, , ,

<<


 >>  ()
Pages:     | 1 | 2 ||

. .. ...

-- [ 3 ] --

84. Chaley, M.B., E.V. Korotkov, and K.G. Skryabin, Method revealing latent periodicity of the nucleotide sequences modified for a case of small samples. DNA Res, 1999. 6(3): p. 153-63.

85. Chechetkin, V.R. and V.V. Lobzin, Nucleosome units and hidden periodicities in DNA sequences. J Biomol Struct Dyn, 1998. 15(5): p. 937 47.

86. Hauth, A.M. and D.A. Joseph, Beyond tandem repeats: complex pattern structures and distant regions of similarity. Bioinformatics, 2002. Suppl 1: p. S31-7.

87. Castelo, A.T., W. Martins, and G.R. Gao, TROLL--tandem repeat occurrence locator. Bioinformatics, 2002. 18(4): p. 634-6.

88. Aho, A.V. and M.J. Corasick, Efficient string matching: an aid to bibliographic search. Communications of the ACM, 1975. 18(6): p. 333 340.

89. Kolpakov, R., G. Bana, and G. Kucherov, mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res., 2003. 31: p.

3672-3678.

90. Laboratory, L.A.N., Tandyman, unpublished.

91. Abajian, C., Sputnik. 1994.

92. Schlotterer, C., Evolutionary dynamics of microsatellite DNA.

Chromosoma, 2000. 109(6): p. 365-71.

93. Kent, W.J., C.W. Sugnet, T.S. Furey, K.M. Roskin, T.H. Pringle, A.M.

Zahler, and D. Haussler, The Human Genome Browser at UCSC. Genome Res., 2002. 12(6): p. 996-100.

94. di Liberto, F., G. Gallavotti, and L. Russo, Markov Processes, Bernoulli Schemes, and Ising Model. Commun. math. Phys., 1973. 33: p. 259-282.

95. Rgnier, M., A unified approach to word occurrences probabilities.

Discrete Applied Mathematics, 2000. 104(1): p. 259280.

96. Boeva, V., J. Clement, M. Regnier, and M. Vandenbogaert. Assessing the Significance of Sets of Words. in Combinatorial Pattern Matching (CPM) 2005. 2005. Jeju Island, Korea: Published online in Lecture Notes in Computer Science, Springer Verlag.

97. Schug, M.D., C.M. Hutter, K.A. Wetterstrand, M.S. Gaudette, T.F.

Mackay, and C.F. Aquadro, The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Mol Biol Evol, 1998.

15(12): p. 1751-60.

98. Boeva, V., M. Regnier, D. Papatsenko, and V. Makeev, Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics, 2006. 22(6): p. 676-684.

99. Batzer, M.A. and P.L. Deininger, Alu repeats and human genomic diversity. Nat Rev Genet, 2002. 3(5): p. 370-9.

100. Lander, E.S., et al., Initial sequencing and analysis of the human genome.

Nature, 2001. 409(6822): p. 860-921.

101. Nagai, K., Y. Nakaseko, K. Nasmyth, and D. Rhodes, Zinc-finger motifs expressed in E. coli and folded in vitro direct specific binding to DNA.

Nature, 1988. 332(6161): p. 284-6.

102. Chavrier, P., P. Lemaire, O. Revelant, R. Bravo, and P. Charnay, Characterization of a mouse multigene family that encodes zinc finger structures. Mol Cell Biol, 1988. 8(3): p. 1319-26.

103. , .., . Vol. 2. 2003, : " "-".

104. , .., . , 1984.

105. Manuelidis, L. and J.C. Wu, Homology between human and simian repeated DNA. Nature, 1978. 276: p. 9294.

106. Rudd, M.K., G.A. Wray, and H.F. Willard, The evolutionary dynamics of alpha-satellite. Genome Res, 2006. 16(1): p. 88-96.

107. Kazakov, A.E., V.A. Shepelev, I.G. Tumeneva, A.A. Alexandrov, Y.B.

Yurov, and I.A. Alexandrov, Interspersed repeats are found predominantly in the old alpha-satellite families. Genomics, 2003. 82: p. 619627.

108. Alexandrov, I., A. Kazakov, I. Tumeneva, V. Shepelev, and Y. Yurov, Alpha-Satellite DNA of primates: Old and new families. Chromosoma, 2001. 110: p. 253266.

109. Rudd, M.K. and H.F. Willard, Analysis of the centromeric regions of the human genome assembly. Trends Genet., 2004. 20: p. 529533.

110. Yu, X., X. Zhu, W. Pi, J. Ling, L. Ko, Y. Takeda, and D. Tuan, The long terminal repeat (LTR) of ERV-9 human endogenous retrovirus binds to NF-Y in the assembly of an active LTR enhancer complex NF Y/MZF1/GATA-2. J Biol Chem, 2005. 280(42): p. 35184-94.

111. Lapuk, A.V., P.P. Khil, I.V. Lavrentieva, Y.B. Lebedev, and E.D.

Sverdlov, A human endogenous retrovirus-like (HERV) LTR formed more than 10 million years ago due to an insertion of HERV-H LTR into the 5' LTR of HERV-K is situated on human chromosomes 10, 19 and Y. J Gen Virol, 1999. 80 (Pt 4): p. 835-9.

112. Cardone, M.F., L. Ballarati, M. Ventura, M. Rocchi, A. Marozzi, E.

Ginelli, and R. Meneveri, Evolution of beta satellite DNA sequences:

evidence for duplication-mediated repeat amplification and spreading.

Mol Biol Evol, 2004. 21(9): p. 1792-9.

113. Gao, Y.G., H. Robinson, R. Sanishvili, A. Joachimiak, and A.H. Wang, Structure and recognition of sheared tandem G x A base pairs associated with human centromere DNA sequence at atomic resolution. Biochemistry, 1999. 38(50): p. 16452-60.

114. Costa, F.F., V.A. Paixao, F.P. Cavalher, K.B. Ribeiro, I.W. Cunha, J.A.

Rinck, Jr., M. O'Hare, A. Mackay, F.A. Soares, R.R. Brentani, and A.A.

Camargo, SATR-1 hypomethylation is a common and early event in breast cancer. Cancer Genet Cytogenet, 2006. 165(2): p. 135-43.

115. Birney, E., et al., Ensembl 2006. Nucleic Acids Res, 2006. 34(Database issue): p. D556-61.

116. Grumbling, G., V. Strelets, and T.F. Consortium, FlyBase: anatomical data, images and queries. NAR, 2006. 34: p. D484-D488.

117. Papatsenko, D.A., V.J. Makeev, A.P. Lifanov, M. Regnier, A.G. Nazina, and C. Desplan, Extraction of functional binding sites from unique regulatory regions: the Drosophila early developmental enhancers.

Genome Res, 2002. 12(3): p. 470-81.



Pages:     | 1 | 2 ||
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .