авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 || 3 | 4 |   ...   | 9 |

«Международное полевое совещание Дата проведения: 13 августа 2009 - 18 августа 2009 Типовые разрезы карбона России и потенциальные глобальные ...»

-- [ Страница 2 ] --

Lithofacies types in both described sections indicate sedimentation on a gently steeping ramp with storm dominated depositional mechanisms in a coastal to shallow marine setting and strong influence of coarse-grained fluvial/fan-deltaic deposits from the hinterland. Just below the storm wave base calcareous algae formed massive mounds [Novak, 2007]. However, in the Auernig Formation nearshore facies types predominate, while the deposition of the Schulterkofel Formation shifted to a more open marine inner shelf environments. The sedimentary succession shows a clear cyclic siliciclastic-carbonate depositional pattern, known as Auernig cyclothems in the similarly developed units in Carnic Alps (Austria/Italy). Rapid facies changes reflect both high frequency and high amplitudes of sea-level changes due to glacio-eustatic control associated with waxing and waning of the Gondwanan ice sheet [Samankassou, 1997].

References Forke H.C. Biostratigraphic Subdivision and Correlation of Uppermost Carboniferous/Lower Permian Sediments in the Southern Alps: Fusulinoidean and Conodont Faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and Southern Urals (Russia) // Facies. 2002. V. 47. P. 201–276.

Forke H.C. Taxonomy, systematics, and stratigraphic significance of fusulinoidean holotypes from Upper Carboniferous sediments (Auernig Group) of the Carnic Alps (Austria, Italy) // Th.E. Wong (Ed.) Proceedings of the XVth Int.

Cong. Carboniferous and Permian Stratigraphy. Utrecht, Netherlands, 10–16 August 2003. Royal Netherlands Acad. Arts Scienc., 2007. P. 259–268.

Forke H.C., Samankassou E. Biostratigraphical Correlation of Late Carboniferous (Kasimovian) Sections in the Carnic Alps (Austria/Italy): Integrated Paleontological Data, Facies, and Discussion // Facies. 2000. V. 42. P. 177–210.

Forke H.C., Kahler F., Krainer K. Sedimentology, microfacies, and stratigraphic distribution of foraminifers of the Lower “Pseudoschwagerina” Limestone (Rattendorf Group, Late Carboniferous), Carnic Alps (Austria/Italy) // Senckenbergiana lethaea. 1998. V. 78 (1/2). P. 1–39.

Forke H.C., Schnlaub H.P., Samankassou E. The Late Paleozoic of the Carnic Alps (Austria, Italy);

Field-trip of the SCCS Task Group to establish GSSP's close to the Moscovian/Kasimovian and Kasimovian/Gzhelian boundaries (31 July — 1 Aug. 2006), Guidebook. Berichte der Geol. Bundesanstalt Wien. 2006. V. 70. 57 p.

Kahler F. Eine neue Fusuliniden-Gemeinschaft in tiefen Oberkarbon-Schichten der Karnischen Alpen // Carinthia II. 1986. V. 176/96. P. 425–441.

Kahler F., Krainer K. The Schulterkofel Section in the Carnic Alps, Austria: Implications for the Carboniferous-Permian Boundary // Facies. 1993. V. 28. P. 257–276.

Kochansky-Devid V. 1965. Die ltesten Fusulinidenschichten Sloweniens. // Geoloki vjesnik. V. 18/2 (1964).

P. 333–336.

Kochansky-Devid V. Mikrofosili in biostratigrafija zgornjega karbona v zahodnih Karavankah // Razprave 4. razr.

SAZU. 1971. V. 14/6. P. 205–211.

Kochansky-Devid V., Ramov A. Zgornjekarbonski mikrofosili in stratigrafski razvoj v zahodnih Karavankah // Razprave 4. razr. SAZU. 1966. V. 9. P. 299–333.

Kochansky-Devid V., Buser S., Cajhen J., Ramov A. Podroben profil skozi trogkofelske plasti v potoku Koutnik v Karavankah // Razprave 4. razr. SAZU. 1973. V. 16/4. P. 169–188.

Krainer K., Davydov V. Facies and biostratigraphy of the Late Carboniferous/Early Permian sedimentary sequence in the Carnic Alps (Austria/Italy) // S. Crasquin-Soleau, A. Izart, D. Vaslet, P. De Wever (Eds.). Peri-Tethys:

stratigraphic correlations 2. Geodiversitas. 1998. V. 20/4. P. 643–662.

Novak M. Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke Mountains (Southern Alps, Slovenia) // Geologija. 2007. V. 50/2. P. 247–268.

Ramov A. Die stratigraphische Stellung der Schichten in der Umgebung von Korensko sedlo (Wurzen-Pass), Westkarawanken // Verh. Geol. Bundesanst. 1976. V. 1976/2. P. 183–189.

Samankassou E. Palaeontological response to sea-level change: distribution of fauna and flora in cyclothems from the Lower Pseusoschwagerina limestone (latest Carboniferous, Carnic Alps, Austria) // Geobios. 1997. V. 30/6.

P. 785–796.

ФОРАМИНИФЕРЫ ВЕНЁВСКОГО И ТАРУССКОГО ГОРИЗОНТОВ ПОДМОСКОВНОГО БАССЕЙНА В РАЗРЕЗАХ ВЕНЁВ МОНАСТЫРЬ И БЁХОВО И ГРАНИЦА ВИЗЕЙСКОГО И СЕРПУХОВСКОГО ЯРУСОВ Р. М. Иванова Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения РАН, Екатеринбург, e-mail: ivanovarm@igg.uran.ru VENEVIAN AND TARUSIAN FORAMINIFERA IN THE MOSCOW BASIN (VENEV MONASTYR AND BEKHOVO SECTIONS): A PROBLEM OF THE VISAN – SERPUKHOVIAN BOUNDARY R. M. Ivanova Zavaritsky Institute of Geology and Geochemistry, Urals Division, Russian Academy of Sciences, Ekaterinburg, Russia, e-mail: ivanovarm@igg.uran.ru The distribution if the stratigraphically important Foraminifera in the Venevian and Tarusian sections in the Moscow Basin (Venev Monastyr on the Osetr River and Bekhovo on the Oka River) is examined.

