками» повторяющихся концов [хромосомы], а частью чертежа для специфичного белка. Данное явление, напрямую связываемое со старением клетки, именуют пределом Хейфлика*. Азотистых оснований, необходимых для сборки определенного белка, больше нет, поэтому белок не собирается должным образом, а значит, и не может выполнять возложенных на него обязанностей в полном объеме. Если этот белок играет жизненно важную роль в метаболизме организма, подобный сбой означает смерть.

Предположим, что организм использует данный белок для борьбы с определенным вирусом. Прежде белок собирался правильно и вирус одолевал. Но с уходом всех повторяющихся ТТАГГГ последовательностей стало невозможным собирать стойкий к вирусу белок, и вирус безраздельно зав * По имени американского биохимика Леонарда Хейфлика, открывшего в 1962 году явление старения клетки. Он обнаружил, что при культивировании в питательной среде вне организма in vitro нормальные диплоидные (соматические) клетки человека способны делиться лишь ограниченное число раз. Предельное число делений зависело от возраста того, кому принадлежали клетки, взятые в культуру. Так, клетки от новорожденных детей могли пройти 80-90 делений, в то время как клетки от 70-летних стариков делились только 20-30 раз. Максимальное число клеточных делений было названо пределом Хейфлика (на рус. яз.: Хейфлик Л. Как и почему мы стареем? Советы специалиста. М., 1999;

он же. Смертность и бессмертие на клеточном уровне // Биохимия. 1997. Т. 62. № 11).

ладел организмом. Возможно, поэтому флавивирусы* вроде возбудителя лихорадки Западного Нила легче поражают пожилых людей.

Вместе с тем раковые клетки не старятся. Они безгранично воспроизводятся. Так что же происходит с их повторяющимися последовательностями ТТАГГГ, которые должны отпадать? Оказывается, существует фермент, именуемый теломеразой, который при активации восстанавливает на конце хромосомы недостающие последовательности ТТАГГГ, позволяя тем самым клетке размножаться вне отведенных ей пределов.

Защите против некоторых видов рака, возможно, помог бы поиск активированной теломеразы. Кроме того, Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru ввод теломеразы при нераковых заболеваниях, возможно, продлил бы жизнь. Или же деактивация теломеразы после прохождения курса лечения раковым больным предотвратила бы опасность рецидива.

Продолжающиеся исследования в данной области во многом влияют на фармакологию.

Наблюдающийся в биотехнологии бум стал возможен после картирования генома модельных организмов и человека. Однако из-за носившего урывочный характер картирования генома человека (когда сведения поступали от различных исследователей) подстраивание фармацевтической продукции или генной терапии под каждого человека пока еще невозможно.

Такое положение должно вот-вот измениться.

15 августа 2002 года Дж. Крейг Вентер объявил о своем намерении создать новый центр по секвенированию ДНК под эгидой Института исследований генома (TIGR), Центра содействия геномике и Института альтернативной биологической энергетики.

* Флавивирусы — семейство вирусов, насчитывающее около 70 представителей и получившее свое название от лат. flavus (желтый), по имени типичного представителя данного семейства — вируса желтой лихорадки.

В задачу этих учреждений входит расшифровка полного генома конкретного человека, производимая за несколько часов или минут, а не в течение месяцев или лет, которая бы стоила 2—3 тыс. долларов, а не сотни миллионов, как это было в случае с международным консорциумом Human Genome Project. Хотя Вентер и оговаривается, что «существующие технические средства не способны решить подобной задачи», он рассчитывает справиться с ней за десять лет. С появлением этих новых технических средств Вентер планирует одновременное секвенирование ДНК всех микробов, содержащихся в пробе морской воды, в качестве способа слежения за состоянием экологии.

Пусть подобные планы и выглядят чересчур оптимистичными, достижения Вентера позволяют надеяться, что его прогнозы оправдаются.

10. Парниковые газы Парник обеспечивает растения теплом, благодаря тому что стекло пропускает солнечный свет видимой, высокочастотной части спектра, задерживая при этом исходящее от растений низкочастотное, инфракрасное излучение. Тем самым стекло служит ловушкой для нагретого воздуха. Как уже говорилось в гл. 5, поверхность Венеры, Земли и Марса нагревается благодаря атмосфере, действующей в данном случае подобно стеклу парника.

На рис. I.5 показано взаимодействие излучения с земной поверхностью. Видимый свет от Солнца (1) большей частью проходит сквозь земную атмосферу, и лишь незначительное его количество отражается облаками.

Солнечная энергия отчасти поглощается земной поверхностью (2) и отражается от нее (3). Затем молекулы земной поверхности излучают энергию в низкочастотном инфракрасном диапазоне (4). Газы Рис. I.5. Взаимодействие излучения с Землей в атмосфере Земли отражают значительную часть инфракрасного излучения обратно на поверхность (5), тогда как в космос возвращается лишь малая толика (6). В итоге земная поверхность нагревается подобно воздуху внутри парника.

Земная атмосфера состоит преимущественно из азота и кислорода, которые не отражают инфракрасного излучения обратно на поверхность планеты. Это делают другие атмосферные газы, называемые поэтому парниковыми. Образуемые в атмосфере естественным путем, парниковые газы включают водяные пары, двуокись углерода, метан, закись азота и озон. Промышленность существенно пополняет их число, создавая к Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru тому же не встречающиеся в природе парниковые газы.

На долю двуокиси углерода среди парниковых газов приходится 76%. Природными источниками углекислого газа служат извержения вулканов, гниющие растения и разлагающиеся трупы животных, морские испарения и дыхание животных. Из атмосферы двуокись углерода удаляется через морскую воду и благодаря фотосинтезу как океанического планктона, так и биомассы на суше, включая леса и луга (именуемые поглотителями — sink).

Человеческая деятельность (именуемая антропогенной), сопряженная с выделением углекис лого газа в атмосферу, включает сжигание твердых отходов, ископаемого топлива, древесины и деревянных изделий.

Метан, составляющий 13% парниковых газов, называют также болотным газом. Метан выделяется при гниении растений, особенно на рисовых полях, бактериями, разлагающими органическое вещество в увлажненной почве и в кишечнике многих животных (вспомним коровью отрыжку). Метан порождается человеческой деятельностью при ведении горных работ и транспортировке ископаемого топлива, разложении твердых отходов на свалках и разведении домашнего скота.

Закись азота составляет 6% парниковых газов и выделяется естественным путем океаном и в результате почвенной деятельности бактерий. Человек привносит закись азота посредством азотных удобрений, установок по очистке сточных вод и выхлопов легковых и грузовых автомобилей.

Примерно 5% парниковых газов поставляются источниками человеческой деятельности. Сюда относятся водородно-фтористый углерод (HFC), перфторированный углерод (PFC) и шестифтористая сера (SF6)*, используемые в различных промышленных производствах.

