авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 2 | 3 || 5 |

«International Academy of Science and Higher Education «THEORY AND PRACTICE IN THE PHYSICAL, MATHEMATICAL AND TECHNICAL SCIENCES» Materials digest of the ...»

-- [ Страница 4 ] --

Informatics, computer science and management Рис. 1. Этапы управления правами доступа на основе анализа функций бизнес-процессов предприятия Для реализации первого этапа по описанию бизнес-процессов предприятия практическую значимость имеют методологии организационного, функционального и информационного моделирования. Организационная модель определяет «где»

исполняется бизнес-процесс и самое главное «кто» его исполняет, функциональная отвечает на вопрос «как?», информационная «с помощью чего?».

Анализ угроз и уязвимостей бизнес-процессов позволяет оценить информационные риски и определить меры по противодействию, тем самым повысив безопасность функционирования системы на организационном уровне. Подобный алгоритм построения модели угроз каждая организация определяет самостоятельно исходя из специфики своего функционирования и принятой политики безопасности либо на основе законодательно утвержденных нормативно-методических документов.

Процесс анализа бизнес-процессов можно производить автоматически (например, с помощью языка XML), извлекая все необходимые данные из среды бизнес – моделирования. Алгоритм извлечения данных можно представить в общем виде, как схему потоков (Рис. 2 стр.83).

Постоянно меняющиеся окружение, стремление получить конкурентные преимущества заставляют предприятие перестраивать свою деятельность, что в свою очередь неизменно отражается на правах пользователей информационных систем. Для организации непрерывного и эффективного процесса актуализации прав доступа такие изменения необходимо отслеживать и интерпретировать на изменение прав доступа к ресурсам АИС.

Разработана классификация, нацеленная на определение сущности и параметров изменения деятельности предприятия в Technical sciences Рис. 2. Схема извлечения данных контексте их влияния на управление правами доступа к ресурсам АИС (Рис. 3). Основой для данной классификации послужили категории данных, необходимые для формализации и актуализации прав доступа, которые содержатся в обобщенной модели.

Данная классификация не претендует на полноту и может быть расширена с учетом особенностей функционирования отдельно Informatics, computer science and management взятого предприятия.

Рис. 3. Классификация изменений деятельности предприятия в контексте актуализации прав доступа пользователей к ресурсам АИС Technical sciences В заключение хотелось бы еще раз подчеркнуть, что предлагаемый подход с одной стороны характеризуется выделением поль зователей, ролей, их иерархии и объектов доступа на основе анализа бизнес-процесса, с другой стороны ассоциацией действий и событий бизнес-процесса с совершением доступа. Для промышленного использования предложенного подхода была разработана инфомрационная система формализации и актуализации прав доступа [2, 3].

Литература:

1. Родионова З.В., Пестунова Т.М. Алгоритм автоматизированного формирования элементов обобщенной модели разграничения прав доступа на основе модели бизнес-процессов предприятия // Свидетельство о регистрации электронного ресурса Объединенного фонда электронных ресурсов «Наука и образование» № 16615 от 13.01.2011.

2. Родионова З.В., Пестунова Т.М. Программа для ЭВМ. Информационная система формализации и актуализации прав доступа «BusinessProcessSecurity» // Свидетельство об официальной регистрации РОСПАТЕНТ РФ № 2011615409 от 19.10.2011.

3. Родионова З.В. [и др.] Информационная система управления правами доступа на основе анализа бизнес-процессов / Т.М.

Пестунова, З.В. Родионова // Доклады Томского государственного университета систем управления и радиоэлектроники. – 2010. – № 2 (22). – Ч.2. – С. 253 - 256.

THE FORMATION OF NITRIDE- AND CARBIDE PHASES UNDER DISPERSION HARDENING OF Cr-Mn-V-N AUSTENIC STEELS Isayeva L.Y cand. of chemical sciences, assistant prof.

e., The National metallurgical academy of Ukraine Shypitsyn S.Y., Dr. in engineering sciences (Ph.D), head of department Physical and engineering Institute of metals and alloys, Ukraine Lev I.Y Dr. in engineering sciences (Ph.D), prof.

e., The National metallurgical academy of Ukraine Conference participants, National championship in scientific analytics, Open European-Asian research analytics championship In the present work authors consider the influence of conditions for formation of nitride phases on the cavitation stability of the Cr-Mn-V N austenitic steels. The influence of isothermal treatment on the mode of austenite hardening had been established by the way of electrochemical phase, X-ray structure and mechanical methods of analysis. The temperature of annealing 700°C determined in this work is new to the subject. It creates the opportunity of forming the biggest quantity of dispersion hardening nitrides. Such temperature ensures optimum conditions for obtaining cavitation resistance for steel 17Х15Г19АФ.

Keywords: nitrides, resistance to cavitation, chromium-manganese-vanadium-nitrogen steels, dispersion hardening of austenite One of the main trends in developing the heat power-generating industry is the increase of specific power of energy blocks while increasing correspondingly their efficiency to 48-50%. This predetermines transition to higher steam parameters: pressure up to 35 MPa, temperature up to 650°C [1, 2].

The necessary condition for attaining the set aim is introduction of the new promising scientific and engineering developments, which allow to handle in complex a number of technical problems. These problems arise while developing details of blocking and regulating details, which work under conditions of microimpact action of medium flow, i.e. cavitation.

Analysis of the problem‘s state showed that in the world’s and home practice the main constructional material for manufacturing block ing-regulating units of pipeline fittings is up to now austenitic stainless steel 08X18H10T [3]. But as to the level of strength characteristics and durability under conditions of cavitational action of the medium flow and scratching the contact surface this steel does not meet the present day demands. It restrains the progress in rising the operating parameters, reliability and service life of equipment. Beside that, the substantial disadvantage of austenitic chromium-nickel steel is the necessity of alloying it with expensive and not readily available nickel. Introduction of manganese and nitrogen presents more economical mode of alloying. The lack of deep scientific and engineering research in this field however constitutes one of the main reasons to explain why the technology of alloying steel with nitrogen, manganese and nitride-forming elements is not demanded for developing corrosion-proof and cavitation resistant steels. The problem of structure formation, distribution of nitrogen between solid solution and nitride phases isolated in the process stages (hot and cold steel deformation) and in the process of microimpact of the surroundings under conditions of cavitation is also one of these reasons. The problem of the influence of chemical composition, schedules of heat treatment, phase steel composition, parameters of micro- and substructure, low degrees of cold plastic deformation and microimpact action on the kinetics of phase transformation and hardening of phases under formation, change of mi cro- and substructure and the influence of these factors on the destruction resistance of steel during microimpact action remains to be studied.

To solve the existing problem, the alloying system Cr-Mn-V-N had been chosen as the object of studying in the present work. This system creates a possibility of developing high-strength corrosion-resistant grades of steel with nitride hardening.

Smelting of steels was carried out in induction furnace IST 0.16 with acid lining using the method of re-melting technically pure materials.

The final deoxidizing and modification of steels was realized with aluminum and silicocalcium.

To attain 3 basic kinds of austenite hardening – solid solution, dispersion and mixed hardening – the quantity and composition of nitride and carbide phases being formed depending on the temperature of isothermal treatment - chemical phase analysis was used.

With the purpose of approaching the steel balance, the time of isothermal soaking had been determined from the work [4] on the basis of the data about influence of the temperature (from 1200 till 700°C) on the mass speed of isolating VN particles in the Cr-N austenite.

The chemical analysis of the steel under study is presented in the Table 1.

Table 1. Chemical analysis of the steel grade 17X15Г19АФ Metallurgy Technical sciences Phases under study had been isolated by means of electrochemical method of dissolving the metallic samples base [5]. Electrolytic metal dissolving and compounds isolating were carried out on samples 20mm and h = 80mm. Electrolysis was carried out in the field of direct dependence of overvoltage value on the current density logarithm. In accord with Tafel’s equation [6] this field corresponds to electrochemical stage of the process. Extraction of the nitrogencontaining phases had been carried out in the aqueous electrolyte containing 15% NaCl and 2.5% tartrate acid in potentiostatic operating regime created by the potentiostat 10-20PEB. Nitride and carbonitride phases in the shape of anodic precipitate had been isolated from the steel, because their oxidizing potentials in the given electrolyte were bigger than that of metallic base. Implementation of electrolysis with the potential smaller than these of the phases under isolation favored such result. A small collodium bag had been set in the electrolytic cell between sample and cathode for the purpose of collecting inclusions. After finishing the electrolysis the precipitate together with electrolyte had been moved from the collodium small bag into wide polyethylene test-tubes and washed off from the electrolyte by the way of step-by-step operations of centrifuging at 5000rpm and decantation. Isolation of inclusions had been carried out in two series of experiments. In the first series inclusions were prepared for X-ray structure analysis. For this purpose inclusions had been dried up to constant weight in exicator above the concentrated H2SO4. In the second series of experiments isolation of inclusions had been carried out to determine their chemical analysis. Inclusions were dissolved in concentrated H2SO4 with additional wet fusion in the melt of Na2SO with H2SO4. Obtained solutions had been transferred to measuring flasks, and the content of elements combined in nitride and carbide phases (Ncomb, Vcomb, Crcomb, Mncomb and Alcomb) had been determined in aliquote parts.

Nitrogen was determined using the photocolorimetric method by the intensivity of complex compound coloring – oxiamidodimercure, formed by the interaction of NH4+ ions with K2[HgJ4] [7]. As a preliminary, nitrogen in the form NH3 had been isolated from the alkaline solution by the method of steam aspiration. Vanadium and chrome had been determined by the oxidation-reducing method by means of volume analysis. Titration had been carried out step-by-step in one and the same solution, at first VO3- ion was reduced using the solution of FeSO4, then, after the oxidation, the sum VO3- + Cr2O72- was reduced in its turn [8]. The content of manganese had been determined by the volume method, by way of reducing MnO4- ions using solution of sodium arsenite [9]. Aluminum had been determined using the photocolorimetric method by coloring intensivity of the complex compound of aluminum with aluminone [10]. The results of analysis are presented in the Table 2.

Table 2. Chemical analysis of inclusions isolated from the steel 17X15Г19АФ Note: after isothermal treatments the samples were cooled in water As follows from obtained results, after solidification and homogenizing annealing at 1200°C (sample K.1) the steel contains minimum quantity of nitrogen in combined state (Fig. 1,a). Lower temperatures of isothermal soaking within the determined interval lead to increasing Ncomb, i.e., to increasing the formation of nitrogen containing phases. Other alloying elements, with the exception of chromium (at 700°C) show the same trend (Fig. 1,b).

Since isolated phases contain more chromium, the general dependence of the formed phases’ quantity is specified by the curves in the Fig. 1,c.

Figure1. Dependence of the nitrogen content (a), chromium content (curve 1), vanadium content (curve 2), manganese content (cur ve 3) (b), and the total content of elements combined in nitrides (Ncomb + Crcomb + Vcomb + Mncomb) (c) at the annealing temperature, °C Determination of the qualitative and semi-quantitative composition of different crystal phases in samples had been carried out on the unit ДРОН-3 (DRON-3) in copper radiation. When identifying structures the authors used Diffraction Data File of American Society for Testing Materials (ASTM File [11]) and reference data in the tables of File [12].

Metallurgy The results of the phase analysis of isolated compounds showed that during high-temperature isothermal treatment the formation of nitrides in the steel under study took place to a very insignificant degree. Alumina ( – Al2O3) is present in inclusions isolated from samples subjected to high-temperature treatment (K.1, K.2 and K.3), as well as very little of AlN and VN. The most intensive maxima of alumina had been also determined: d = 3.47;

2.55;

2.08;

1.74 and 1.60.

Technical sciences The main quantity of dispersion hardening phases are formed at lower temperatures of isothermal treatment. In the first place, these are hexagonal nitrides VN0.35 which gave the most intensive reflections in diffractograms of samples K.5 and K.6 corresponding to d = 2.153;

1.286, and tetragonal nitrides VN. It is possible to judge about the presence of VN by values d = 2.091;

1.235 and 1.116. Chromium in these samples forms a few phases: hexagonal nitrides Cr2N with d = 2.40;

2.22;

2.11;

1.183 and 1.166;

cubic nitrides CrN with d = 1.463;

1.249;

1.197 and 0.846, as well as cubic carbides Cr23C6 with d = 2.37;

2.7;

1.26;

1.23 and others. Proceeding from the calculation of the element content in precipitates, the data of X-ray structure analysis of precipitates and literary data as to possible presence of non-metallic phases in Cr-Mn-V-N austenitic steels [13], the authors determined the phase steel composition and the changes depending on the temperature of isothermal treatment (Table 3).

Table 2. Quantity of non-metallic phases in the homogenized steel (1200°C – 2 hours – water) depending on the temperature of isothermal treatment Note: after isothermal treatments the samples were cooled in water The obtained results show that nitrogen combines practically only with vanadium. Mass share of vanadium nitrides at the ageing temperature 700°C attains 0.18%, which makes 44% of the theoretically possible quantity of vanadium nitrides in the case of complete combination of the vanadium in steel and nitrogen into nitrides. Experimental conditions of dispersion nitride vanadium hardening of austenitic matrix are attained most completely under ageing at 700°C.

Homogenizing under conditions 1200°C – 2 hours – water ensures practically homogenous state of the matrix, i.e., only its solid phase hardening with C, N, V, Cr.

Under ageing in the interval 900°C - 1000°C the mass share of nitrides VN particles makes only about 50% of their quantity at the ageing temperature 700°C, i.e., it is possible to assume that matrix is in mixed solid solution and dispersion hardening.

An important result of the phase analysis consists in the fact that chromium depletion of the solid austenite solution due to forming chromium nitrides and carbides with mass share not exceeding 40% can’t decrease corrosion resistance of steel.

It must be also noted that only 25% of nitrogen in steel is used for nitrides formation, what means that austenitizing effect of nitrogen is kept.

When using articles of cavitation resistant steels at elevated temperatures, for example, in heat power industry, an important factor of their operating longevity is the heat stability of metal strain hardening.

On the basis of results of testing steel for cavitation resistance, as to mass loss, Px102, kg/m2 (Fig. 2,a) and as to hardness increase, HB (Fig. 2,b), it was determined in the work that substitution of solid solution hardening of austenite for dispersion hardening raises the degree of strain hardening.

Figure 2: a – mass loss (P) of steel samples after 20 hours of testing for cavitation resistance;

b – influence of the mode of austenite hardening on the degree of strain hardening at upsetting samples by 12-16%. 1 – solid phase hardening (homogenization at 1200°C);

2 – complex hardening (ageing at 900°C);

3 – dispersion hardening (ageing at 700°C).

The results of electrochemical phase analysis and X-ray structure analysis correlate with these data. The temperature of annealing 700°C determined in this work is new to the subject. It creates the opportunity of forming the biggest quantity of dispersion hardening nitrides. Such temperature ensures optimum conditions for obtaining cavitation resistance for steel 17Х15Г19АФ.

References:

1. Скоробогатых В.Н., Щенкова И.А., Козлов П.А. Новые материалы для перспективных энергетических установок // Армату ростроение. М. Машиностроение. 2010. №3. С.56-59.

Metallurgy 2. Кливеланд П. Арматура для тяжелых условий. Достойный отпор давлению новых реалий // Арматуростроение. М.

Машиностроение. 2010. №5. С.36-39.

3. Харина И.Л., Сафонов И.А. Коррозия в пароводяной среде высоких параметров // Арматуростроение. М. Машиностроение.

2010. №3. С.60-64.

Technical sciences 4. Бабаскин Ю.З., Шипицын С.Я., Кирчу И.Ф. Конструкционные и специальные стали с нитридной фазой. Киев.

Наукова думка. 2005. 371с.

5. Исаева Л.Е., Лев И.Е. Исследование условий образования и выделения из сталей нитридов молибдена, содержащих железо // Вопросы химии и химической технологии. Общегосударственный научно-технический журнал.

Днепропетровск. 2010. №2. С.98-101.

6. Исаева Л.Е., Грещик А.М., Лев И.Е. Исследование процесса изолирования нитридов молибдена из сталей // Вопросы химии и химической технологии. Общегосударственный научно-технический журнал. Днепропетровск. 2005. №1. С.163-167.

7. Лев И.Е., Покидышев В.В., Лазарев Б.Г., Мицкевич Н.С. Анализ азотсодержащих соединений в сплавах железа. М.

Металлургия. 1987. 120с.

8. Генерозов Б.Ф. Технический анализ в металлургическом и коксохимическом производствах. М. Металлургиздат. 1959. 251с.

9. Степин В.В., Силаева Е.В., Плисс А.М., Курбатова В.И. и др. Анализ черных металлов, сплавов и марганцевых руд. М. Ме таллургиздат. 1964. 501с.

10. Клячко Ю.А., Шапиро М.М., Яковлева Е.Ф. Новые методы испытания металлов. Сборник трудов ЦНИИЧМ. М.

Металлургиздат. 1962. С.75-81.

Technology, machinery and equipment logging, forestry, wood processing and chemical processing of wood biomass 11. American Society for Testing Materials Diffraction Data File, USA, Philadelphia, 1969.

12. Нарита К. Кристаллическая структура неметаллических включений в стали. М. Металлургия, 1969. 191с.

13. Гасик М.И. Марганец М. Металлургия. 1992. С.607.