The Venevian horizon corresponds to the Eostaffella tenebrosa – Endothyranopsis sphaerica Zone, while the Tarusian corresponds to the Neoarchaediscus parvus Zone. The problem of the Visan – Serpukhovian boundary is discussed in the context of the local and regional stratigraphy and the foraminiferal assemblages from both sections are compared to the synchronous assemblages of the Magnitogorsk Megasynclinorium. It has been found that these assemblages are extremely similar.

В 1967 г. мною были изучены фораминиферы и водоросли в 13 опорных и стратотипических разрезах визейского и серпуховского ярусов Подмосковного бассейна для сравнения их погори зонтных сообществ в одновозрастных отложениях Магнитогорского синклинория Урала [Иванова, 1973]. Большая часть подмосковных разрезов была уже известна из работ Д.М. Раузер-Черноусовой [1948], часть материала по скважинам Тверской и Московской областей была любезно предостав лена Е.В. Фоминой.

Венёвский (vn) и тарусский (tr — частично или полностью) горизонты, между которыми устанавливается граница визейского и серпуховского ярусов, были описаны мною в следующих разрезах: Мышигский и Гуровский карьеры в окрестностях г. Алексин, Венёв монастырь на р. Осётр (3 старых каменоломни);

скважина 118298, Симаковский участок, г. Донское;

карьер Заборье, г. Серпухов;

Бёховский карьер по р. Ока, 5 км ниже г. Тарусы (рис. 1);

скв. 05, д. Трестна, Бежецкого района Тверской области (весь нижний карбон).

В предлагаемой публикации показаны только два разреза с венёвскими и тарусскими отло жениями: Венёв монастырь (рис. 1, разрез 4, рис. 2;

табл. 1, стратотип vn) и Бёховский карьер (рис. 1, разрез 7, рис. 3;

табл. 2, опорный разрез tr). В первом из них граница между горизонтами установле на по изменению литологии, резкому обеднению и изменению состава фораминифер, во втором — по кровле ризоидных известняков и тоже по изменению сообщества фораминифер.

В целом для венёвского горизонта характерны пятнистые толсто- и среднеслоистые извест няки, для тарусского — более тонкослоистые с тонкими глинистыми или глинисто-мергелистыми прослоями (3–5–10 мм).

Венёвский горизонт отвечает фораминиферовой зоне Eostaffella tenebrosa – Endothyranopsis sphaerica. В разрезах всех трех карьеров около д. Венёв монастырь фораминиферы венёвского Рис. 1. Схема расположения разрезов венёвских и та русских отложений:1 — Мышигский карьер;

2 — Гуров ский карьер;

3, 4 (г. Сельская);

5 — д. Венёв монастырь;

6 — карьер Заборье;

7 — Бёховский карьер, ниже г. Тарусы;

г. Донское, скв. Условные обозначения: 1 — разрезы (карьеры), 2 — сква жина Fig. 1. A scheme of location of the Venevian and Tarussian deposits: 1 — Mishigski quarry;

2 — Gurovski quarry;

3, 4 — (m. Selskaya);

5 — s. Venev monastir;

6 — Zaborye quarry;

7 — Bekhovski quarry, lower the t. Tarusi;

t. Donskye, hole Legends: 1 — sections (quarries), 2 — a hole горизонта немногочисленны и однообразны по систематическому составу (стратиграфическое распространение их для разреза 4 горы Сельской показано на табл. 1). Основу составляют много численные ирландии, мелкие Endostaffella parva, End. shamordini, лебликии, Neoarchaediscus parvus, N. ex gr. rugosus, Endothyra bradyi, довольно раз нообразные архедискусы: Archaediscus moelleri, eдиничные A. krestovnikovi и A. krestovnikovi pusillus, A. karreri и A. nanus, A. pauxillus, Asteroarchaediscus ovoides, редкие и довольно мелкие Ast. baschkiricus, частые и крупные Endothyranopsis sphaerica, немногочисленные, но постоянные Janischewskina typica.

Только к венёвскому горизонту приурочена Eostaffella tenebrosa. Впервые здесь появляются Biseriella sp. и килеватые Parastaffella struvei supressa, но расцвет их приходится на тарусское время. Обычны ми составляющими венёвского сообщества являются Palaeotextularia consobrina и P. consobrina intermedia, реже — Cribrostomum eximium c подвидами и Сlimacammina prisca. Из водорослей, кроме палеоберезелл, встречаются Calcifolium okense. Мощность венёвских известняков в трех карьерах от 8 (разрез 4) до 10 м (разрез 3).

В основании тарусского горизонта известняки брекчированы, что может свидетельствовать о локальном перерыве, как и в Бёховском карьере, где подошва горизонта проходит по кровле ризоидных известняков венёвского. В составе тарусской толщи, мощностью 1,75 м (табл. 1), резко возрастает количество особей Archaediscus krestovnikovi, Neoarchaediscus parvus, N. ex gr. rugosus, ко торые с трудом отличаются от N. parvus, т. к. и те, и другие мелкие, с L/D = 0,3–0,5 у N. rugosus и L/D = 0,3–0,4 у N. parvus [Гибшман, 2003]. Единичные Endothyranopsis sphaerica, перешедшие Рис. 2. Разрез 4, Венёв монастырь, по р. Осётр. Снизу 8 м венёвских известняков, сверху — 1,75 м тарусских Fig. 2. Section 4, Venev monastir on the R. Osetr. Lower: 8 m of the Venevian limestones, higer: 1.75 m of the Tarussian ones Таблица Стратиграфическое распространение фораминифер в стратотипическом разрезе Венёв монастырь (разрез 4) Тable Stratigraphic distribution of the foraminifers in the stratotype section Venev monastir (section 4) Условные обозначения к табл. 1 и 2. Известняк: 1 — мелкодетритовый, 2 — полидетритовый, 3 — ризоидный;

4 — мергель, 5 — глина, 6 — известняковая брекчия, 7 — не обнажено, 8 — кораллы, 9 — брахиоподы, 10 — мшанки, 11 — гастроподы, 12 — остракоды, 13 — криноидеи, 14 — иглы ежей, 15 — водоросли Legends to tables 1 and 2. Limestone: 1 — finedetrital, 2 — polydetrital, 3 — rhizoid;

4 — marl, 5 — clay, 6 — calcareous breccia, — not exposed, 8 — corals, 9 — brachiopods, 10 — bryozoa, 11 — gastropods, 12 — ostracods, 13 — crinoids, 14 — echinoderms, 15 — algae Рис. 3. Тарусские известняки Бёховского карьера (разрез 7) Fig. 3. Tarussian limestones of the Bekhovski quarry (section 7) в серпуховский ярус, уменьша ются в размерах и утрачивают внутренний стекловато-лучис тый слой. Значительно повыша ется встречаемость Parastaffella struvei supressa и исчезает мас са окских форм. Увеличивается численность Biseriella sp. (parva).