Недавние прогнозы по поводу повсеместного потепления пробудили интерес к парниковым газам. Как и в случае с любой общечеловеческой проблемой, здесь имеют место научная, техническая, экономическая и этическая составляющие. Поскольку рассмотрение большей их части выходит за рамки нашей книги, сосредоточим внимание лишь на некоторых научных аспектах, связанных с обсуждением темы погоды в гл. 5.

Сначала рассмотрим рис. I.6, где приводятся показания температуры за прошлые годы.

На графике видно, что средняя температура у поверхности Земли за последние 100 лет поднялась примерно на 1°F * Служит газообразным изолятором для высоковольтных установок, поэтому еще называется элегазом.

Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Изменения температуры у поверхности Земли Рис. I.6. Средняя температура у поверхности Земли [5/9°С]. Отступление ледников, таяние ледникового покрова на Северном и Южном полюсах, увеличение испарения и количества осадков и подъем уровня океана служат дополнительными свидетельствами повсеместного потепления в прошлом. Очевидно, Земля становится более теплой.

Но вызван ли такой рост температуры недавним увеличением количества парниковых газов? Взглянем на рис.

I.7.

Финансируемая ООН и состоящая из 2500 ученых Межправительственная комиссия по вопросу изменения клима Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Содержание в атмосфере трех широко распространенных парниковых газов Рис. I.7. Содержание в атмосфере парниковых газов та (IPCC) пришла к заключению, что виной всему парниковые газы (см. узел Всемирной Паутины www.ipcc.ch/). Исходя из значительно большего числа природных источников парниковых газов по сравнению с антропогенными источниками, можно подумать, что рост объемов самих газов обусловлен чем-то иным, помимо деятельности человека. Однако климатологи утверждают, что естественные источники и поглотители примерно уравновешивают друг друга, так что отмеченный рост, вероятно, вызван антропогенными источниками.

Помимо поставки углекислого газа сжиганием ископаемого топлива и древесины большое влияние на состав атмосферы оказывает другой вид человеческой деятельности — вырубка лесов. Заготовка леса и расчистка земли под пашню и пастбища в тропической зоне приводят ежечасно к потере 3500 акров [ акр = 4046,86 м2] лесных угодий. Углекислый газ поступает в атмосферу при сжигании деревьев, тогда как обезлесение сокращает число имеющихся на Земле поглотителей этого углекислого газа.

Необходимо также изучить долговременный кругооборот атмосферных газов для ответа на вопрос, не носят ли нынешние колебания более длительного характера. На основе изучения осадочных пород выявляются большие циклические изменения в содержании углекислого газа в далеком прошлом, однако данных этих мало и пока неясны причины подобных изменений.

Если тенденция к потеплению продолжится, это приведет ко многим нежелательным последствиям.

Помимо очевидного роста уровня океана, что сделает непригодными для обитания некоторые прибрежные районы, а также вызовет увеличение солености пресноводных озер и рек, климат станет более суровым, приведя к человеческим и материальным потерям. Все это отразится на здоровье людей:

тропические насекомые и болезни переместятся в умеренную зону;

существенно возрастет риск заболевания диабетом, малярией, тепловых ударов, тепловой прострации и одышки.

Как уже говорилось в гл. 5, машинные модели климата содержат много неясного, что связано с трудностями моделирования;

изменением солнечной активности;

переменчивым характером облачности;

сложностью математического аппарата, обусловленной характеризующими климат Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru взаимосвязанными нелинейными переменными, обратной связью;

слишком большим размером ячеек [покрывающих синоптический район сетки] и крайне малым количеством данных. Как и в случае с погодой, заключение межправительственной комиссии IPCC основывалось на сборном прогнозе.

Предсказывалось неблагоприятное воздействие на здоровье человека, природные экосистемы и земледельческое и приморское население, но с оговоркой ввиду большого числа неучтенных факторов.

Противоположная, достаточно аргументированная точка зрения состоит в том, что нынешнее повсеместное потепление выступает лишь частью некоего более длительного цикла, нам пока не ясного, и любая человеческая деятельность крайне мало отражается на нем.

Долгосрочные действия по уменьшению выброса парниковых газов пока только изучаются, однако неясности научного свойства рисуют перед теми, кто принимает решения, смутную картину — по крайней мере сегодня.

См. узел Американского геофизического общества http://www.agu.org/eos_elec/ | www.agu.org/eos_elec/991483.html Для получения самых свежих новостей проводите поиск в Интернете по ключевым словам «парниковые газы» (greenhouse gases) или «глобальное потепление».

В дальнейшем, если развитые страны уменьшат потребление ископаемого топлива и обратятся к возобновляемым источникам энергии типа водяных, ветряных и солнечных, остроту проблемы потепления удастся снять. В Европе используют ядерную энергию, но ее производство и потребление сопряжено с вопросами безопасности и утилизации отходов. Далее, странам третьего мира необходимо снизить уровень рождаемости. Прежде чем проводить в жизнь тот или иной план, следует учесть все этические, экономические и политические факторы.

11. Земля: история недр В ходе формирования Земли тяготение сортировало первичный материал в соответствии с его плотностью:

более плотные составляющие опускались к центру, а менее плотные плавали сверху, образовав в итоге кору. На рис. I.8 представлена Земля в разрезе.

Кора — внешняя оболочка.

Кора — внешняя оболочка. Она обладает наименьшей плотностью и расколота на многочисленные тонкие и жесткие каменные плиты, медленно движущиеся ввиду перемещения нижележащей мантии.

Мантия — следующая оболочка.

Мантия — следующая оболочка. Она самая толстая из всех оболочек, относительно теплая и жидкая по сравнению с корой, имеет горячие точки, порождающие конвекционные потоки (представьте завихрения в закипающей воде, только значительно медленнее движущиеся). Потоки в мантии перемещают плиты, вызывая землетрясения, вулкани Рис. I.8. Строение Земли ческие извержения, расширение морского дна и дрейф континентов.

Далее идет горячее жидкое внешнее ядро, состоящее из плотного железа и никеля и плещущееся ввиду вращения Земли. Земной магнетизм, возможно, вызван местным движением внутри этой оболочки.

Самая нижняя оболочка именуется внутренним ядром. Она хотя и состоит из расплавленного железа и никеля, Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru из-за огромного давления оказывается твердой и самой плотной оболочкой.

За подробностями процесса создания этой модели и подтверждающими ее опытными данными обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. N.Y.: John Wiley & Sons, Inc., 1997).

Следующие узлы Всемирной Паутины содержат свежую информацию и прекрасные иллюстративные материалы:

http://www.hartrao.ac.za/geodesy/tectonics.html http://pubs.usgs.gov/gip/dynamic/dynamic.html http://www.seismo.unr.edu/ftp/pub/louie/class/100/plate-tectonics.html http://scign.jpl.nasa.gov/learn/plate.htm 12. Теория хаоса О тягость легкости, смысл пустоты!