УДК 674.055: 621.914. АНАЛИЗ РЕЖИМОВ ПРОДОЛЬНОГО ЦИЛИНДРИЧЕСКОГО ФРЕЗЕРОВАНИЯ И ИХ ВЛИЯНИЕ НА КАЧЕСТВО ПРОДУКЦИИ ЛЕСОПИЛЬНЫХ АГРЕГАТОВ Таратин В.В., канд. техн. наук, доцент Северный (Арктический) федеральный университет имени М. В. Ломоносова, Россия Участник конференции, Национального первенства по научной аналитике, Открытого Европейско-Азиатского первенства по научной аналитике Получены аналитические зависимости и выполнена оценка влияния режимных параметров на фактические и номинальные динамические углы резания лесопильных агрегатов, а также на угол среза технологической щепы. Выполнена оценка влияния режимных параметров на качество продукции.

Ключевые слова: лесопильные агрегаты, цилиндрические фрезы, углы резания, угол среза технологической щепы.

Analytical relations allowing to estimate the character of condition parameters on the actual and data-sheet dynamic cutting angles sawmill aggregates (Chip-N-Saw) machine, as well as on angle of the cut wood chips has been obtained. The influence of condition parameters on quality product of sawmill aggregates machine has been obtained.

Keywords: sawmill aggregates, cylindrical milling cutters, cutting angles, angle of the cut wood chips.

Technology, machinery and equipment logging, forestry, wood processing and chemical processing of wood biomass Technical sciences Technical sciences Technology, machinery and equipment logging, forestry, wood processing and chemical processing of wood biomass Technical sciences Technology, machinery and equipment logging, forestry, wood processing and chemical processing of wood biomass Литература:

1. Пат. 1782732 Российская Федерация, МПК4 В27, G13/02, 13/04. Торцово-коническая малоножевая фреза [Текст] / В.В.

Таратин, А.П. Тарутин;

заявитель и патентообладатель Центральный науч.-исслед. ин-т механ. обраб. древ. - № 4840963/15;

заявл.

23.12.90;

опубл. 23.12.92, Бюл. № 47. – 47 с.

2. Пат. 1159777 Российская Федерация, МПК4 В27, В33/08. Комбинированный инструмент [Текст] / В.В. Таратин, А.П.

Тарутин, С.А. Маточкин, МП. Авксентьев;

заявитель и патентообладатель Центральный науч.-исслед. ин-т механ. обраб. древ. - № 3572772/29-15;

заявл. 04.04.83;

опубл. 07.06.85, Бюл. № 21. – 32 с.

3. Стахиев, Ю.М. Работоспособность плоских круглых пил [Текст] / Ю.М. Стахиев. - М., Лесн. пром-ть, 1989. - 384 с. Таратин, В.В. Влияние геометрических параметров фрезерного инструмента агрегатного оборудования на величину угла среза технологической щепы [Текст] / В.В. Таратин // Лесн. журн. – 1997. – № 3. – С. 64-69. ( Изв. высш. учеб. заведений).

4. Таратин, В.В. Влияние геометрических параметров фрезерного инструмента агрегатного оборудования на величину угла среза технологической щепы [Текст] / В.В. Таратин // Лесн. журн. – 1997. – № 3. – С. 64-69. ( Изв. высш. учеб. заведений).

5. Грубе, А.Э. Дереворежушие инструменты [Текст] / А.Э. Грубе. - М.: Лесная промышленность, 1971. - 3344 с.

6. Таратин В.В. Определение кинематических и ряда других параметров на фактические углы резания цилиндрических фрез ле сопильных агрегатов / В.В. Таратин // Space and time – coordinate system of human development: Materials digest of the VIII International Research and Practice Conference (Kiev, London, August 25 – September 1, 2011). Technical, physical and mathematical sciences / All – Ukrainian Academic Union of specialists for professional assessment of scientific research and pedagogical activity/ InPress. London, 2011.

– P. 46-50.

7. Боровиков, Е.М. Лесопиление на агрегатном оборудовании [Текст] / Е.М. Боровиков, Л.А. Фефилов, В.В., Шестаков. - М.:

Лесная промышленность, 1985. - 216 с.

8. Таратин, В.В. Лесопильные агрегаты: современное состояние и тенденции их совершенствования [Текст] / В.В. Таратин // Де ревообраб. пром-сть. - 1998. - №1. - С. 3-6.

9. Таратин, В.В. Применение системного подхода к исследованию разнотипных фрез лесопильных агрегатов [Текст] / В.В.

Таратин // Деревообраб. пром-сть. - 1998. - №6. - С. 9-12.

10. Таратин, В.В. Определение фактических углов резания торцово-конических фрез агрегатного лесопильного оборудования [Текст] / В.В. Таратин // Лесн. журн. – 1995. – № 2-3. – С. 78-83. ( Изв. высш. учеб. заведений).

11. Елькин, В.П. Повышение эффективности фрезернопильного оборудования на основе разработки конструкций цилиндрических фрез для получения технологической щепы [Текст]: автореф. дис. … канд. техн. наук / В.П. Елькин, - Л., 1989. – 17 с.

12. Таратин, В.В. Обоснование скорости подачи фрезернопильного оборудования с учётом энергозатрат выработки продукции [Текст] / В.В. Таратин // Наука Северному региону: Сб. науч. тр. АГТУ, вып. 62 – Архангельск, АГТУ, 2005, С. 158 – 161.

Technical sciences УДК 621.9. РАСЧЕТНАЯ СХЕМА ОПРЕДЕЛЕНИЯ РАДИУСА КРИВОШИПА И ПОСТРОЕНИЕ ПРОФИЛЯ ПОВОРОТНОЙ ГОЛОВКИ БАЛАНСИРА Усупов С.С., д-р техн. наук, доцент Казахстанско-Британский технический университет, Казахстан Сейдалиев Т. О., инженер Казахская головная архитектурно-строительная академия, Казахстан Участники конференции На основе разработанных моделей движения звеньев станков-качалок определены расчетные параметры, разработана схема, установлены основные требования построения профиля головки балансира.

Ключевые слова: станок-качалка, балансир, кривошип, модель, расчетная схема On the basis of the developed motion models of beam-pumping units components estimated parameters were defined, a scheme was developed, the main requirements for swing horsehead profile definition were determined.

Keywords: machine-rocking chair, sealed, crank, model, design scheme Разработка моделей движения звеньев станков – качалок и определение расчетных параметров последних требует соблюдения обязательного требования: выбором радиуса кривошипов должна обеспечиваться заданная длина хода [1,2,3,4,5,6,7,8,9,10].

Соблюдение этого требования для станков–качалок со схемой а обеспечивается достаточно просто: радиус кривошипа принимается равным половине длины хода шарнира шатуна на заднем плече балансира, соответствующей и пропорциональной длине хода канатной подвески. Для станков–качалок со схемами б и в это требование выполняется при укладке в опорно направляющий желоб профильной головки на заднем плече балансира и сходе с этого желоба в течение цикла работы длины дуги гибкой связи (каната или ленты), обеспечивающей поворот балансира на угол, соответствующий длине хода канатной подвески.

Расчетная схема определения радиуса кривошипа, соответствующего этому условию, представлена на рисунке 1. На схеме изображен балансир с головкой на его заднем плече в двух крайних положениях, соответствующих расположению кривошипа по радиусам ДВ и ДВ1. Траектория шарнира крепления шатуна на кривошипе представлена окружностью с центром Д и радиусом кривошипа Rкр. Положение шатуна и гибкой связи шатуна с балансиром соответствует линии АВ - в крайнем верхнем положении правого плеча балансира и линии А1С1В1 - в крайнем нижнем положении этого плеча. Линия центров сечений каната на его участке, огибающем головку на заднем плече балансира, отображена дугой окружности А1С1 длиной lд с центром К1(К), центральным углом д и радиусом Rд.

Open specialized section Рисунок 1 – Схема определения радиуса кривошипа Technical sciences Согласно этой схеме, в крайнем верхнем положении правого плеча балансира, имеющем место при расположении гибкой связи и шатуна по прямой АВ, проходящей через центр вращения кривошипа D, АВ=АЕ+2Rкр (1) где АЕ - длина участка гибкой связи и шатуна, расположенных между точкой А сбега с головки заднего плеча и точкой Е пересечения траектории шарнира крепления шатуна на кривошипе.

Так как при повороте балансира суммарная длина гибкой связи и шатуна сохраняется, то АВ=А1В1 (2) Однако, в крайнем нижнем положении правого плеча балансира А1В1=А1С1+С1В1=С1В1+ lд..

Исходя из этого, получим С1В1= А1В1- lд=АВ- lд=АЕ+2 Rкр- lд (3) и 2 Rкр= С1В1-АЕ+ lд или, после прибавления к С1В1 и АЕ одинаковой величины Rкр, 2 Rкр=( С1В1+ 2 Rкр)-(АЕ+ 2 Rкр)+ lд=С Д-АД+ lд.