Типично венёвская форма Eostaffella tenebrosa вновь появ ляется только в протвинском го ризонте и отсутствует в тарусско стешевских отложениях. Зональной формой тарусского горизонта мы считаем N. parvus, т. к.

настоящие N. postrugosus не встречаются на этом уровне ни в одном из изученных нами разрезов ни в Подмосковье, ни на Урале. Не была встречена и Pseudoendothyra globosa — вторая зональная форма тарусского горизонта Московской синеклизы, хотя Н.Б. Гибшман при переизучении карьера Заборье [2003] указала здесь ее единичные экземпляры. Этот вид не был обнаружен и М.В. Вдовенко [Махлина и др., 1993] при переизучении многих разрезов Московской синеклизы и Воронежского массива. В качестве зональной формы для тарусского горизонта N. parvus предлагался ранее А.Х. Ка гармановым [1998], М.В. Вдовенко и др. [Vdovenko et al., 1990].

Понятно, что установление границы по принципу первого появления вида нарушается, но есть и другие моменты, которые отличают верхи венёвского и тарусский горизонты. Здесь за метно меняется характер стенки у Endothyranopsis sphaerica, резко возрастает число более тонкостен ных ирландий, Neoarchaediscus parvus и N. ex gr. rugosus, Parastaffella struvei supressa, эндоштаффелл, Archaediscus krestovnikovi c подвидами, появляются Janischewskina delicata.

В Бёховском карьере мощность венёвского горизонта 8 м, как и в разрезе 4, а тарусского го раздо больше — 6,85 м.

У Д.М. Раузер-Черноусовой [1948] — 6,25 м. Ею граница между горизонта ми была проведена выше ризоидных известняков. В переизученном нами разрезе между слоями и 19 (см. табл. 2) отмечен прослой (10 мм) буровато-черной глины, связанной, видимо, с локальным перерывом, но и ризоидные известняки — свидетели того же события, поэтому граница между ярусами может быть чуть выше их. Сообщества фораминифер и венёвского, и тарусского горизон тов здесь несколько богаче (табл. 2), благодаря присутствию в венёве Bradyina rotula, Omphalotis, Mediocris mediocris с несколькими более мелкими подвидами, Eostaffella proikensis. В отложениях тарусского горизонта к уже названным многочисленным A. krestovnikovi, N. parvus, End. parva cледует добавить частые End. shamordini, несколько видов тетратаксисов, Ast. baschkiricus, E. ex gr. postmosquensis, E. ex gr. pseudostruvei. Еще некоторое время, как и в венёве, продолжают встречаться Pseudoammodiscus, единичные A. moelleri, A. karreri, A. nanus, E. ovoidea. В отложениях тарусского горизонта уже не встре чаются Omphalotis, Howchinia gibba, A. gigas, A. convexus, E. tenebrosa, Cribrostomum bradyi, E. mosquensis, Pseudoendothyra propinqua, Mikhailovella, Mediocris. На смену крупным янишевскинам приходят редкие и мелкие J. delicata. Не была встречена и Biseriella sp., хотя в разрезах Венёва монастыря единичные ее экземпляры наблюдаются, как и в других разрезах. Из водорослей обычна Calcifolium okense.

Сравнение фауны фораминифер венёвского и тарусского горизонтов Подмосковного бас сейна и Магнитогорского синклинория Южного Урала показывает, что они имеют не только общие зональные виды, но и единые закономерности развития сообществ во времени. Общими для Таблица Стратиграфическое распространение фораминифер в разрезе Бёхово Table Stratigraphic distribution of foraminifers in the Bekhovo Section венёвского горизонта являются ирландии, Endothyranopsis sphaerica, Janischevskina typica, Eostaffella tenebrosa, Asteroarchaediscus ovoides и Ast. baschkiricus, Neoarchaediscus parvus, Archaediscus krestovnikovi c подвидами, A. gigas, A. karreri, палеотекстулярии, крибростомумы, климакаммины, Endostaffella parva и многие другие характерные виды. Первые и крайне редкие Biseriella начинают свое суще ствование с венёвского времени в обоих регионах. Отличия заключаются в отсутствии гломоспир в Подмосковных разрезах, но их масса в Сызранском районе платформы [Раузер-Черноусова, 1948], а также в размерах и количестве некоторых таксонов. На платформе значительно больше ирландий, эндоштаффелл, но редкие омфалотисы, отсутствуют крупные A. maximus и A. operosus, которые встречаются на Урале вместе с A. gigas и т. д. Более заметна разница в составе водорослей. На Урале в венёвское время доминируют Fasciella kizilia и Ungdarella uralica, в Подмосковье — Сalcifolium okense.

Cообщества фораминифер тарусского горизонта Подмосковья и Магнитогорского синкли нория тоже очень близки, несмотря на некоторые фациальные отличия. Общими являются Endothyra bradyi, Endostaffella parva, Eostaffella ex gr. pseudostruvei, Biseriella (parva?), палеотекстулярии, Cribrostomum bradyi, климакаммины, Archaediscus krestovnikovi, Asteroarchaediscus baschkiricus, Neoarchaediscus parvus, N. ex gr. rugosus. В Подмосковном бассейне отсутствуют Monotaxinoides, своеобразные Insolintitheca horrida, некоторые тетратаксисы, нет такого большого количества и разнообразия прикрепленных форм, как на Южном Урале. В обоих регионах для этого времени характерны Calcifolium okense.

Литература Гибшман Н.Б. К характеристике фораминифер стратотипа серпуховского яруса в карьере Заборье (Подмос ковье) // Стратиграфия. Геол. Корреляция. 2003. Т. 11, № 1. С. 39–63.

Иванова Р.М. К стратиграфии средне- и верхневизейских отложений восточного склона Южного Урала (Магнитогорский синклинорий) // Сборник по вопросам стратиграфии № 15. Екатеринбург, 1973.

С. 18–86. (Труды / Ин-та геологии и геохимии УНЦ АН СССР).

Кагарманов А.Х. Проблемы общей каменноугольной системы // Постановления Межведомственного стра тиграфического комитета и его постоянных комиссий. Вып. 30. СПб., 1998. С. 21–28.