Бесформенный хаос прекрасных форм!

У. Шекспир. Ромео и Джульетта Как уже говорилось в гл. 5, хаос не следует путать с произволом. Хаос означает скорее чрезвычайную восприимчивость конечного результата к малым изменениям в начальных условиях. Как поется в старой колыбельной:

Не было гвоздя — Подкова пропала.

Не было подковы — Лошадь захромала.

Лошадь захромала — Командир убит.

Конница разбита, Армия бежит.

Враг вступает В город, Пленных не щадя, Оттого что в кузнице Не было гвоздя!

[Гвоздь и подкова.

Пер. с англ. С. Маршака] До 1960-х годов существовал некий сугубо математический метод, как оказалось, связанный с теорией хаоса.

Гастон Морис Жулиа Гастон Морис Жулиа, математик из Алжира, после ранения в сражениях Первой мировой войны вынужден был носить на лице кожаную повязку, защищавшую сильно искалеченный нос. Из-за многочисленных операций ему приходилось долго скитаться по госпиталям, где, чтобы как-то скоротать время, он занимался математическими выкладками. В 25 лет он пишет «Записку о приближении рациональных функций». Работу он делал в связи с темой, объявленной в 1915 году Французской академией наук на соискание главной премии года, которой и удостоился;

хотя французский математик и астроном Пьер Жозеф Луи Фату (1878—1929) опубликовал в декабре 1917 года работу на ту же тему, однако Жулиа отослал свою статью в Академию наук раньше. Функция представляет собой математическое правило вычисления наподобие следующего: f(x) — х2 + const. Если x = 2, а const = 3, то значение функции составит 7. Приближение (итерация) осуществляется использованием вычисленного для f значения в качестве следующего значения для х. Итак, если x = 7, то f (х) = 52, и т. д. Жулиа исследовал более сложные выражения. Особо его занимали функции и значения, при которых возможно многократное приближение без бесконечного роста итоговой величины [самой функции]. Значения х, для которых повторяющиеся итерации давали конечный результат, стали именоваться пленниками [обычно говорят о множестве точек притяжения, или аттракторах]. При стремлении к бесконечности итоговых величин их называют «беглецами» [обычно говорят о множестве точек отталкивания, или репеллерах]. Вычисления велись вручную и были крайне трудоемкими даже для простых функций. Хотя Жулиа и обрел некую славу в математических кругах, его труд был основательно забыт, и вспомнили о нем уже в 1970-е годы.

Бенуа Мандельброт Бенуа Мандельброта, родившегося в Польше в 1924 году, со статьей Жулиа познакомил в 1945 году родной дядя, профессор математики. В то время идеи Жулиа его не заинтересовали. Но спустя 30 лет после головокружительной научной карьеры Мандельброт очутился в компании IBM и обратил мощь ЭВМ на итеративные вычисления Жулиа. Мандельброт первым разработал метод графического построения, когда ЭВМ выводит на экран образ схождения и расхождения приближаемой функции.

Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Рис. I.9. Множество Мандельброта Прекрасные образы, порождаемые методами итерации Мандельброта и Жулиа, способствовали одно время появлению бесчисленных книг и узлов Всемирной Паутины. Вот некоторые из них:

Gleick J. Making a New Science. N.Y.: Viking Penguin, 1987.

Exploring Chaos — A Guide to the New Science of Disorder / Nina Hall (Ed.). N.Y.: W. W. Norton & Company, 1991.

http://hypertextbook.com/chaos/ http://www.wfu.edu/ | http://www.wfu.edu//~petrejh4/chaosind.htm (?) В 2002 году Стивен Вулфрем издал книгу по смежной тематике A New Kind of Science (см.

http://www.wolfram.com). Его труд основан на собственных исследованиях в области клеточных автоматов, представляющих собой ряд одинаково запрограммированных автоматов, иначе «клеток», взаимодействующих друг с другом по определенным правилам. С помощью очень простых правил можно создать очень сложные образы. Некоторые из этих образов очень похожи на природные объекты, однако установление связи между математикой хаоса и пригодным описанием реального мира все еще ждет своего часа.

13. Предсказание землетрясении Предсказаний землетрясений сегодня много. Поисковые машины в Интернете на запрос «Предсказание землетрясений» выдадут вам более 50 тыс. узлов Всемирной Паутины. Некоторые предсказания делаются на основе «данных» экстрасенсов (см.: Wynn Charles M., Wiggins Arthur W., Harris Sidney. Quantum Leaps in the Wrong Direction: Where Real Science Ends... and Pseudoscience Begins. Washington, 2001). Другие усилия связаны с соотнесением землетрясений с земным электричеством, поведением животных, расположением планет или иными явлениями. Несмотря на ошибочность большинства прогнозов, хотя бы один непременно оказывается верным.

Предположим, приятель предлагает вам пари: «Ставлю 20 долларов на то, что в следующем месяце произойдет крупное землетрясение в помеченной точками вот здесь на карте области».

Не принимайте вызова. Ваш приятель наверняка выиграет. Помеченная точками область на карте (рис. I.10) соответствует границам плит, составляющих земную кору. Когда Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Рис. I.10. Зоны землетрясений конвенционные потоки в мантии (см.: Список идей, 11. Земля: история недр) увлекают за собой плиты, происходят землетрясения. Хотя некоторые землетрясения случаются и в иных местах, помимо оконечностей плит, именно на оконечности и приходится подавляющая часть таких событий. Статистические данные о землетрясениях различной силы за год таковы:

Сила землетрясения по шкале Количество Рихтера (чем больше величина, землетрясений тем разрушительнее в год землетрясение) 4-4,9 5-5,9 6-6,9 7-7,9 Заметим, что условия пари были довольно туманны. Что такое крупное землетрясение? Если речь идет о значениях по шкале Рихтера выше 6 баллов, то таких событий происходит более десятка в месяц и преимущественно в помеченной точками области. Выражения «за месяц» и в «помеченной области» довольно расплывчаты. Если вы живете в пределах данной области, подобно миллионам других людей, нужно ли вам уезжать отсюда? Данное предсказание сообщает слишком мало сведений, чтобы представлять хоть какую-то ценность. В 1970-е годы некоторые геологи были настроены оптимистично в отношении точного и надежного предсказания землетрясений. Появилась даже разновидность теории хаоса, названная теорией катастроф, которая представлялась пригодной для предсказания таких неожиданных событий, как потеря устойчивости у балок, растрескивание асбестоцементных плит, а также землетрясения.

Однако выяснилось, что построение математических моделей поведения внутренних оболочек Земли столь же трудно, как и построение моделей поведения земной атмосферы. Нелегко составить уравнение, точно описываю щее поведение модели, и даже приближенные уравнения оказываются на редкость нелинейными, выказывая крайнюю чувствительность к начальным условиям, свойственным хаотическим системам. К тому же получение сведений о текущем состоянии пород внутри коры и мантии сложнее, чем измерение параметров атмосферы, ввиду недоступности недр коры и мантии.