На основании этого, получаем:

(4) где длина дуги каната на головке заднего плеча балансира (5) Угол д определяется графически проведением из центров дуги К и К1 в ее крайних положениях перпендикуляров КА и К1А1 к касательным ДА и ДС1.

После задания координат расположения центра Д вращения кривошипа относительно центра О качания балансира по горизонтали и по вертикали, радиуса Rд, координат точки S относительно точки О (вдоль балансира и перпендикулярно балансиру) и угла, определяются графически отрезки АД и С1Д для крайних положений балансира и угол д, и по формулам (4) и (5) вычисляется Rкр.

Радиусы кривошипов исследуемых станков–качалок со схемами б и в определены по этой методике. Поворотная головка, уста навливаемая на переднем плече станка–качалки со схемой в, осуществляет сложное движение, одновременными составляющими которого являются:

- возвратно-поворотное движение головки вокруг центра ее вращения, расположенного на балансире;

- переносное перемещение в результате возвратно-поворотного движения центра вращения головки, расположенного на балансире, вокруг центра качания балансира.

Обе составляющие неразрывно взаимосвязаны между собой, так как при повороте балансира относительно центра его качания происходит одновременный поворот головки с помощью тяги шарнирной, один шарнир которой закреплен на головке, а второй установлен на неподвижной корпусной стойке.

Схема построения профиля головки (профиля линии центров канатов подвески устьевого штока при укладке в опорно направляющий желоб) приведена на рисунке 2.

Основными требованиями к построению профиля являются:

1. Профиль должен быть плавным, исключающим возможность скачков и колебаний скорости канатной подвески, а также смещения в радиальном направлении, способного привести к отклонению канатной подвески от вертикали и к изгибу устьевого штока.

2. Граничная точка контакта канатов подвески с днищем опорно-направляющего желоба при сбеге с головки во время опускания и набегания на головку во время подъема устьевого штока, колонны штанг и плунжера насоса должна быть расположена постоянно на высоте центра качания балансира и на постоянном расстоянии L от центра качания балансира по горизонтали, причем расположение этой точки в пространстве в процессе движения головки должно быть неизменным.

Open specialized section 1 – стойка;

2 – опора балансира и балансир;

3 – тяга шарнирная;

4 – шарнир головки поворотной;

5 – головка поворотная.

Рисунок 2 – Схема построения профиля поворотной головки Technical sciences С учетом этих условий, а также в связи с движением центра поворота головки по дуге окружности, профиль головки должен иметь вид дуги переменного радиуса.

Для расчета профиля может быть составлена программа для ПЭВМ. Однако, эта работа имеет смысл только в случае необходимости в создании и расчете параметрического ряда станков-качалок, отличающихся размерами поворотных головок. При проектировании единичной конструкции можно гораздо быстрее решить эту задачу графическим методом, который и был использован в данной работе.

Построение выполняется путем переноса на изображение головки в крайнем верхнем положении координат граничной точки С контакта каната подвески с желобом: hi - относительно прямой Di Di, проведенной через шарниры головки, и li - относительно центра шарнира Аi, по прямой Di Di - для ряда положений балансира в пределах угла его поворота.

Построение ведется в следующей последовательности:

1. Задаются величина хода (угла поворота) переднего плеча балансира и его крайние верхнее и нижнее положение.

2. Задаются число и координаты промежуточных положений балансира в пределах его хода.

3. В заданном масштабе изображаются балансир 2 с опорой, тяга 3 и прямая DD с расположенными на ней центрами А и В шарниров головки поворотной в крайнем верхнем положении балансира и головки, и на высоте центра качания балансира О и на расстоянии от этого центра L по горизонтали располагается точка С нижней границы линии контакта подвески с желобом. Расстояние L, от которого зависит величина обеспечиваемого хода канатной подвески, задается ориентировочно.

4. Балансир 2, тяга 3 и прямая DD изображаются в другом положении, в котором центры шарниров А и В обозначены как Аi и Вi, а прямая DD- Di Di,. Из точки С к прямой DiDi, проводится перпендикуляр С Еi.

5. Отрезок прямой АiЕi, длиной li переносится на прямую DD, образуя на ней отрезок АЕi.

6. Отрезок С Еi расположенный перпендикулярно прямой Di Diрасполагается точно так же перпендикулярно прямой DD в ее точке Еi, и его верхний конец, обозначенный точкой Сi образует искомую точку профиля.

7. Для ряда следующих друг за другом положений балансира описанным выше способом определяется расположение других точек Сi. Последней крайней нижней точкой в их ряду является точка С. Крайней верхней точкой, является Ск полученная для крайнего нижнего положения балансира.

8. Полученная цепь точек Сi соединяется плавной кривой линией, которая и представляет собой изображение профиля линии центров сечений каната подвески устьевого штока.

9. Производится замер и вычисление, с учетом принятого масштаба изображения, длины этой профильной линии и сопоставление результата с заданной длиной хода подвески устьевого штока. Как правило, эти данные не совпадают, т.к. длина L была принята ориентировочно.

10. Выполняется корректирование длин отрезка L (и, соответственно, расположения точки С), а также длины линии расположения точек Сi путем пропорционального изменения размеров 1i, hi и L, необходимого для достижения равенства длины дуги ССК на которой расположены точки С i, длине хода подвески устьевого штока.

11. К полученной дуге ССк добавляются: в верхней части отрезок СНСF длиной (0,35-05)м для размещения (с запасом длины) устройства крепления каната и внизу – отрезок дуги длиной 0,3 м для исключения контакта каната подвески с острой кромкой края желоба после укладки всей длины каната, равной длине хода канатной подвески.

12. С внутренней стороны полученной таким образом дуги СFСJ со сдвигом, равным половине диаметра каната подвески, прочерчивается эквидистантная профильная кривая. Она соответствует форме профиля опорной поверхности (дна) желоба для укладки каната.

13. Принимается тип (например, швеллер по ГОСТ 8240 - 72) и размер проката, из которого будет изготавливаться желоб.

14. С учетом необходимости изготовления желоба методом гнутья его заготовки на оправке, для обеспечения воз можности определения размеров и контроля конфигурации оправки, прочерчивается профиль желоба, образуемый дугами окружности, обеспечивающий совпадение, без радиальных отклонений свыше 15 -20мм, с полученной кривой укладки каната.

Приведенная методика рекомендуется для построения профиля поворотной головки для любых значений длины хода канатной подвески.

Литература:

1. Авторское свидетельство СССР №1337553. Привод скважинной насосной установки /Аливердизаде К.С., Байрамов С.Б., Амиров Р.Г.

2. Кушеков А.У., Ермеков М.М., Ажикенов Н.С.Скважинные насосные установки. Книги 1 и 2 – Алматы;

Эверо, 3. Мырзахметов Б.А. Проектирование штанговых скважинных насосных установок – Алматы;

КазНТУ, 4. Расчет и конструирование нефтепромыслового оборудования. /Чичеров Л.Г. и др./ - М.: Недра, 5. Уразаков К.Р., Кутдусова З.Р. Метод обработки статистической информации о работе штанговых насосных установок // Нефтепромысловое дело, №3, 1982.

6. Фархадзаде Э.М. Определение оптимальных кинематических показателей станка-качалки глубинонасосной установки // АНХ. -1982. № 8.-С. 53-54.

7. Вирновский А.С. Определение максимальной нагрузки на глубинно насосное оборудование // Нефтяное хозяйство, -1947. №2, с.48, №5 с. 54.

8. Багиров М.М. Определение усилия в точке подвеса колонны штанг и длины хода плунжера глубинного насоса Open specialized section /АНХ.-1968. №3.-С. 34-36.

9. Байрамов С.Б. Аналитическое исследование пространственной кинематической схемы станка-качалки. //Нефть и газ.-1987. №2. С.83-87.

10. Мирзанжанзаде А.Х., Степанова Г.С. Математическая теория эксперимента в добыче нефти и газа. - М.: Недра, 1977.-229 с.

Technical sciences GROWTH DEVICE, CRYSTAL GROWTH AND CHARACTERIZATION OF ALEXANDRITE D. Vinnik, Cand. technical sciences, associate prof.

S. Archugov, Cand. technical sciences, research associate D. Galimov, Cand. technical sciences, postgraduate student D. Zherebtsov, Cand. chemistry V D’yachuk, Cand. chemistry.

South Ural State University, Russia Conference participants Alexandrite is beryllium aluminate Al2O3•BeO doped with minor levels of chromophores, Cr2O3 being the major one. The engineering application of synthetic alexandrite single crystals is currently limited to active elements of tunable IR lasers for remote sensing and medicine.