Махлина М.Х., Вдовенко М.В., Алексеев А.С. и др. Нижний карбон Московской синенклизы и Воронежской антеклизы. М.: Наука, 1993. 217 с.

Раузер-Черноусова Д.М. Стратиграфия визейского яруса южного крыла Подмосковного бассейна по фауне фораминифер // Труды / Ин-т геол. наук, 1948. Вып. 62. Геол. сер. (19). С. 3–40.

Vdovenko M.V., Aizenverg D.Y., Nemirovskaya T.I. et al. An overview of Lower Carboniferous biozones of the Russian Platform // J. Foraminif. Research. 1990. V. 20, No 3. P. 184–194.

BASHKIRIAN TO ARTINSKIAN FUSULINIDS OF A LOST CARBONATE PLATFORM IN THE JURASSIC ACCRETIONARY COMPLEX OF JAPAN M. Ichida 1, T. Ohno 2, Y. Nogami Department of Geology and Mineralogy, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan, e-mail: mh-itida@kueps.kyoto-u.ac.jp The Kyoto University Museum, Yoshidahon-machi, Sakyo-ku, Kyoto 606-8501, Japan, e-mail: ohno@inet.museum.kyoto-u.ac.jp Kyoto Women’s’ University, Kitahiyoshi-cho, Higashiyama-ku, Kyoto 605-0926, Japan There are two types of Paleozoic limestone in Japan: continental margin shallow water limestone and pelagic shallow water limestone in Panthalassa. The former is distributed throughout the Kuma Formation (within the Kurosegawa tectonic belt), the Maizuru belt, the Hida marginal belt and the South Kitakami belt. On the other hand, the latter, accumulated at the top of a seamount of Panthalassa, is distributed as block among the Permian accretionary complex (Akiyoshi) belt, and Jurassic accretionary complex (Mino Tamba-Ashio belt).

Many limestone blocks of the Permian accretionary complex, e. g. the Akiyoshi limestone Group (Late Tournaisian – Capitanian) [Ozawa, Kobayashi, 1990;

Toriyama, 1967], are large and span a long stratigraphic range from the Carboniferous to the Permian. In contrast, there is a clear difference between the occurrence of the Carboniferous limestone mass and that of the Permian limestone mass within the Jurassic accretionary complex [Sano, Kojima, 2000]. The limestone blocks in the Jurassic accretionary complex are distributed unevenly, and do not continuously span a long time range from the Carboniferous to the Permian.

Limestone blocks of the Jurassic accretionary complex have been divided into Permian and Carboniferous.

The Permian limestone blocks consist of large scale slabs accompanied by greenstone of probably sea-plateau basalt origin [Koizumi et al., 2006] and are obviously larger than the Carboniferous ones. Their deposition started at the Sakmarian or the Late Artinskian [Sano, Kojima, 2000]. On the other hand, the Carboniferous limestone blocks are distinctly smaller than the Permian and are not accompanied by greenstone. Their fossils show a short and/or discontinuous time range.

The Jurassic accretionary complex often contains limestone breccias which are classified into three types: 1. those formed by large-scale collapse of the seamount at the accretionary point [Sano, Kanmera, 1991];

2. large-scale collapse of an unstable seamount split caused by cooling joints or faults before accretion [Yamagata, 2000];

and 3. gravity flow on the seamount slope [Sano, 1988]. Previous work on limestone breccias has focused on those for which “hinterlands of gravels of limestone breccias” are located nearby.

However, there are many localities of limestone breccias for which no “hinterland” can be assigned. These “unknown limestone breccias” occur in many places within the Tamba belt belonging the Jurassic accretionary complex in Japan. We studied several of these “unknown limestone breccias” in the Tamba belt and found that these might be a gravity flow deposit in the outer apron of fairly large “carbonate platform”.

Limestone breccias of the present study crop out in the Tano complex, Jurassic accretionary complex, of the Western hills of Kyoto, at a place called Nishiyama (Fig. 1). In the Southern Konzo-ji, Iwakuragawa and Nakahata regions of Nishiyama, olistoliths containing the limestone breccia crop out. Description of the lithology at these three sections is as follows in ascending order. The Iwakuragawa section is composed of dolostone, chert, clast to matrix-supported limestone breccia, chert, pebbly dolostone and chert, the Nakahata section of clast-supported limestone breccia, chert and pebbly dolostone, the Southern Konzo-ji outcrop of limestone breccia and chert. The limestone breccias are composed of limestone gravels without terrigenous matter, basaltic gravels and clay matrices. Limestone gravels are thus considered to have originally derived from pelagic shallow water limestone.

The limestone breccias yielded fusulinids of 52 species in 20 genera. Similarities of lithofacies and fusulinids contained in three outcrops within a short distance indicate that these olistoliths might have been derived from the same source material. These fusulinids are contemporaneous or younger than Profusulinella Fig. 1. Index map of study area in age and, as a whole, cover the whole time range from the Late Bashkirian to the Middle to Late Artinskian (Figs. 2, 3). A Permian radiolarian, Pseudoalbaillella sp. and a conodont, Diplognathodus? sp., also occurred in the chert of the Nakahata outcrop.

The limestone breccias in the Nishiyama area might have been deposited by gravity flows in an outer apron of probably one and the same isolated carbonate platform. Furthermore the fairly long time ranges of the accompanying fusulinids indicate that the carbonate platform was probably sufficiently large to sustain shallow water limestone deposition for a long period of time from at least the Late Bashkirian to the Middle to Late Artinskian. The inferred platform of the present study, however, is not found in the Mino-Tamba-Ashio belt, Jurassic accretionary complex in Japan, and is thus termed here a “lost carbonate platform” (Fig. 4).

In spite of being the same age, the limestone within the Jurassic accretionary complex might have taken more time from formation to accretion than the same one within the Permian accretionary complex. Thus the present “lost carbonate platform” might have been in a more pelagic position than the limestones within the Permian accretionary complex in Panthalassa. The rich, diverse fauna of fusulinids from the “lost carbonate platform” of more pelagic location reported in the present study strongly suggest that further detailed study of similar limestone breccias within the Jurassic accretionary complex will enrich our knowledge of the fauna of fusulinids lived on the “lost carbonate platform” of more pelagic location in Panthalassa, and elucidate the global pattern of fusulinid distribution in Panthalassa.