В статье 1997 года (журнал Science: [Geller R. J., Jackson D. D., Kagan Y. Y, Mulargia F. Earthquakes cannot be predicted // Science, 1997. Vol. 275]) известные геологи Роберт Геллер из Токийского, Дэвид Джексон и Ян Каган из Калифорнийского университетов и Франческо Муларджа из Университета Болоньи (Италия) утверждают, что «конкретные землетрясения, похоже, изначально непредсказуемы».

За подробностями обращайтесь на сайт Всемирной Паутины:

http://scec.ess.ucla.edu/~ykagan/perspective.html Вот еще неплохие источники:

http://quake.usgs.gov/research/parkfield/index.html Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru http://www.nature.com/nature/debates/earthquake/equake_frameset.html 14. Составление звездных каталогов Следующий неполный перечень звездных каталогов отражает стремление людей к упорядочению окружающего мира и поиску определенных закономерностей. Намечаются еще более грандиозные замыслы по созданию космических обсерваторий, в том числе на Луне и Марсе.

Звезды именуются согласно каталогу, где они встречаются. Многие яркие звезды обозначают согласно приводимым в каталоге Байера названиям.

Наиболее ярким звездам каждого созвездия Байер присваивал буквы греческого алфавита в порядке убывания их светимости. Например, Полярная звезда именуется Ursae Minons ( Малой Медведицы), поскольку она самая яркая в созвездии. Другим примером может служить первая видимая звезда—спутник черной дыры, названная HDE 226868 потому, что впервые появилась в расширенном каталоге Генри Дрейпера, и, таким образом, ее местонахождение там соответствует числу 226868.

Год Название Составитель Количество Примечания каталога небесных и обозначение тел звезд 350 до н. Ши Шэнь 800 Китай э.

300 до н. Тимохарис Первый настоящий э. звездный каталог 130 до н. Гиппарх э.

120 н.э. Альмагест Клавдий 1022 См. примечание Птолемей 1540 н. э. De le Stelle Fisse Алесандро 48 греческих Пикколомини созвездий 1602 н. э. Тихо Браге Ок. 1000 См. примечание 1603 Uranometria Иоганн Байер Красочный;

(перечисляются в координаты взяты виде: греческая из данных Браге буква плюс латинское наименование созвездия) 1678 Эдмунд Галлей Первый каталог небесной сферы Южного полушария 1690 Sternverzeichnis Иоганн Гевелий Оспаривает выводы Галлея 1725 Historia Coelestis Джон Флемстид 3000 Первый Britannica королевский астроном;

см.

примечание 1762 Джеймс Брадлей 60 000 Третий королевский астроном 1771 Туманности, Шарль Мессье Более 100 См. гл. получившие в наименовании букву M 1801 Иоганн Боде Воспользовался прежними сведениями 1863 Bonner- Фридрих В. А. 1 160 000 Боннская Durchmusterung (BD + Аргеландер и др. обсерватория CD + CPD)* Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru 1864 General Catalog of Фридрих 2500 См. примечание Nebulae (GC) Вильгельм Гершель, Каролина Гершель, Джон У. Гершель 1888 New General Дж. Л. Э. Дрейер 13 000 См. примечание Catalog of Nebulae and Star Clusters (NGC и 1С)* 1918-1924 Henry Draper Catalog Эдуард Ч. 400 000 См. примечание (HD и HDE) Пикеринг, Энни Джамп Кэннон 1966 Смитсоновская 260 000 Маунт-Паломар и астрономическая др.

обсерватория 1989 Hipparcos (HIP) и 2 500 000 Точность Tycho (TYC) 1979- Guide Star 1 млрд Для наведения продол- [телескопа] жается Хаббла Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Примечания 1. Птолемеев Альмагест составляет основу нынешних астрологических данных, хотя земная ось с тех пор сместилась таким образом, что созвездия зодиака более не соответствуют принятым для них месяцам. К тому же после Птолемея * BD — Боннское обозрение, каталог в 4 томах и приложенный к нему большой атлас неба на 324 188 звезд (дополнен Э.

Шёнфельдом в 1886 году до 457 857 еще 133 659 звездами), видимых в Северном полушарии;

CD — через 50 лет после составления Ф. Аргеландером каталога Боннское обозрение в Аргентине (Кордовская обсерватория) вышло продолжение для видимых звезд Южного неба «Кордовское обозрение неба» (Cordoba Durchmusterung — CD), включающее уже 578 802 звезды и составленное в 1892—1914 годах коллективом обсерватории под руководством Джона Томе ( 1843— 1908) ;

было доведено до Южного полюса в 1930 году;

CPD (Cape Photographic Durchmusterung) — Фотографический обзор с мыса Доброй Надежды, каталог 454 875 звезд Южного полушария, составлен в 1896—1900 годах голландским астрономом Якобусом Корнелисом Каптейном (1851 — 1922).

** IС — Index Catalogue, два дополнительных каталога, появившихся в 1895 и 1908 годах.

было открыто огромное число звезд и даже несколько планет, но это, похоже, не занимает астрологию.

2. Тихо Браге, последний величайший наблюдатель звездного неба невооруженным глазом не издавал собственного каталога звезд. Эта задача выпала на долю его помощника, достойного уважения Иоганна Кеплера, внесшего лепту в копилку астрономических знаний, установившего, что планеты движутся не по круговым, а вытянутым (эллиптическим) орбитам.

3. Джон Флемстид (1646—1719) основал Королевскую Гринвичскую обсерваторию, став ее первым директором и первым королевским астрономом. Это был крайне скрупулезный наблюдатель, чей список звезд по численности и точности координат превзошел все прежние каталоги. Современники Эдмунд Галлей и Исаак Ньютон через Королевское общество торопили Флемстида обнародовать свои наблюдения как можно раньше, хоть они и были еще не завершены. Наконец без согласия и даже ведома Флемстида в 1712 году была напечатана часть его наблюдений в 400 экз., которые были использованы И.

Ньютоном при обосновании закона всемирного тяготения. Однако Флемстид настоял на уничтожении этого издания и предпринял новое, названное им «Historia coelestis Britannica». При жизни Флемстида вышел лишь первый том, включавший его наблюдения, произведенные в Денби и Гринвиче над Солнцем, Луной, звездами, планетами, спутниками Юпитера, пятнами на Солнце. Второй том содержит меридианные наблюдения в Гринвиче, третий (1725) — исторический очерк описания инструментов и знаменитый «Британский» каталог 2884 звезд. Уже после смерти Ф. был издан (1729) его «Atlas coelestis».