In the design of the mechanical components of any crystal-growth systems, especially high-temperature systems, there are two basic requirements: long-term stability of the dimensions of the heating equipment;

and uniform rotary and translational motion of the crystal over a wide speed range. Accordingly, it is assumed for the heating system that the heater and internal screens are made of tungsten and the heater is cylindrical. In the present work, we describe a new high-temperature furnace for a crystal-growth system, with new designs of the heater, the screens, the copper leads, and the lid. To eliminate the sealed input, which is the primary source of nonuniform crystal motion, the kinematic system, including the motor, is placed in a volume connected to the furnace.

To permit ongoing change in configuration of the heating system, the power-supply system takes the following form. Rectangular copper plates are pressed against the current lead by pin and nut. Two copper rods are screwed into the plates, on different sides of the common longitudinal axis. A thermocouple junction is attached to the upper end of one of the rods, for temperature monitoring. Leads connected to the top ends of the rods carry the voltage signal directly to the heater. The 4-mm internal channels in rods accommodate grooved tungsten bars, which are the power leads of the heater. The heater takes the form of a coil (height 10 mm, diameter 63 mm, with a strip thickness of 1 mm. The coil is inserted in gaps in the upper part of the bars, to which it is soldered by molybdenum. Bars are fixed to rods by two M4 bolts. The screen system consists mainly of molybdenum sheet (thickness 0.2 mm), with upper and lower caps, a coaxial cylindrical lateral section, upper and lower inserts, and an intermediate screen cover. It is possible to change the number of constituent sheets, the axial temperature gradient may be adjusted during crystal growth, without affecting the rest of the structure. The first internal screen is made of tungsten. The supporting components of the screen system are the upper and lower plates, made of titanium sheet (thickness 1 mm). The screen system is mounted on supporting plate by means of six rods;

plate is mounted on the base furnace by means of three rods. The heating volume is sufficient to accept a molybdenum or tungsten crucible with a diameter up to 55 mm and height up to 40 mm. The crucible is mounted on a molybdenum table, which is centered in the furnace by means of attachment to thermocouple tube. The latter is not a supporting element;

the legs of the table are three tungsten bars in bushes, which, in turn, are held in intermediate washer 6 within the central hole of supporting plate. The junction of the VR 5/20 thermocouple is in direct contact with the bottom of the crucible.

The extension and rotation device has a clearly defined function: the growth of singe crystals (predominantly high-temperature oxides), by a method resembling the Kiropoulos method. Single crystals may be grown not from melt but (formally) from a solution in which the solvent is one of the components of the compound introduced in quantities slightly exceeding stoichiometry. The Kiropoulos method does not provide for extension of the crystal. However, experimental results show that such extension (at a slow speed, around 0.1–0.5 mm/h), which is one of the primary aspects of the Czochralski method, permits more massive crystals to be grown.

Thus, it is difficult to precisely classify the method, which includes aspects of the Kiropoulos method (melt), the Czochralski method (melt), and the flux method (solution).

Alexandrite is beryllium aluminate Al2O3•BeO doped with minor levels of chromophores, Cr2O3 being the major one. The engineering application of synthetic alexandrite single crystals is currently limited to active elements of tunable IR lasers for remote sensing and medicine.

The underlying idea of this process is that the feed contains an overstoichiometric proportion of one component, namely, beryllium oxide (3– 6 wt %) or alumina (5–6 wt %), with the proper decrease in the proportion of the other component. Single-crystal seeding was performed at temperatures below the phase transition inchrysoberyl (about 1853 °C [1]), and growth was carried out while temperature was depressed below the temperatures of the neighboring eutectic (1835°C for beryllium-rich feeds and 1850°C for alumina-rich feeds). The process was worked out for the following two compositions, wt %: 75 Al2O3—25 BeO,85 Al2O3—15 BeO. Chromium oxide and vanadium oxide were added in an excess of up to 0.3 and 0.1 wt %, respectively. In all experiments, the feed weight was 50 g. The crucible used was molybdenum 26 mm high and an outer diameter of 47 mm.

Temperature depression rates during crystal growth were 0.5–4 K/h;

rotation speeds were 1–5 rpm. The feed could contain network forming cations, for example, B3+ or Si4+, in the form of oxides in proportions of 0.3–0.5 wt %. Alexandrite yields reached 75% of the feed weight.

The use of seed crystals oriented along the major crystallographic axes affected crystal habit only insignificantly. The only exclusion was [100] orientation: crystals grown on such seeds frequently had a mirrorsmooth upper facet. In our opinion, the above-indicated feed compositions are optimal. In some experiments, the high-temperature phase was grown directly from the seed or soon after seeding;

its growth then stopped, apparently, at the transition temperature 1853°C. Further temperature depression even induced partial dissolution, followed by intensive eutectic solidification on this substrate. In the other experiments, the low-temperature phase was seeded, but in the form of a polycrystal. The mot perfect crystal consisted of four twins. Under certain conditions, the high-temperature phase was seeded in the form of a completely clear regular- shaped single crystal with hexagonal habit. This stab was pulled to heights of 5–10 mm, but a horizontal phase Open specialized section transition interface always appeared at these heights. X-ray powder diffraction showed only chrysoberyl chrysoberyl, without any specific features or foreign phases, in samples that experienced the transition.

This work is an embodiment of the process for growing bulk alexandrite single crystals using resistive heating with reduced temperature gradients. We have determined the feed compositions for stable seeding and growing up a single crystal of the low temperature alexandrite phase in the range of its thermodynamic stability.

Experiments with the proposed crystal-growth system show that the furnace ensures long-term stability of the geometric dimensions of the thermal unit. The extension and rotation unit ensures smooth (jerk-free) rotation of the crystal at 0.8–10 rpm. The nonuniformity of the rotary speed is not observed visually over a 15-cm radius. The carriage path is 100 mm and may be easily increased by changing the size of the extension and rotation unit. With a maximum carriage speed of 135 mm/h, no nonuniformity of its motion is observed at 100-fold magnification. The proposed system is currently in use for the growth of alexandrite single crystals. The effectiveness of the system is evident from electron-microscope images of etched samples obtained on a Jeol JSM-6460 LV scanning instrument (Fig. 1 p. 97 ).

Technical sciences Fig. 1. Typical etch pits at dislocations in alexandrite single crystals.

The dislocation density in the sample is 5.8*104 cm–2, which is in good agreement with the literature values of 104–105 cm–2 [2].

We have also determined the ranges of the major process parameters (including crystal rotation speeds and cooling rates) that do not cause gas or feed melt occlusion. Visually perfect single crystals have been grown. Combined or separate doping with chromophores V2O3 and Cr2O3 yields crystals with colors ranging from bright bluish-green (with V2O3solely) to dark red (with Cr2O3 solely). Faceted insets of this material demonstrate good color inversion from purple-red to green in response to a change in light.

References:

1. Tsvetkov E.G., Rylov G.M., Matrosov V.N., Regularities of formation and distribution of dislocations in chrysoberyl singlecrystals grown from the melt with Chokhralsky method. Kristallografiya, 1984, vol. 29, pp. 111–116.

Open specialized section Open interdisciplinary section ANTHROPOGENIC TRANSFORMATION OF NATURAL LANDSCAPES OF AZERBAIJAN REPUBLIC Ismailova A.R., Student Baku State University, Azerbaijan Conference participant It is necessary to carry out scientific investigation for exploration of various aspects of anthropogenic transformation of natural landscapes of Azerbaijan Republic, discovering of complex changes caused with numerous and intensive influences of rural economy and industry fields, right management of various repeated reproduction and anthropogenic modifications by people.

Part of Great Caucasus located in the territory of Azerbaijan differs with its complex natural anthropogenic landscape structures. The anthropogenic influences of many years thoroughly changed the natural appearance of landscapes;

making their morphological differentiation more complex enriched them with natural –anthropogenic modification.

Several vertical structure types of natural-anthropogenic landscapes that differ from each other may be differentiated in hills with various loaded degree of Great Caucasus. Each vertical structure type has its own natural anthropogenic differentiation law compliance.

Forests do not form entire zone in south –east structure type, distributing in glade form, spreading of dry fields, semi deserts and thin forests and shrubberies in absolute altitudes till 1000 meters are considered to be direct anthropogenic influence of many centuries.

Expanding of forests – fields and fields that are considered to be in north-east structure type, acute narrowing of forest zone area, becoming shattered to the small fields isolated from each-other are considered to be distinct embodiment of anthropogenic influences. The an thropogenic landscapes in this structure type absolutely captured plain and foothills, forest-fields and fields.

Developing of natural landscapes of south structure type mostly in shattered height slopes creates acute landscapes asymmetry;

anthropogenic landscapes with small areas attract attention with its scattered structure. Bare naked slopes, acute shattered monoclinic structures are not steady against anthropogenic influences. Degradation signs show themselves in each landscape stage.

Anthropogenic loads show themselves in nival and subnival landscapes in a very low form. The anthropogenic influences carry out episodic character here. Structure of natural landscapes is not disturbed. Geo-components having weak standing and high dynamism differ with natural law compliance development.