Fig. 2. Representative fusulinids from the Nishiyama limestone breccia, their known biostratigraphic range, and sedimentation time of “hinterland” Gray lines denote biostratigraphic ranges of each fusulinid from the Nishiyama limestone breccia. Black line denotes range assemblage of fusulinids from the Nishiyama limestone breccias and sedimentation time of “hinterland” of the Nishiyama limestone breccias Fig. 3. Fusulinids from the Nishiyama limestone breccia 1 — Profusulinella rhomboides (Lee et al., 1930);

2 — Fusulinella itoi Ozawa, 1925;

3 — Obsoletes obsoletes (Schellwien, 1908);

4 — Montiparus montiparus ((Ehrenberg) sensu von Mller, 1878);

5 — Rauserites stuckenbergi (Rauser-Chernousova, 1938);

6 — Jigulites jigulensis (Rauser-Chernousova, 1938);

7 — Protriticites motsumotoi (Kanmera, 1955);

8 — Triticites suzukii (Ozawa, 1925);

9 — Quasifusulina longissima (von Mller, 1878);

10 — Schwagerina satoi (Ozawa, 1925);

11 — Daixina cf. biconica Rauser Chernousova and Shcherbovich, 1958;

12 — Schwagerina toyamaensis Suyari, 1962;

13 — Pseudofusulina cf. vulgaris (Schellwien and Dyhrenfurth, 1909);

14 — Sphaeroschwagerina pavlovi Rauser-Chernousova, 1960;

15 — Biwaella omiensis Morikawa and Isomi, 1960. 1–3, 8, 15 — 15;

4–7, 9–11, 13 — 8;

12, 14 — Fig. 4. Stratigraphic summary of representative Carboniferous-Permian pelagic shallow-marine carbonates and underlying basaltic rocks of the Mino-Tamba-Ashio belt and the Akiyoshi limestone Group of the Akiyoshi belt. After [Sano, Kojima, 2000], [Toriyama, 1967], Ozawa and Kobayashi [1990] References Koizumi K., Ishiwatari A., Hashimoto N., Ichiyama Y., Muto T. Occurrence and chemical composition of large Late Paleozoic greenstone bodies in the Jurassic and Permian accretionary complexes in Japan: comparison with oceanic plateaux // Abstracts. The 113th Annual Meeting of the Geological Society of Japan. 2006. P. 242. (In Japanese).

Ozawa T., Kobayashi F. Carboniferous to Permian Akiyoshi Limestone Group // Guidebook for Field Trip No 4, Akiyoshi, Benthos '90, the Fourth International Symposium on Benthic Foraminifera, Sendai, Japan, 1990. 31 p.

Pls. 13.

Sano H., Kanmera K. Collapse of ancient oceanic reef complex-What happened during collision of Akiyoshi reef complex?-Sequence of collisional collapse and generation of collapse products // Journal of the Geological Society of Japan. 1991. V. 97. P. 631–644.

Sano H., Kojima S. Carboniferous to Jurassic oceanic rocks of Mino-Tamba-Ashio terrane, southwest Japan // The Memoirs of the Geological Society of Japan. 2000. No 55. P. 123–144. (With English abstract).

Sano H. Permian oceanic — rocks of Mino terrane, central Japan. Part I. Chert facies // Journal of the Geological Society of Japan. 1988. V. 94. P. 697–709.

Toriyama R. The Fusulinacean Zone of Japan // The Memoirs of the Faculty of Science, Kyushu University. Ser. D, Geology. 1967. V. 18, No 1. P. 35–260.

Yamagata T. Chaotically intermixed Permian oceanic rocks of Mino terrane, northern Suzuka Mountains, central Japan // The Memoirs of the Geological Society of Japan. 2000. No 55. P. 165–179. (With English abstract).

MAJOR GUIDE TAXA FOR CORRELATION OF THE MOSCOW AND DONETS BASINS DINANTIAN SUCCESSIONS WITH THE TYPE AREA (BELGIUM) M. R. Hecker Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia;

Royal Belgian Institute of Natural Sciences, e-mail: hecker@paleo.ru;

Maria.Hecker@skynet.be Proposed correlation of the Moscow and Donets Basins is summarized in the Table 1.

The basal unit of the Moscow Basin Dinantian succession (lower Kupavna) is defined by miospores indicating the lowermost part of the VI Miospore Zone (= lower sulcata Zone) [Byvsheva, 1997]. Foraminiferal association of the upper Kupavna – Malevka and most of the Upa is represented by unilocular taxa.

Occurrences of Spinoendothyra spinosa and Tournayella discoidea in the lower Chernyshino [Makhlina et al., 1993] indicate the 8 Mamet Zone and the Cf2 Zone [Hecker, 2002 a]. Chernyshinella glomiformis and Palaespiroplectammina tchernyshinensis marking this interval show later occurrences than in the Dinant Basin, where both species define the lower limit of the MFZ3 Zone [Poty et al., 2006]. Rugose associations of the Malevka – Upa and Chernyshino [Soshkina, 1960] indicate lower – middle Hastarian and lower Ivorian, respectively. Records of Siphonophyllia ex gr. cylindrica in the Malevka suggest correlation with the RC1 Subzone. Sychnoelasma konincki and Cyathoclisia reported from the lower Chernyshino define the RC3 Zone in Belgium [Poty et al., 2006], whereas Caninophyllum commonly entering at the same level is recorded in the Moscow Basin in the Upa. The hiatus near the Tournaisian – Visan limit in the southern part of the basin lies within the Glubokovskoe formation and separates its lower and upper members. It corresponds to the PC miospore zone established in the middle Radaevka of the Volga-Urals;

the lower limit of the latter being correlated with the lower limit of the Pu Miospore Zone on the common occurrence of Lycospora pusilla [Byvsheva, 1997]. Records of Siphonodendron junceum and Lithostotion maccoyanum in the upper middle Tula suggest correlation with the RC7 Subzone (upper Asbian), and miospore, foraminiferal and rugose occurrences in the Aleksin include diagnostic upper Warnantian (Brigantian) taxa [Hecker, 2002 a, 2002 b]. The base of the Aleksin is marked by Tripartites vetustus which defines the lower limit of the Brigantian [Clayton et al., 1990]. Lower Brigantian guide taxa Loeblichia ukrainica, Lonsdaleia floriformis and Orionastraea [Mitchell, 1989;

Conil et al., 1990;

Poty et al., 2006] define the lower Aleksin. Janishewskina reported from the upper Aleksin [Makhlina et al., 1993] marks the lower limit of the upper Cf6 [Conil et al., 1990]. Presence of Asteroarchaediscus bashkiricus in the Venev agrees with the entry of this species in the upper 16 sup. Mamet Zone [Mamet, 1974]. Gnathodus bilineatus makes its first occurrence high in the succession, near the base of the upper Tula. The Visan – Serpukhovian boundary cannot be defined either based on conodonts, ammonoids or foraminifers [Hecker, 2002 a;

Hecker and Osipova, 2007].