4. Сэр Уильям Гершель (1738-1822) был урожденным Фридрихом Вильгельмом Гертелем и появился на свет в немецком городе Ганновере. Сын бедного музыканта, Гершель поступил на службу простым полковым гобоистом, но походная жизнь ему не понравилась, и уже в 1757 году он дезертировал с военной службы и прибыл в Англию, куда несколько ранее переселился брат его Иаков, капельмейстер ганноверского полка. Здесь Гершель стал органистом и учителем музыки. В году к нему присоединилась сестра Каролина Лукреция. Вскоре у него пробудился интерес к астрономии, так что бравшие у него уроки музыки ученики постигали не только музыку, но и астрономию. Не имея дома помещения для телескопа, он установил его на улице. Это зрелище привлекало посетителей, одним из которых оказался доктор Уильям Ватсон, член Королевского общества, представивший на его суд некоторые заметки Гершеля о высоте гор на Луне.

В последующие два года Гершель обнаружил яркое небесное тело там, где прежние карты не показывали никаких звезд.

Это медленно движущееся тело оказалось планетой, названной Гершелем Georgium sidus («Звездой Георгия»), в честь короля Георгия III, позже переименованной в Уран. Это открытие определило карьеру Гершеля;

король Георг III, любитель астрономии и покровитель ганноверцев, снабдил его средствами для постройки отдельной обсерватории в Слоу, близ Виндзора, и назначил ему ежегодное содержание в 300 гиней. Здесь Гершель с юношеским жаром и необыкновенным усердием принялся за астрономические наблюдения. По словам биографа, он выходил из обсерватории только для того, чтобы представлять Королевскому обществу результаты своих неусыпных трудов. Он выписал из Ганновера сестру Каролину, которая затем не покидала брата до самой его смерти и была превосходным помощником;

она не только записывала наблюдения, но и производила вычисления. Гершель был избран членом Королевского общества, получил звание придворного астронома наряду с сестрой и помощником.

50-летний Гершель женится на вдове Мери Питт, коренной англичанке. У них рождается сын, Джон Фредерик, учившийся вначале в Кембридже на математи ка, но затем обратившийся к астрономии, чтобы завершить звездный каталог своего отца.

5. Йохан Людвиг (Джон Луис) Эмиль Дрейер (1852-1926) родился в Копенгагене (Дания). В 1872 году он работал помощником [Уильяма Парсонса] лорда Росса в его поместье Бир-Касл близ Парсонстауна, что между Дублином и Лимериком в Ирландии. Лорд Росс построил крупнейший в мире телескоп, 72-дюймовое чудище, прозванное Левиафаном из Парсонстауна. В 1845 году, отмеченном страшным голодом, наблюдения были свернуты, но когда телескоп вновь заработал, Дрейеру удалось выявить много удаленных небесных тел, добавив в Общий каталог (New General Catalog) Гершеля тысячу новых имен. Основной труд Дрейер проделал в обсерватории г. Арма, где по заданию Королевского общества составил Новый общий каталог (New General Catalog — NGC).

6. Генри Дрейпер (1837-1882) был медиком и астрономом-любителем, в 1872 году сделавшим первый снимок спектра у звезды, которой оказалась Вега. После безвременной кончины Дрейпера вдова учредила на его средства фонд поощрения работ по фотографическому изучению спектра звезд в Гарвардской обсерватории, который возглавил Эдвард Пикеринг (см.

гл. 6).

После 1910 года одна из представительниц пикеринговского «гарема», Энни Джамп Кэннон приступила к классификации звезд по их спектру. Она разработала схему распределения звезд по спектральным классам OBAFGKM (для лучшего запоминания студентами читается как Oh, Be Л Fine Girl (Guy), Kiss Me), классифицировав по 50 тыс. звезд в год, так что за лет работы ей удалось охватить своей схемой 400 тыс. звезд. В 1938 году, за два года до ухода на пенсию, она получила должность в Гарварде подобно той, что занимал астроном Уильям Кранч Бонд (1789-1859).

За более подробными сведениями обращайтесь на узел Всемирной Паутины http://www.seds.org/~spider/ | www.seds.org/~spider/Misc/star_cats.html (?) 15. Труды Эйнштейна: помимо теории относительности Альберт Эйнштейн в 1905 году напечатал в германском ежемесячном журнале по физике Annalen der Physik und Chemie пять статей.

В представленной Цюрихскому университету в апреле и защищенной в июле 1905 года докторской Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru диссертации «Новое определение размеров молекул»

«Новое определение размеров молекул»

Эйнштейн показал, как определить число Авогадро (знаменитую величину 6,02 x 1023, равную числу содержащихся в 1 моле вещества молекул) и размеры ионов в растворе на основе измеренных значений осмотического давления и коэффициента диффузии. Дан ный труд принес ему звание доктора философии и спустя уже почти 100 лет остается одним из наиболее часто цитируемых в научной литературе.

«О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты»

В работе «О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно кинетической теорией теплоты» разъяснялось, каким образом зигзагообразное движение молекул, наблюдаемое под микроскопом, вызывалось столкновениями с движущимися молекулами в жидкости. Сами молекулы из-за малой величины не были видны, но итоговое движение более крупного тела наблюдалось микроскопистами, в том числе Робертом Броуном. Такое движение стало называться броуновским. Статья Эйнштейна укрепила связь между кинетической теорией и наблюдаемыми явлениями.

Статья «Об одной эвристической точке зрения, касающейся возникновения и превращения света»

Статью «Об одной эвристической точке зрения, касающейся возникновения и превращения света»

Эйнштейн называл революционной, что на самом деле так и было. Не- удовлетворенный описанием материи как дискретного состояния, противопоставляемого непрерывной природе электромагнитного излучения, Эйнштейн предположил, что свет в некоторых отношениях следует рассматривать подобно частицам. Он показал, что данный подход согласуется с исследованием Планка излучаемого нагретым телом света. Подойдя с той же меркой к фотоэлектрическому эффекту, когда падающий на Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru металлическую поверхность свет приводил к испусканию этой поверхностью электронов, Эйнштейн сумел объяснить некоторые результаты, сбивавшие с толку других ученых. Данная статья способствовала утверждению нового взгляда на свет, где автор с большим вниманием отнесся к выводам Планка, нежели он сам, рассматривавший свое толкование дискретности испускаемой светом энергии скорее как математическую хитрость, а не как точное отображение действительности. Прежде чем написать статью, Эйнштейн почти пять лет размышлял над этим свойством света.


«К электродинамике движущихся сред»

«К электродинамике движущихся сред» — знаменитая статья Эйнштейна о специальной теории относительности. В ней говорится об обобщении классической относительности, согласно которой законы физики правомерны для любого наблюдателя, движущегося с постоянной скоростью. Например, если подбросить мяч внутри движущегося автомобиля, он взлетит и опустится так, словно вы неподвижно стоите на земле. Второй постулат относительности поистине революционен. Он опровергает представление Ньютона: скорость света для всех наблюдателей, движущихся с постоянной скоростью, постоянна, а пространство и время — относительны по отношению к нему, в отличие от придаваемого им Ньютоном абсолютного характера. Как явствует из письма Эйнштейна своему внуку, ученый размышлял над данным вопросом по меньшей мере семь лет, прежде чем появилась на свет эта статья.