On the laps of yura aged sharply broken crystallic peaks exaration (kar, trog valleys, cycles) and accumulative (moraine crumbs) morfosculptures develop. Soil-plant cover almost has not been developed. On the bare rocks primitive layer of peaty soil thickness of which is some sm. has been formed. Such type of landscapes practically are unchangeable complexes. The anthropogen coefficient of the rocky and stony places, gravels the assumption of which is impossible is less than 0,1. As the anthropogenic degradation of the landscape is very weak, all the ongoing processes there develop in the natural way.

Anthropogenic influences are of accidental character.

Alpine and subalpine meadows belong to the group of weakly changed complexes. The anthropogenic bulks of this type complexes locating on high mountain slopes and watersheds are irregularly featured. In summer months (May-August) the anthropogenic bulks increase to the maximum limit related with the intensive grazing of the cattle. During this period, degradation of the landscape reinforces. In winter months the anthropogenic downloading is practically broke down due to the extreme conditions. The graze period of the cattle in dense meadows of Great Caucasus lasts for 2.5-3.0 months, i.e. since the second half of June till the beginnings of September. Subalpine meadows may be used both as hay fields and pastures, but the alpine meadows only as pastures.

Relying on the decyphering cosmic photos, contemporary natural-anthoropogenic landscape map of 1:280000 scale was compiled which reflected different usage features for Azerbaijan territory of Small Caucasus. In this map, artificial complexes practically unchangeable, episodic useful, transformed on different levels, irregularly used and sharply transformed, technogen complexes sharply transformed and regularly used and other natural-anthropogenic lanscape categories sharply transformed are distinguished.

Practically unchangeable and episodically useful complexes cover the rocky, useless stony-gravel places, steepness, sharply broken river valleys with high slopes, shrubbery-stony useless cones on the watersheds of the both slopes of Small Caucasus. These complexes have been spread in all landscape zones from semideserts of the region’s foothill plains to stony gravel subnival complexes of high mountain peaks. But serious differences are observed in their vertical differentiation on altitude zones.


In dissemination of natural-anthropogenic landscapes of the north eastern and south eastern slopes of Small Caucasus vertical waist manifests itself. In semidesert, dry steppe, xerofit shrubbery, shrubbery meadow-forest landscapes of wide river valleys and smooth terraces of foothill sloping plains along the Kur intensively used different agro landscapes, technogen complexes are formed. Turning anthropogenic of natural landscapes exceeds 0,6-0,7.

The comlexes of the medium mountainous places such as forest, below the forest, meadow, forest-shrubbery, shrubbery meadow, subalpine meadow, etc. are distinguished for their agro landscapes having little areas and weak sustainability. A system of many residences with spreading areas led to the severe broke of natural landscapes and formation of repeat-descent Open interdisciplinary section anthropogenic landscapes. Turning anthropogenic of natural landscapes is shifted between 0,2-0,5. The majority of forest shrubberies, shrubbery-meadows, hay fields, different agro landscapes are of repeat-descent origin.

Subalpine and alpine meadows of high mountainous places have been less anthropogenic related with the seasonal treatment. Though turning anthropogenic of natural landscapes changes between 0,1-0,3, this indicator for the severely transformed pastures and hay fields exceeds 0,5. Repeat-descent complexes turned bare and severely washed away destroy the completeness of subalpine and alpine meadows and make its structure more complicated.

So that, their share on foothills sloping plains of 600 m absolute height is 10%, on altitudes of 600-1200 m is 20-25%, on altitudes of 1200-1800 m is 30-35%, on absolute altitudes of 1800-2800 m is 40-45% and on the complexes locating on the altitude of more than 2800 m is 50-60%. In general, these complexes cover the space of more than 350 thousands ha and nearly 60 % of their territory is not under use.

Severely transformed repeat-descent complexes are also disseminated in large scale. Though the vast majority of them remind natural complexes, they have turned anthropogenic modifications after being changed for long historical periods.

Brown mountainous forests, grizzled meadows, meadow-shrubberies on the lands of brown forests, repeat meadows, shrubbery fields, pastures, hay fields, small plantings and so on (84th and 85th units on the map) on the spots of the mountain Open interdisciplinary section slopes, destroyed forests of high watersheds broken, destroyed and subjected to erosion on severe and medium level are re peat-descent natural anthropogenic landscapes.

Nowadays forests on the northern-eastern slope of Small Caucasus do not form zone, the majority of the forests stretch along the river valleys and its slopes in the form of oblong strip.

The complexes washed away, turned bare, broken with ravines and gorges inside forests are decrypted for little areas in cosmic forms and granular structure. Its area in Goygol region covers 500 ha, in Tovuz -1,8 thousands ha and in Gadabay-1, thousand ha.

In the last 30-40 years, turning meadows of forests, their substitution with repeat and anthropogenic complexes have been accelerated. So, in 1980-1990, forests in the northern-eastern part of Small Caucasus were decreased to 10% from 11,5%, i.e., became nearly 1,5% less. Decrease of forests for the next 20 years is better reflected in the map compiled by us. Though artificial afforestation are implemented in Asrikchay, Zayamchay, Shamkirchay, Goshgarchay valleys, de-forestation, turning them anthropogenic have been more rapidly realized.

Irregularly used alpine and subalpine meadow pastures and hay fields are distributed into 3 groups for natural anthropogenic structure and also, level of degradation: summer pastures and hay fields destroyed weakly, medium and severely. More than 60% of all the pastures and hay fields have been exposed to weak and medium destroy (290 thousand ha), nearly 40 % pastures and hay fields to severe destroy and degradation (120 thousand ha). The vast majority of the destroyed pastures are in summer houses on hillock slopes of Gadabay, Dashkasan, Shamkir regions.

There had been many changes in either the areas or structures of agro irrigation complexes where anthropogenic influences were of systematic character.

Agro irrigation complexes in Ganja-Gazakh plain have areas covering tens ha spaces and reminding huge geometrical figures. In 80-90th years of XX century, grain and grape sowings covered the space of 40-50 ha between Injasu-Aghstafachay, grain and cotton sowings of smooth, weak waved plains between Shamkirchay-Zayamchay covered 50-80 ha. But later, after distributing the lands to local people, agro complexes with large areas had been divided into relatively little parts. By setting certain borders, “fences” for their share lands from the spaces of the neighbor farmers, the owners distributed the plain agro landscapes with large areas into parts. Furthermore, the structure of the sowing places had also changed. In the lands of 50- ha where similar agricultural plants were cultivated in the past, different plants of tens had been planted.

The sowing spaces on the mountain slopes cover relatively little areas. Depending on the aptitude, exposition, breaking, absolute height of the area, the sowing places cover the area near from 0,2-1,0 ha till 3-5 ha.

The majority of the sowings existing on medium and high mountains are on artificially terraced slopes.

Nearly 80-90 % of the current grain, vegetable, potatoes sowings of Dashkasan region have been planted on artificially terraced mountain slopes. Terraced sowings in Shamkir and Gadabay regions cover nearly 30 % of all the field-sowing featured agro landscapes.

Fundamentally changed landscapes of techno-genetic origin are formed relating with the works of mining, road construction, water industry. Nearly 10 % natural landscapes of the north-eastern slope of Small Caucasus have been fundamentally changed. These row seliteb complexes, iron mining, stone quarries, channels, reservoirs, roads, communications, differently aimed constructions cover more than 120 thousand ha area.

The share of the fundamentally changed landscapes on sharply assumed sloping plains, wide river valleys, smooth mountain slopes is more. Their share is sharply reduced on high mountain slopes.

In this respect, I have created geo-informational map models through mapinfo system of geographical information of an thropogenic transformation of Azerbaijan’s natural landscapes. The samples of these maps have been checked by A.A.Nabiyev, head of Geography Center at Geo-information and Computer of Baku State University and these samples have been posted on www.ali-nbiyev.narod.ru/azmaps.html. site.

CIS and GIS (Geographical Information Systems) are a complex of hardware, software, personal, geographical information and methods fulfilling the functions of collecting geographical information of large volume, its store, usage, management, on-site analyze, inquiry and presentation and assist the users in decision-making period which relies on directional position for settling public, economical, ecological and other problems of the world.

CIS has five fundamental components:

a) Hardware b) Software c) Data d) People e) Methods The most famous CIS programs include Arcinfo, Intergraph, MapInfo, Netcad (in Turkish and Azerbaijani), Idrisi, Grass and so on.

There are a lot of CIS companies in the Republic of Azerbaijan, too. They use modern methods and technologies for further development of the Republic of Azerbaijan. Not accidentally, some state bodies and offices in the Republic of Azerbaijan also apply CIS. As examples for them we can show State Land and Cartography Committee, State Register Service of Real Estate, State Committee on Real Estate issues, Ministry of Emergency Situations and so on. There are nearly 10 CIS companies in the Republic of Azerbaijan, so they include Integris MMC, CHARTIS MMC, Datum MMC and etc.

Reference :

Open interdisciplinary section 1. Garibov Y.A. Anthropogenic transformation landscapes of Azerbaijan Republic. Baku, DEVELOPMENT PERSPECTIVES OF MOUNTAIN TOURISM IN THE AZERBAIJAN Miriyeva F.M., Student Baku State University, Azerbaijan Conference participant The Development perspectives of mountain tourism in the Republic of the Azerbaijan are analyzed at the article.

Keywords: Tourism, recreation reserves in Azerbaijan, mountain tourism in Azerbaijan, Shahdag winter tourism region.

Open interdisciplinary section Tourism – is one base activity part of modern economy, which has been directed to the paying of people’s necessities and increasing of people’s life level. In the same time, tourism is different from other area of economy, because it is not a cause to the ending of natural resources. Tourism is directed to the export and demonstrates the more stabile in non-constant situation in the world market. The motley of landscape and natural resources of the Republic of Azerbaijan create opportunities for economic development.

Azerbaijan is mountain country for relief. Its area has been encirclement with the Big Caucasus from north, the Small Caucasus from west and the talish mountains from south. The highest mountain of country is grandiose Bazarduzu (height 4466m). The country’s ge ographical location, relief and the Caspian Sea fundamentally influences to the Azerbaijan’s climate. Here we can meets the semi desert and dry field, subtropics, moderate and cold climate. The dry subtropics climate is characteristic for Kur-Araz plain and Absheron. The amp climate damp subtropics climate is observed only in south of Talish mountains. The moderate climate is observed in the slope covered with forests of the Big and Small Caucasus and it is separated to dry, moderate-hot dry, moderate-hot damp and moderate cold climate. The cold climate is observed in the high range of mountains, Big and Small Caucasus’ tops and alpine and subalpine grasslands zone. The weather’s average annual temperature is positive 15 degree in the plains, but it changes till 0 and more down degree in the high hilly regions.


We know that, the mass tourism history in the Azerbaijan is met on the beginning of XX century. The Azerbaijan’s hilly landscape and climate condition is suitable for development of mountain tourism, but is not being used from hilly areas as recreation object in the necessary level. The structures’ natural condition of the Republic of Azerbaijan is suitable for mountain tourism’s development.

The natural-recreation complex grandiose Big Caucasus Mountains and range of Small Caucasus will be able to give impetus to the mountain tourism’s development. The thickness of snow cover in the south slope of Big Caucasus is 1.5m and in the Small Caucasus is 70-80cm. The number of snow days is 80-120 day in the hilly zone and 160-250 days in high hilly. The snow cover more than m in the high tops of Big Caucasus stays constant. The number of snow days in the Small Caucasus’s hilly zone is less from Big Caucasus, there is not snow cover. The thickness and durability of snow cover assumes special importance for winter tourism, that is why Big Caucasus and Small Caucasus’s average mountain area is very useful. Because days constant covered snow is consisted 90 120 days in this area. New sledge road is possible implement from 1300-1500m height in the constant covered snow area. The Small Caucasus, Nakhchivan, Shaki, Zagatala, Gusar, Lerik, Shamakhi and other areas is very important for winter tourism. It is impossible to develop the tourism’s alpinism, mountain- sledge sport types in these regions. Talish Mountains surrounds the south-eastern area of the country and organizes the pass ring from Small Caucasus to the Elbrus Mountains and consists from 2477 m three base range of mountains and some branches. These are very important for construction of the winter health resorts. To create ski jumps, slopes and ascents for drivers sledge and amateur of to drive sleigh is possible.

The “state program about development of tourism in the Republic of Azerbaijan on 2010-2014” has been prepared for solve of the tourism’s problems and for provide the development of tourism area inside country. Project of the Shahdag winter tourism region has been constructed on 2009 and it has been included to this program frame. The Shahdag Winter-Summer tourism Complex is located in the 1850 metres height from sea level in the Hilly Alayan village area, in the 30 km north from Gusar region and was built with the directly task of the President Ilham Aliyev;

carries out activity on 2010.it is first and biggest mountain tourism region in the Azerbaijan. This tourism region will be cause to the increasing of the tourist stream from Western Europe and Asian countries to the Azerbaijan in the future and in the result of this, it will be cause to the mass profit in the Azerbaijan’s economy. Also, mountain tourism is one type of the ecological tourism and that is why it will increase interest to the habit- tradition and cultures of the nation which lives there, without damage to the Gusar region’s nature.

So, we want to underline some features, when used from recreation resources of hilly areas in the Azerbaijan. These are followings:

• Being the useful natural condition for winter tourism and forming of rest;

• Providing of useful usage from existence natural condition and opportunities in the forming of winter tourism and rest;

• Spending the useful time for rest;

• Keeping the ecological balance in the hilly areas, when organizing the sledge line;

• Taking into account the local opportunities, in creation of mountain tourism;

• Supporting of the creating and developing of the mountain tourism by state and suitable organizations;

GIS (GIS Georaphical Information Systems) – this system has been directed to the solving of complex public, economic, ecological and other problems inside world;

is assistant to the users in the deciding time;

is hardware, program, personal, geographical information and methods which implements the big cpacious geographical information’s gathering, depot, usage, leadership, mekansal analyse, surveying and presenting functions.

GIS has got five basis components:

1) Hardware: all of the computer and productions conjunction with it which doing possible the usage of GIS.

2) Software: it is algorithms which high level programmes, for to provide to the user the necessity and function, as moving program, geographic information, depot, to analyse and to show.

3) Data: “information” is one most important component of GIS. Information in appoint with the geographical structure in the graphics structure or schedule information will be able to gather from necessity origins, so present information will be able to purchase.

4) People: GIS technology would be able in limited one structure, without people. Because, people will control the necessary systems on to apply the problems in the world and will prepare the development plans.

5) Methods: Successfully GIS, plan prepared very well and works on work rules. These functions in the special model and applications forms, concerning to each establishment. Getting and presenting of the information, according demand of user Open interdisciplinary section becomes real in the absolute definite standards, so in the rules frame. These applications are connected with the structural es tablishment. For that purpose, legal regulations are implemented and the necessary authorities are prepared and fixed.

There are some GIS companies in the Republic of Azerbaijan. They use from modern method and technologies, for more developing of the Republic of Azerbaijan. It is not accidental that, GIS is applied in some state organs and offices in the Republic of Azerbaijan. For example: State Soil and Makemap Committee, State Register Service of Real Estate, State Committee on Property Problems, Ministry of Emergency Cases and etc..That is why, I have created the geoinformation map models with the mapinfo geographical information system of Ecological tourism regions of the Azerbaijan. These map samples have been checked by A.A.Nabiyev – chief of geoinformation and computer centre of the Baku State University and the same samples have in the following address: www.ali-nbiyev.narod.ru/az.maps.html.

Reference :

1. Soltanova.B.H “Azярbaycan Республикасында Даь туризминин инкишаф етдирилмясиндя тцркийянин тяърцбясиндян истифадя“ //Азярбайъан Ъоьрафийа Ъямиййятинин ясярляри,Бакы-2006, сящифя 292-294.

2. Википедийа азад Интернет енсклопедийасы.

Open interdisciplinary section DIGITAL GEOINFORMATION MAP MODELING FOR INNOV ATION DEVELOPMENT OF TORISM ECONMY OF THE AZERBAIJAN REPUBLIC Nabiyev A.A., doctorant Akhmedova I.S., Student Mustafayeva U.C., Student Imanov R.A., Student Baku State University, Azerbaijan Conference participants Geoinformation modeling is an automated scientific cartographic method of cartographic image of various characteristics of geobjectives (geographical, geological, human, economic, and other objects) in the space of options for viewing all the characteristics of these objects as text, numbers, pictures, sounds, videos, and graphs through electronic pointer on objects reflected on the computer screen.

Geo-information model of the natural resources may include the following: GI maps of water resources of river basins geoinformation maps of hydrological, geomorphological, soil-geographic, biogeographic, climatic, landscape, environmental, and other areas, GI maps of the natural conditions of the territory of the administrative areas and etc. where each contour, line and point object on this map may reflect the number of scientific and technical information by touching an electronic pointer to these objects.

Keywords: geoinformation modeling, tourism economy, geographical information system,informational maps.

Bases of geoinformation modeling.

Geo-information models in economic geography may be followings: structural geo-information maps of natural-resource potentials, geo information maps of economic and administrative regions, structural geo-information maps of agriculture, the structural geoinformation maps of various industrial fields;

-GI maps of agricultural crops;

GI maps of man-made objects (urban and rural settlements);

GI maps of objects of municipal government;

geo information maps of tourist sites with dynamic information basis (textual and numeric data, sound and video files, etc.). Web site www.ali-nabiyev.narod.ru\azmaps.htm. The exemplary embodiments of geoinformation models of Azerbaijan are provided.