The basal unit of the Donets Dinantian succession (lower Bazaliev) yields association of unilocular foraminifers [Poletaev et al., 1990] indicating the MFZ1 Zone. Conilophyllum sp. restricted to the middle Bazaliev suggests correlation with the Cf1 (lower MFZ2) [Hecker, 2002 a]. Prochernyshinella disputabilis, which defines the lower limit of the Cf1 Subzone (MFZ3) in Belgium [Conil et al., 1990;

Poty et al., 2006], enters in the Donets Basin at a lower level and is characteristic of the middle – upper Bazaliev (approximately Cf1–, MFZ2). Common occurrence of Chernyshinella glomiformis and Laxoendothyra parakosvensis in the Karakuba and records of Tuberendothyra tuberculata in the Volnovakha [Poletaev et al., 1990] indicate the MFZ3 and MFZ4 Zones, respectively. Records of Cyathoclisia modavensis in the Volnovakha suggest correlation with the Caninophyllum patulum zone in the sense of Mitchell [1981] and the RC3 Zone.

Palaespiroplectammina tchernyshinensis marks the lower limit of the Volnovakha and shows later occurrence than in the Dinant Basin. Characteristic Upper Tournaisian Carbonella, Planoendothyra, Spinoendothyra, Inflatoendothyra and Dainella enter in the Karpovka and indicate the 9 Mamet Zone and the upper part of the Cf3 Zone (MFZ6). Sychnoelasma commonly defines the lower limit of the Upper Tournaisian [Mitchell, 1981;

Hecker, 2002 a;

Poty et al., 2006], but shows late occurrence in the Donets Basin and enters in the Table Correlation of the Dinantian of the Moscow and Donets Basins with the type area (Belgium) upper Karpovka. The base of the Dokuchaevsk is defined by the common occurrence of Eoparastaffella and Levitusia humerosa [Aizenverg et al., 1975;

Poletaev et al., 1990]. These taxa indicate the “Avins event” [Poty et al., 2006] and suggest correlation with the MFZ8 Zone. Records of Siphonophyllia ex gr. caninoides [Vassilyuk, 1960] in the Dokuchaevsk allow correlation with the upper Cf41 Subzone. The base of the Glubokaya coincides with the GSPP for the base of the Visan defined by the appearance of Eoparastaffella simplex [Vdovenko, 1964]. Occurrences of Eoendothyranopsis donica in the Vb–Vc zones and of Globoendothyra numerabilis in the Vd1 subzone [Poletaev et al., 1990] indicate the upper MFZ9 Zone and the 13 Mamet Zone, respectively. Haplolasma subibicinum reported from the Vb zone [Vasilyuk, 1960] marks the lower limit of the Visan [Conil et al., 1990;

Poty et al., 2006]. Records of Uralodiscus rotundus and Paraarchaediscus in the Sukhaya [Poletaev et al., 1990] indicate the MFZ11 Zone. The base of the Styla approximates to the lower limit of the Upper Visan [Hecker, 2002 a];

basal Styla yields Bollandites donetsensis, B. mediocris, Bollandoceras stylensis and Dimorphoceras sp. [Kuzina, Poletaev, 1991] indicating the upper Bollandites – Bollandoceras zone in the sense of Riley [1990]. Vissariotaxis, double-wall Palaeotextularia, primitive Howchinia and Globoendothyra globulus characteristic of the upper Styla – lower Donets [Poletaev et al., 1990] indicate the lower Warnantian (Cf6- Subzones, 15 Mamet Zone). The base of the middle Donets (vf2 zone) correlates with the lower limit of the uppermost Visan on the occurrence of miospores Tripartites vetustus [Clayton et al., 1990]. Occurrences of Goniatites aisenvergi, Loeblichia ukrainica and Janishewskina in the middle Donets, and occurrences of Asteroarchaediscus bashkiricus in the upper Mezha [Poletaev et al., 1990] indicate the Cf6 Subzone (MFZ 15) and the upper 16 sup. Mamet Zone, respectively. Aulophyllum fungites, Siphonodendron junceum and Palastraea regia reported from the Donets, and Corwenia rugosa and Orionastraea aff. prerete reported from the Mezha [Vassilyuk, 1960;

Poletaev et al., 1990] indicate the upper Asbian – lower Brigantian and higher intervals of the Brigantian (coral faunas I–J), respectively [Hecker, 2002 a, b]. Gnathodus bilineatus enters high in the succession, near the base of the middle Donets [Poletaev et al., 1990]. The Visan – Serpukhovian boundary cannot be defined either based on conodonts, ammonoids or foraminifers.

References Aizenverg D.E., Lagutina V.V., Levenshtein M.L. et al. (Eds.). Excursion guidebook for the Donets Basin // Moscow:

Nauka, 1975. 360 p.

Byvsheva T.V. Spores from the Early Carboniferous of the Russian Platform and interregional correlation // Prace Panstwowego Institutu Geologicznego. 1997. Vol. 157. P. 53–61.

Clayton G., Lobodziak S., Streel M. et al. Palynological events in the Mississippian (Carboniferous) of Europe, North Africa, and North America // Courier Forschungsinstitut Senkenberg. 1990. Vol. 130. P. 79–84.

Conil R., Groessens E., Laloux M. et al. Carboniferous guide Foraminifera, corals and conodonts in the Franco-Belgian and Campine Basins: their potential for widespread correlation // Courier Forschungsinstitut Senkenberg. 1990.

Vol. 130. P. 15–30.

Hecker M.R. Correlation of the Dinantian of the East European Platform and Urals with the type area (Belgium) // Canadian Society of Petroleum Geologists Memoirs. 2002 a. No 19. P. 51–78.

Hecker M.R. Revision of Orionastraea Smith, 1917 (Rugosa) from the Lower Carboniferous (uppermost Visan) of the Moscow Basin, and comments on patterns of variability, evolution and range of the genus in Eastern Europe and in the British Isles // Coloquios de Paleontologa. 2002 b. Vol. 53. P. 3–20.