«Зависит ли инерция тела от содержащейся в нем энергии»

Последняя статья 1905 года «Зависит ли инерция тела от содержащейся в нем энергии», будучи дополнением преды дущей статьи, стала своего рода математической сноской к специальной теории относительности, поскольку содержала связывающее массу и энергию уравнение. Оно было выражено как m = L/V2, где V — скорость света, а не в привычном для всех ныне виде = тc2.

За более подробными сведениями обращайтесь к книге: Einstein's Miraculous Year: Five Papers That Changed the Face of Physics. Princeton, 1998.

Благодаря огромному вкладу в ряд областей физики невольно складывается впечатление, что Эйнштейн весьма серьезно относился к своим научным занятиям. Но вот что он пишет по поводу своих четырех статей близкому другу Конраду Габихту 18 мая 1905 года:

«Между нами воцарилось такое молчание, что я ощущаю себя чуть ли не святотатцем, нарушая его своим невразумительным лепетом. Итак, что же происходит с тобой, ты, бесчувственный сухарь?.. Почему до сих пор так и не прислал своей диссертации? Разве не знаешь, что я один из полутора горемык, что прочитали бы ее с любопытством и удовольствием, черт бы тебя побрал! Я же обещаю тебе взамен четыре статьи. В первой речь идет об излучении и энергетических свойствах света, и она достаточно революционна, в чем сам убедишься, если вначале пришлешь мне свой опус. Вторая занята определением истинных размеров атомов. Третья доказывает, что тела порядка 1/1000 мм, взвешенные в жидкости, вынуждены совершать наблюдаемое случайное движение, обусловленное тепловым движением. Четвертая же представляет пока лишь набросок и касается электродинамики движущихся тел с привлечением видоизмененной теории пространства и времени».

Каким образом Эйнштейну удалось написать пять статей, столь повлиявших на развитие физики, всего за год?

Возможно, вы скажете, что он был математическим гением, преуспевал в школе, много читал и трудился в научной обстановке, которая давала много времени для теоретической работы. Это не так.

В 1905 году Альберту Эйнштейну исполнилось 26 лет, он целыми днями был занят в Швейцарском патентном бюро Берна, состоял в браке с Милевой Марич (1875—1948), возлюбленной еще со студенческой скамьи, и был отцом годовалого ребенка, Ганса Альберта.

Вот несколько высказываний Альберта Эйнштейна о себе:

«У меня нет никакого особого таланта. Я всего лишь любознателен».

«Я вовсе не так уж и умен, просто я больше просиживаю над вопросами».

«Сами мысли не приходили в некой словесной оболочке. Я вообще редко мыслю словами. Приходит в голову мысль, и я лишь пытаюсь облечь ее в слова».

Однажды Эйнштейн в ответ на просьбу 12-летней девочки [из Бруклина] помочь ей с выполнением домашнего задания послал ей письмо с целой страницей формул, сопровождая их такими словами:

«Пусть тебя не смущают нелады с математикой;

заверяю тебя, у меня их было значительно больше.

Порой я спрашиваю себя, как мне удалось создать теорию относительности. Причина, по моему разумению, в том, что обычный взрослый просто никогда не задумывается над вопросами пространства и времени. Они волновали его, когда он был ребенком. Но мое умственное развитие запоздало, отчего любопытство к пространству и времени у меня пробудилось, когда я уже вырос».

Многие биографы, повествуя о ранних годах учебы Эйнштейна, отмечают его независимость, нежелание следовать авторитетам и многочисленные неудачи. Некоторые заключают, что он страдал необучаемостью, возможно дислексией (неспособностью к чтению). Следующее высказывание, возможно, внесет некоторую ясность: «Чтение после опре Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru деленного возраста слишком уж отвлекает ум от его творческих устремлений. Тот, кто слишком много читает и слишком мало пользуется собственными мозгами, приобретает леность мышления».

Конечно, умственные способности Эйнштейна были значительно выше средних, но, пожалуй, важнее было его умение сосредотачиваться. Некоторые назвали бы это упорством, но дар направлять свои незаурядные способности на что-то одно его изрядно выручал. Однако поглощенность наукой, видимо, не могла сделать из него идеального мужа и отца. Завоевав известность своими научными трудами, Эйнштейн стал получать приглашения занять ту или иную академическую должность, и ему приходилось много разъезжать. Все это не прошло даром, и в 1919 году они с Милевой разводятся. Одним из условий развода значилась выплата Эйнштейном Милеве части его будущей Нобелевской премии. Нобелевскую премию ему присудили в 1921 году (за объяснение механизма фотоэлектрического эффекта), и бывшая жена с детьми получили причитающиеся деньги.

В 1919 году Альберт Эйнштейн женился на вдове своего двоюродного брата Эльзе, продолжал свою научную работу и много ездил, везде играя на своей скрипке. Хотя немногие разбирались в его теории, язык музыки был понятен всем. В 1919 году пришло первое опытное подтверждение его общей теории относительности, добавившее ему славы. С приходом к власти в Германии нацистов миролюбцу и еврею Эйнштейну приходилось все труднее. В итоге он бежит в США. В Принстонском институте высших исследований он безуспешно пытался построить объединенную теорию поля. До конца своей жизни (1955) Эйнштейн оставался непререкаемым авторитетом в физике.

«Мир нуждается в героях, и лучше, чтобы это были безобидные вроде меня люди, а не злодеи наподобие Гитлера».

Альберт Эйнштейн 16. «Большой взрыв»

Теория «большого взрыва» о порождении Вселенной утверждает, что все вещество и энергия берут начало млрд лет назад из одной точки, после чего Вселенная начала расширяться. На первых порах расширение было стремительным, получив название раздувания (инфляции), а затем из-за влияния тяготения оно замедлилось.


Теперь же оно вновь ускоряется под действием темной энергии.

За более подробными сведениями, содержащими опытные данные, обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. NY, 1997).

Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Источники для углубленного изучения Источники общего характера Книги Anton Ted. Bold Science;

Seven Scientists Who Are Changing Our World. N.Y.: W. H. Freeman and Co., 2000.

Kaku Michio. Hyperspace. London: Oxford University Press, 1994.

Kaku Michio. Visions. N.Y.: Anchor Books, 1997.

Kuhn Robert L. Closer to Truth Challenging Current Belief. N.Y.: McGraw-Hill, 2000.

Периодические издания Discover Science Science Week Scientific American (или www.sciam.com) Узел Всемирной Паутины www.mkaku.org Глава 1. Видение науки Книги Mahne John. Unsolved Mysteries of Science: A Mind-Expanding Journey through a Universe of Big Bangs, Particle Waves, and Other Perplexing Concepts. N.Y.: John Wiley & Sons, Inc., 2001.