Currently, the geographical studies have successfully used GI technology for the rapid preparation of natural and socio ¬ economic and thematic maps of districts, regions and republics, which often need to be updated regarding with the nature of management of natural resources and production.

Geo-information maps can be changed at any time contrarily to the traditional "disposable" paper maps. Namely these characteristics of geo informational maps allow you quickly solve the problems of resource management for on-time completion of engineering, socio economic and administrative activities and projects.

Taking into consideration the importance of creating a GI map with dynamically changing data on space and time at the center of “Geoinformatika and Computer Geography" Baku State University created a digital database of natural-resource potential and socio economic indicators of administrative districts of Azerbaijan (http:// www.ali-nabiyev.narod.ru/azmaps.htm) using geographic information systemsMAPINFOProf.5. Any examples of tourism economy for Azerbaijan given on pictures 1-4.

Pic. 1. Income from tourism activity by economic regions of the Azerbaijan Republic Open interdisciplinary section Pic. 2. Number dispatched tourists by economic region of the Azerbaijan Republic Open interdisciplinary section Pic. 3. Number of received tourists by economic regions Pic.4. Expenditures for tourism activity by economic region of the Azerbaijan Republic Reference:

1. Nabiyev A.A. –The role of computer geography in the innovation developments of economy// In book “FACTORS OF INNOVATION DEVELOPMENTS OF THE MODERN ECONOMY”, Almata, 2011, “ECONOMY” Publisher, page 179-190.(in Russian language) DIGITAL MATHEMATICAL-CARTOGRAPHIC MODELING OF NATURAL CONDITIONS OF AZERBAIJAN ON THE PURPOSE OF INNOVATION DEVELOPMENT OF AGRICULTURE ECONOMY Nabiyev A.A., doctorant Suleymanzade N.E., student Ibadova A.Z., student Abdullayeva A.A., student Baku State University, Azerbaijan Conference participants Presently the following agricultural sectors are developing strongly in Azerbaijan:

- gardening, horticulture and animal Open interdisciplinary section husbandry. Unfortunately, farmers not taking into consideration nature of the variability of natural conditions, take into account only the needs of the market economy while occupying in these sectors. Therefore, sometimes their production would not be cost effective and sometimes will be the victim of various kinds of disaster of natural environment. Since the farmers did not know cyclicity and the degree of variability of different indicators of the environment, such as the steppes of the complexity and variety of the structure of land cover, the complexity and variety of geomorphological and geological structure of territory, the dynamics of the topography, the nature of cycles and the length of the sequence repeatability of rainy and no rainy days, dry winds, and other characteristic of the environment in the long run{1}.

Thus, innovative development of agriculture requires first, taking into account extreme characteristics of natural factors in space and time. Taking into account the development of innovative agricultural economy digital-mathematical cartographic models for the territory of Azerbaijan and geo-information models of administrative and economic regions of Azerbaijan are composed by us. In addition, we have made digital maps of correlation interrelationships between the characteristics of natural conditions and the performance of agriculture in Azerbaijan. Implemented work composes of theoretical and methodological parts and has the following form.

Keyword: innovation, agriculture, digital mapping, mathematical modeling, correlation maps, landscape.

Open interdisciplinary section Theoretical basis of innovation development of the agricultural economy Digital mathematic-cartographic modeling.

Digital mathematical and cartographic modeling is a method of composition of analytical maps on the computer. These maps can be composed in the field of geography, geology, geophysics, geochemistry, meteorology, etc. Digital mathematic-cartographic maps mainly reflect the spatial distribution of quantitative indicators of one or more components of nature (or artificial objects) in the form of contour lines on which through attaching a pointer to the buffer zone between the isolines, can be obtained digital value for each point of modeling of territory. For example, composition of digital maps of the spatial distribution of morphometric indicators of relief and digital maps of the spatial relationships quantitative indices of landscapes and its components (soil and vegetation, hydrography and relief structure, geomorphological and geological structure, etc.) are one of the complex and important problems of modern physical geography. On the first turn, it includes diversity and imbalance maps, maps of dissection and complicity, maps of correlation coefficients (the relationship of two components) and the multiple correlation coefficient maps (interrelation of several components). In addition, you can make maps of the spatial distribution of the trend surfaces of quantitative values of two or more components, using polynomial regression equations(2).

Digital maps reflect the diversity of the natural state of organization of map, but the maps of imbalance reflect the degree of violation of natural structure of the spatial organization, condition of natural environment under the influence of natural and anthropogenic factors. These maps are used for agricultural and economic planning of territory etc.

Digital maps of the spatial relationship of quantitative indicators of landscape and for the first turn, components of nature show various ways of solving the economic and environmental problems on a larger area such as within the mountains, or plain territories. Valuable index of these maps based on fact that through this index we can specify the limits and forms of spatial distribution of relationships. Therefore we can determine the negative and positive components through these maps, which is strongly related to the balance condition of nature.

Unfortunately until now geographers constitute statutory guidance for land use map or maps of morphometric evaluation of natural ball evaluations for carrying out various economic activities without considering the nature and form of spatial relationships (direct or inverse) components of nature.

We know that the use of standard indicators during the economic activities, in case of inverse or direct relationship of space components Methodology of digital map modeling of the structure of nature, must be different.

Methodology of mathematical-cartographical modeling for digital mapping interrelations between component of natue given the next example :

Tale1. Mathematical-cartographical parameters of Azerbaijan landscape and its spatial ements.

In this table -№- number 0f poligons;

x,y- coordinates central point in each square;

s-average parameter Ld-average declination, Lex Pic. 1.Digital maps for spatial distribution of variation Pic.2. Digital map for spatial distribution coefficient asymme coefficient landscape neighbour length.on example Azer- try landscape organization on example Azerbaijan territory baijan territory Open interdisciplinary section Pic.3. Digital map for coefficients of correlation between soil Pic.2. Digital map for spatial distribution coefficient asymme and vegetation cover on the territory of Azerbaijan (by ele- try landscape organization on example Azerbaijan territoryP ments of geographical neighbour) ic.4. Digital map for coefficient of correlation between relief and soil elements on the territory of Azerbaijan (by geographi cal neighbour) coefficien of exses, Las-coefficient of asymmetry, Lmin-minimal, Lmax-maximal,,Lsum-summary, Lnseg-number of segments of geographical neighbour, Lcv-coefficient of variation;

Sm-number of landscape types, Sn-number of individual landscape contours, Sm/n – coefficient of landscape unhomogenity. Using this elements composed the next digital maps which shoving spatial organizations each landscape elements which used in agriculture planning.

Open interdisciplinary section Reference:

1. Nabiyev A.A. –The role of computer geography in the innovation developments of economy// In book “FACTORS OF INNOVATION DEVELOPMENTS OF THE MODERN ECONOMY”, Almata, 2011, “ECONOMY” Publisher, page 179-190.(in Russian language) 2. Mathematical methods in geography. Kazan, KSU, 1971 300 p. (In Russian language) УДК 327. АЛЬТЕРНАТИВНІ ВИМІРИ КРИЗИ Остап’як В.І., здобувач Інститут світової економіки і міжнародних відносин при НАН України, Україна Учасник конференції Аналізуєтьсямісце кризи в умовах глобалізації. Розглядаються форми кризових явищ. Запропоновано альтернативну модель сприйняття і управління кризою.

Ключові слова: глобалізація, світова криза, конфлікт,політична відповідальність.

До пояснення такого неординарного суспільного явища, як криза, слід підходити комплексно, тобто з урахуванням її як деструктивної, так і певної конструктивної ролей. Деструктивні наслідки дії кризи на різні сфери життєдіяльності людини закономірно спричиняють в суспільстві негативне ставлення до цього явища. Водночас очевидно, що перма нентність криз є сталою величиною, що суттєво впливає на перебіг цивілізаційних процесів: Особливо це переконливо видно нині, в період динамічної глобалізації, котра супроводжується не лише низкою локальних криз, а слушно визнається кризою системною.

Зрозуміло, що дослідження цього явища є пріоритетом світової науки, і, передусім, в політології. Зважаючи на це, ми у своїй статті робимо спробу оглядово спинитися на оцінках та підходах до цієї проблеми окремих дослідників з тим, щоб виробити власне тлумачення, яке враховувало б існуючі концепції і давало б змогу об’єктивно сприймати кризу, як складову процесу цивілізаційного поступу. Дослідження специфіки впливу цього явища, скажімо, актуалізоване проблемами розвитку молодих суспільств, хоч, не меншою мірою, стосується і стабільних соціумів. Сприймаючи розвиток суспільства й порівнюючи його з натуралістичною концепцією еволюції Г. Спенсера, так само можна ото тожнювати та аналізувати кризові явища, як еволюційні процеси в глобальній проекції.



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.