Hecker M.R, Osipova A.I. Visan/Serpukhovian transition in the Moscow Basin (Lower Carboniferous, Russia), a review // Th.E. Wong (Ed.) Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, the Netherlands, 10–16 August 2003. 2007. P. 89–96.

Kuzina L.E, Poletaev V.I. New Visan ammonoids from the Donbass and Dnieper-Donets depression // Paleontologi cheskiy Zhurnal. 1991. No 3. P. 35–45.

Makhlina M.Kh., Vdovenko M.V., Alekseev A.S. et al. Lower Carboniferous of the Moscow Syneclise and Voronezh Anteclise. Moscow: Nauka, 1993. 219 p.

Mamet B. Une zonation par foraminifres du Carbonifrre Infrieur de la Tethys Occidentale // Compte rendu VII Congrs international de stratigraphie et de gologie du Carbonifre 3, Krefeld, Germany, 1974. P. 391–408.

Mitchell M. The distribution of Tournaisian and early Visan (Carboniferous) coral faunas from Bristol and South Wales areas of Britain // Acta Palaeontologica Polonica. 1981. Vol. 25. P. 577–585.

Mitchell M. Biostratigraphy of Visan (Dinantian) rugose coral faunas from Britain // Proceedings of the Yorkshire Geological Society. 1989. Vol. 47, No 3. P. 233–247.

Poletaev V.I., Aizenverg D.E., Vdovenko M.V. Unified stratigraphic scheme of the Lower Carboniferous of the Don Dnieper depression // Izvestiya AN SSSR, seriya geologicheskaya, 1989. No 1. P. 130–133.

Poletaev V.I., Brazhnikova N.E., Vasilyuk N.P. et al. Local zones and major Lower Carboniferous biostratigraphic boundaries of the Donets Basin (Donbass), Ukraine, U.S.S.R. // Courier Forschungsinstitut Senkenberg. 1990.

Vol. 130. P. 47–59.

Poty E., Devuyst F.-X., Hance L. Upper Devonian and Mississippian foraminiferal and rugose coral zonations of Belgium and Northern France: a tool for Eurasian correlations // Geological Magazine. 2006. Vol. 143. P. 829– 857.

Riley N.J. A global review of mid-Dinantian ammonoid Biostratigraphy // Courier Forschungsinstitut Senkenberg.

1990. Vol. 130. P. 133–143.

Skompski S., Alekseev A., Meishner D. et al. Conodont distribution across the Visan/Namurian boundary // Courier Forschungsinstitut Senckenberg. 1995. Vol. 188. P. 177–209.

Soshkina E.D. Tournaisian Rugosa and their relationships with Devonian rugose corals // V.A. Varsonof’eva (Ed.) Collected papers on geology and palaeontology. Syktyvkar: USSR Academy of Sciences Komi Branch, P. 272–329.

Vasilyuk N.P. Lower Carboniferous corals of the Donets Basin. Kiev: Naukova Dumka, 1960. 179 p.

Vdovenko M.V. Evolution of the genus Eoparastaffella – Pseudoendothyra // Doklady AN USSR. Stratigrafiya. Paleonto logiya. 1964. Vol. 48. P. 16–30.

UPPER VISAN AND LOWER SERPUKHOVIAN CONODONTS FROM THE LOWER AND UPPER LIMESTONE FORMATIONS OF CENTRAL SCOTLAND, AND THE BOWLAND SHALE FORMATION, CRAVEN BASIN, ENGLAND UK M. T. Dean British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, Scotland, UK, email: mtd@bgs.ac.uk Dean [1987] described conodonts from the Lower and Upper Limestone formations (Yoredale facies) of central Scotland assignable to the Lochriea mononodosa to lower Gnathodus bilineatus bollandensis zones of the standard British scheme. Twelve species were considered to be of biostratigraphical significance and (because the element ranges were unknown) provided the foundation for establishing 2 conodont faunas.

The Gnathodus girtyi fauna occurred in the upper Visan (P2) Lower Limestone Formation, whilst the Gnathodus bilineatus – Lochriea spp. fauna characterised the lower Serpukhovian (E1b–E2b) Upper Limestone Formation. ‘Gnathodus’ symmutatus was confined to the former whilst Lochriea commutata, L. mononodosa and L. nodosa were dominant species in the latter. At the time, Dean [1987] recognised that the L. nodosa P1 element was highly variable in platform configuration, in the development of nodes, and in the disposition of the nodes relative to the carina. He synonymised L. cruciformis (found in his specimens) with L. nodosa, but noted Higgins [1975] remark that this species may be of stratigraphical value. Present work involves a review of Dean’s [1987] P1 elements with particular emphasis on the Lochriea lineage present, and a econnaissance study of conodonts collected from ammonoid marine bands (P1b–E1b) in the mainly hemi pelagic Bowland Shale Formation, Craven Basin, England, UK. The latter study has only just begun.

References Dean M.T. Carboniferous conodonts from the Lower and Upper Limestone groups of the Scottish Midland Valley // Unpublished M. Phil thesis, University of Nottingham, 1987. UK, 205 pages, 11 plates.

Higgins A.C. Conodont zonation of the late Visan – early Westphalian strata of the south and central Pennines of northern England // Bulletin of the Geological Survey of Great Britain, 1975. 53. P. 1–90, 18 plates.

MOSCOVIAN-KASIMOVIAN TRANSITION IN DONETS BASIN:

FUSULINID TAXONOMY, BIOSTRATIGRAPHY CORRELATION AND PALEOBIOGEOGRAPHY V. I. Davydov, R. R. Khodjanyazova Departament of Geosciences, Boise State University, Boise, ID, 83725, e-mail: vdavydov@boisestate.edu The Carboniferous succession in Donets Basin is famous on both diverse and abundant marine fossils and plants, including major for biostratigraphy groups (foraminifera, ammonoids, conodonts, corals) and the region is important as a link of marine and continental sections [Aizenverg et al., 1963]. Thus, the accurate and well documented taxonomies and phylogenies in Donets Basin are very critical for such correlation.

Although being within Russian Platform during Carboniferous it was located within subtropical area and belongs to Tethyan realm [Davydov, 1992].

The aims of this paper are to carefully document taxonomy and distribution of fusulinid faunas in Moscovian-Kasimovian transition in Kalinovo key-section of Donets Basin and correlate this transition to the type sections in Moscow Basin.