The Next Fifty Years — Science in the First Half of the Twenty-First Century / Brockman, John (Ed.). N.Y.: Vantage Books, 2002.

Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?

Книги Brennan R. Р. Heisenberg Probably Slept Here: The Lives, Times, and Ideas of the Great Physicists of the 20th Century. N.Y.:

John Wiley & Sons, Inc., 1996.

Gordon K. Super symmetry: Squarks, Photinos, and the Unveiling of the Ultimate Laws of Nature. Cambridge, Mass.: Helix Books, 2000 [на рус. яз.: Гордон К. Современная физика элементарных частиц. М.: Мир, 1990;

Говард Э. X., Гордон Л. К. Обладает ли природа суперсимметрией? // В мире науки. 1986. Авг. С. 26].

Peat F. D. Superstrings and the Search for the Theory of Everything. N.Y.: Contemporary Books, 1989.

Периодические издания Arkani-Hamed N., Dimopolous S., Dvali G. The Universe's Unseen Dimensions // Scientific American. 2000. Aug. A Matter of Time // Scientific American. 2002. Sept. Special Issue.

Overbye D. Remembering David Schramm, the Gentle Giant of Cosmology. New York Times. 1998. № 10. Febr.

Weinberg S. A Unified Physics by 2050? // Scientific American. 1999. Dec.

Узлы Всемирной Паутины CERN (Conseil Europeen pour la Recherche Nucleaire) — узел Европейской организации по ядерным исследованиям:

http://public.web.cern.ch/Public/Welcome.html | http://welcome.cern.ch/welcome/gateway.html (?) Проект обучения современной физике (Contemporary Physics Education Project):

www.cpepweb.org/ Узел Национальной лаборатории высокоэнергетических исследований имени Энрико Ферми (Fermilab, Fermi National Accelerator Laboratory — FNAL) в Батавии, штат Иллинойс:

www.fnal.gov/ Хиггсовы поля:

www.hep.yorku.ca/what_is_higgs.html Хиггс:

http://magazine.uchicago.edu/0104/features/higgs.html Физика высоких энергий в лаб. Ферми (Fermilab):

www.hep.net Охота за высшими измерениями (Hunting for Higher Dimensions // Science News Online. 2000. № 19. Febr.):

www.sdencenews.org Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Путеводитель для любителя по М-теории («A Layman's Guide to M-Theory»), автор М. J. Duff:

http://arxiv.org/abs/hep-th/9805l Узел «Приключения частиц» (Particle Adventure):

http://particleadventure.org/particleadventure/index.html Совет по исследованию в области физики частиц и астрономии (Particle Physics and Astronomy Research Council):

www.pparc.ac.uk/ Квантовая теория поля:

http://theory.caltech.edu/people/jhs/strings/strll4.html Узел Стэнфордского центра линейного ускорителя (Stanford Linear Accelerator Center):

www.slac.stanford.edu/ Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Книги Adams F. Origins of Existence: How Life Emerged in the Universe. N.Y.: The Free Press, 2002.

Duve Ch. de. Life Evolving: Molecules, Mind, and Meaning. Oxford: Oxford University Press, 2002.

Ridley M. Genome. N.Y.: HarperCollins, 2000.

Shapiro R. Planetary Dreams: The Quest to Discover Life Beyond Earth. N.Y.: John Wiley & Sons, Inc., 2001.

Периодические издания Ridley M. The Year of the Genome// Discover. 2001. Vol. 1. № 1. Jan.

Wade N. Inside the Cell, Experts See Life's Origin // New York Times. 1999. № 16. Apr.

Узлы Всемирной Паутины Archaea:

www.ucmp.berkeley.edu/archaea/archaea.html Начало жизни на Земле:

www.sigmaxi.org/amsci/articles/95articles/cdeduve.html Life in the right universe:

www.discover.com/nov_00/featlife.html Происхождение жизни:

http://origins.jpl.nasa.gov/ www.resa.net/nasa/origins life.htm http://taggart.glg.msu.edu/isb200/oolife.htm Происхождение жизни на Земле, автор Leslie Orgel:

www.geocities.com/CapeCanaveral/Lab/2948/orgel.html Премия «Происхождение жизни» (Origin of Life prize):

www.us.net/life/ Происхождение и становление жизни:

www.chemistry.ucsc.edu/Projects/origin/home.html Взгляды Викрамасинхга (Wickramasinghe) и Хойла (Hoyle) на происхождение жизни:

www.actionbiosdence.org/new frontiers/ wickramasinghe/wickhoyle.html Глава 4. Биология. Каково строение и предназначение протеома?

Книги Raven P. H., Johnson G. В. Biology, 6th Edition. N.Y.: McGraw-Hill, 2002 (на рус. яз.:

Рейвн П., Эверт Р., Айкхорн С. Современная ботаника: В 2 т. / Пер. с англ. В. Гладковой и др. М.: Мир, 1990).

Узлы Всемирной Паутины Прикладная молекулярная генетика:

Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru http://www.biochem.arizona.edu/classes/ | www.biochem.arizona.edu/classes/biос47l/pages/Lecture3.html (?) Биочипы:

http://157.98.13.103/docs/1995/103-3/innovations.html (?) http://www.arrayit.com/ | http://arrayit.com/Company/Media/PrintMedia/printmedia.html (?) www.goertzel.org/benzine/FodorProfde.htm | www.goertzel.org/benzine/FodorProfde.htm (?) Электрофорез в геле:

www.iacr.bbsrc.ac.uk/notebook/courses/guide/dnast.htm (?) Генетический код:

http://www.newton.dep.anl.gov/askasci/ | http://newton.dep.anl.gov/askasci/mole00.htm (?) «Бросовая» ДНК, или как?:

www.iacr.bbsrc.ac.uk/notebook/courses/guide/dnast.htm (?) Заметки о молекулярной биологии:

www.iacr.bbsrc.ac.uk/notebook/courses/guide/dnast.htm (?) Молекулярная генетика:

http://www.newton.dep.anl.gov/askasci/ | http://newton.dep.anl.gov/askasci/mole00.htm (?) Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?

Периодические издания Scientific American Presents Weather // Scientific American. 2000. Vol. 11.№ 1.

Узлы Всемирной Паутины Лед на Луне:

http://nssdc.gsfc.nasa.gov/planetary/ice/ice_moon.html Возникновение воды на Земле:

http://scienceweek.com/ | http://scienceweek.com/swfr065.htm (?) Моделирование предсказания погоды на персональном компьютере :

http://www.climateprediction.net/index.php | www.climateprediction.com (?) Запуск зонда Venera на Венеру:

http://nssdc.gsfc.nasa.gov/planetary/planets/venuspage.html http://nssdc.gsfc.nasa.gov/planetary/venera.html Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?

Книги Bergstrom L., Goobar A. Cosmology and Particle Astrophysics. N.Y.: John Wiley & Sons, Inc., 1999.

Boss A. Looking for Earths: The Race to Find New Solar Systems. N.Y.: John Wiley & Sons, Inc., 2000.

Fox К. С. The Big Bang Theory: What It Is, Where It Carne From, and Why It Works. New York: John Wiley & Sons, Inc., 2002.

Livio M. The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos. N.Y.: John Wiley &Sons, Inc., 2000.

Периодические издания Cline D. B. The Search for Dark Matter // Scientific American. 2003. Vol. 288. № 3. March. Overbye D. A Scientist's Prey: Dark Energy in the Cosmic Abyss // New York Times. 2003. № 18. Febr.

Wright K. Very Dark Energy // Discover. 2001. Vol. 22. № 3. March.

Узлы Всемирной Паутины Ускорение Вселенной:

http://www.discover.com/ | www.discover.com/science_news/astronomy/quick.html Астрономические сайты:

www.winternet.com/~gmcdavid/html_dir/astronomy.html Биография Фридриха Бесселя (Bessel):

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Bessel.html | Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru www.groups.dcs.stand.ac.uk/~history/Mathematicians/Bessel.html (?) Дополнительные сведения о «большом взрыве»:

http://hoku.as.utexas.edu/~gebhardt/ | http://hoku.as.utexas.edu/~gebhardt/a309s02/Iect5dm.html (?) Теория «большого взрыва»:

www.damtp.cam.ac.uk/user/gr/public/bb_home.html Космологическая постоянная и темная материя:

http://www.lsa.umich.edu/physics/ | http://umwntl.physics.lsa.umich.edu/PIC99_Talks/turner/turner.htm (?) Темная энергия в ускоряющейся Вселенной:

http://snap.lbl.gov/brochure/index.html Dark energy resource book:

http://supernova.lbl.gov/~evlinder/sci.html Темная материя и темная энергия:

http://hitoshi.berkeley.edu/ | http://hitoshi.berkeley.edu/290E/ (?) High Z Supernova Project:

http://www.sc.doe.gov/ | www.sc.doe.gov/feature_articles_2001/April/lucky_supernova/ucky_supernova.htm (?) Проект «Микроволновая анизотропия»:

http://map.gsfc.nasa.gov/m_uni/uni_101fate.html М-теория:

www.damtp.cam.ac.uk/user/gr/public/qg_ss.html Космический телескоп нового поколения (Next Generation Space Telescope):

http://ngst.gsfc.nasa.gov/ | http://ngst.gsfc/nasa.gov/ (?) Представление зонда по измерению ускорения сверхновой звезды:

http://atlas.physics.lsa.umich.edu/docushare/dscgi/ds.py/GetRepr/File-985/html Сайты по теоретической космологии:

http://cfa-www.harvard.edu/ | http://cfa-www.harvard.edu/~jcohn/tcosmo.html (?) Список проблем Книги Kaku М. Hyperspace. N.Y.: Oxford University Press, 1994.

Kaku M. Visions. N.Y.: Anchor Books, 1997.

Malone J. Unsolved Mysteries of Science. N.Y.: John Wiley & Sons, Inc., 2001.

Penrose R. The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics. N.Y.: Viking Penguin, 1990 (на рус. яз.: НОВЫЙ ум короля. О компьютерах, мышлении и законах физики / Пер. с англ., ред. В. Малышенко, М.: Эдиториал УРСС, 2003).

Raup D. Extinction — Bad Genes or Bad Luck? N.Y.: W. W. Norton & Company, 1992 (на рус. яз.:

Рауп Д., Стенли С. Основы палеонтологии / Пер. с англ. Ю. Фролова, В. Махлина М.: Мир, 1974).

Rees M. Our Cosmic Habitat. Princeton, NJ: Princeton University Press, 2001.

Steel D. Rogue Asteroids and Doomsday Comets: The Search for the Million Megaton Menace That Threatens Life on Earth.

N.Y.: John Wiley & Sons, Inc., 1997.

Периодические издания Crick F., Koch С. The Problem of Consciousness // Scientific American. 1992. Sept. [на рус. яз.: Проблема сознания // В мире науки. 1992. № 11-12. С. 113-120].

Gibbs W. W. Ripples in Spacetime // Scientific American. 2002.Apr.

Overbye D. A New View of Our Universe: Only One of Many // New York Times. 2002. № 29. Oct.

Wade N. Before the Big Bang, There Was... What? // New York Times. 2001. №23. May.

Узлы Всем ирной Паутины www.jupiterscientific.org/sciinfo/gusp.html www.mkaku.org http://neat.jpl.nasa.gov Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru http://neo.jpl.nasa.gov http://spacegrant.arizona.edu/ | http://spacewatch.Ipl.arizona.edu (?) Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru Оглавление Предисловие..................................................................................... Глава первая. ВИДЕНИЕ НАУКИ.................................................. Глава вторая. ФИЗИКА. Почему одни частицы обладают массой, а другие нет?..... Глава третья. ХИМИЯ. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?.. Глава четвертая. БИОЛОГИЯ. Каково строение и предназначение протеома?... Глава пятая. ГЕОЛОГИЯ. Возможен ли точный долговременный прогноз погоды?...... Глава шестая. АСТРОНОМИЯ. Почему Вселенная расширяется со все большей скоростью?.... СПИСОК ПРОБЛЕМ................................................................. СПИСОК ИДЕЙ......................................................................... Источники для углубленного изучения...................................... Издательская группа приглашает к сотрудничеству авторов и книготорговые организации Телефон / факс: (095)721 - 38 - (многоканальный) Почтовый адрес:

109428, Москва, ул. Зарайская, д. 47, корп. e-mail: office@grand-fair.ru Интернет: http://www.grand-fair.ru Серия «Наука & Жизнь»

Артур Уиггинс, Чарлз Уинн ПЯТЬ НЕРЕШЕННЫХ ПРОБЛЕМ НАУКИ Дизайн обложки Е. Ярошенко ЛР 065864 от 30 апреля 1998 г.

Подписано в печать 20.11.2004.

Формат 84 х 108 1/32. Бумага офсетная.

Гарнитура «Таймс». Печать офсетная.

Усл. печ. л. 15,96. Тираж 3000 экз.

Заказ 5351.

Издательство «ФАИР-ПРЕСС» 109428, Москва, ул. Зарайская, д. 47, корп. Отпечатано в полном соответствии с качеством предоставленных диапозитивов в ОАО «Можайский полиграфический комбинат».

143200, г. Можайск, ул. Мира, Sl=дополнения www http://feynman.physics.lsa.umich.edu/ Сканирование и форматирование: Янко Слава (Библиотека Fort/Da) || slavaaa@yandex.ru || yanko_slava@yahoo.com || http://yanko.lib.ru || Icq# 75088656 || Библиотека: http://yanko.lib.ru/gum.html || Номера страниц - внизу update 20.11. Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИР ПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).



Pages:     | 1 |   ...   | 5 | 6 ||
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.