The fusulinids in Donets Basin became known since 19th century thanks to exceptional preservation and abundance in limestones throughout Carboniferous. Since 1920th–30th fusulinids became one of the important chronostratigraphic tools and are widely utilized in Donets Basin. F.S. Putrja, M.I. Sosnina, and especially G.D. Kireeva developed fusulinid taxonomy and biostratigraphy for the Moscovian-Kasimovian transition in Donets Basin.

Following fusulinid assemblages are recognized within Moscovian-Kasimovian transition in Donets Basin.

N1 Limestone: Beedeina majiensis (Sheng), Hemifusulina graciosa (Lee), H. bocki Moeller, Neostaffella spaheroidea (Ehrenberg emend. Moell.), Taitzehoella perseverata (Saf.), Fusiella spatiosa Sheng, F.

praelancetiformis Saf.

N2 Limestone — Protritictes ovatus Putrja, Fusulina intermedia Rauser and Gryzlova, F. mosquensis (Rauser), Quasifusulinoides quasifusulinoides (Rauser), Fusiella lancetiformis Putrja, F. paradoxa, Lee and Chen, F. praelancetiformis Safonova, Taitzehoella sp. nov., Pseudostaffella distorta Pogrebnjak.

N3 Limestone — Pr. manukalovae Kireeva, Pr. parvus Kireeva, Pr. variabilis Bensh, Pr. subovatus Bensh, Quasifusulinoides quasifusulinoides (Rauser), Q. pulchellus (Gryzlova), Q. intermedius (Rauser and Gryzlova), Q. bosbiensis Bogush, rare Neostaffella luganskiensis (Pogrebnjak), Ozawainella sp., Fusiella paradoxa Lee and Chen, Schubertella and Eostaffella.

The rest of Limestone of N3 group contains poorly preserved Fusiella, Protriticites, Obsoletes (in N Limestone) and Quasifusulinoides.

O1 Limestone — diverse Obsoletes and rare Quasifusulina (Q. pseudotenuissima Lev. and Dav.), Montiparus montiparus (Ehrenberg emend. Moeller), M. paramontiparus Rosovskaya, Fusiella sagyrdashiensis Davydov, F. lancetiformis Putrja etc.

O1 Limestone — Montiparus become dominant and Obsoletes are rare in this limestone;

first Schwageriniformis, i. e. S. rosovskyi (Kireeva) and S. bellus (Rosovskaja) are also found.

O2 Limestone — contains Schwageriniformis calitvicus (Putrja), S. karavanensis (Bensh), S. rarus (Shlykova), Quasifusulina pseudotenuissima Leven and Davydov, Q. eleganta Shlyk., Montiparus rhombiformis Rosovskaya, M. paramontiparus Rosovskaya, M. umbonoplicatus Rosovskaya, advanced M. subcrassulus Rosovskaya, and rare Obsoletes paraovoides Bensh.

O3 Limestone — only Quasifusulina and Quasifusulinoides are found there.

O4 Limestone — Quasifusulina and Quasifusulinoides are dominated in this limestone;

one specimen of Rauserites dictiophorus Rosovskaya, is also found.

1 O4 and O4 Limestone — predominantly Rauserites occur in this limestone, such as R. panteleevi Rauser, R. triangulus Rosovskaya, R. quasiarcticus (Solovieva), R. elongatissimus Rosovskaya, R. pseudoarcticus (Rauser), R. irregularis rugosus Rosovskaya, R. henbesti (Igo), R. protorossicus Davydov.

Fig.

O5 Limestone with Rauserites ofive Davydov, R. henbesti (Igo), R. macilentus Leven and Davydov, Quasifusulina eleganta Shlykova.

O6 Limestone — the environmental conditions there were not favorable for fusulinids and only small Schwageriniformis and rare Rauserites such as R. elongatissimus Rosovskaya, R. triangulus Rosovskaya, and Quasifusulina elongate Shlyk., are found.

O6 Limestone with silicified Rauserites and Quasifusulina elongate Shlykova, also contained one incomplete specimen of Rauserites rossicus rossicus (Schellwien) O7 Limestone — Rauserites rossicus rossicus (Schellwien), R. jucundus Leven and Davydov, R. fortissimus (Rauser), R. postarcticus (Rauser) etc.

Limestone N1 contains typical Moscovian forms that in Moscow Basin characterized upper Myachkovian Domodedovo Fm [Davydov, 1997;

Makhlina et al., 2001]. In N2 Limestone rare Quasifusulinoides and yet primitive Protriticites, the first elements of Kasimovian fauna, appear along with typical Moscovian forms such as Fusulina mosquensis Rauser, Taitzehoella perseverate (Rauser) and single specimen of Pseudostaffella distorta (Pogrebnjak). Presence of Quasifusulinoides and primitive Protriticites suggest correlation of this limestone with Peskovian Horizon in Moscow Basin [Davydov, 1997, 2003]. Fusulinids in N3 Limestone changed dramatically.

Advanced Protriticites with thick wall penetrated with coarse pores (see Fig.) and Quasifusulinoides are dominated there. Only one specimen of Neostaffella luganskiensis (Pogrebnjak) has been found. In Moscow Basin similar assemblage of advanced Protritcites found starting from “lyska” local unit at the top of Peski Fm and extended into the Lower Krevyakian Suvorovo Fm [Davydov, 1997;

Goreva et al., 2007]. Abundant Obsoletes that are found in O1 Limestone suggest its correlation with the Upper Krevyakian Voskresensk Fm where Obsoletes first occur. However, Montiparus montiparus and M. paramontiparus that are also found in O1 Lm of Donets Basin, in Moscow Basin occur only in top of Ratmirovo Fm [Davydov, 1997] or basal Nevero Fm [Goreva et al., 2007] of Khamovnikian Horizon. It seems that analogue of Voskresensk Fm in Donets Basin is he upper part of Isaevskaya (N) Fm (N5 and N5). O1 Limestone correlates in Moscow Basin with basal and lower Neverovo Fm. Middle Neverovo of Moscow Basin where M. subcrassulus is found [Goreva et al., 2007] can be correlated with O2 Limestone. The correlation of O3 Limestone is uncertain because no characteristic faunas are found there. O4 Limestone with first Rauserites definitely correlates in Moscow Basin with lower Dorogomilovian Perkhurovo Fm where Rauserites first occur [Makhlina et al., 1979]. O1 through O4 and O5 Limestone correlate with middle and part of Dorogomilovian Horizon in Moscow Basin although fusulinids there are not well studied. Correlation of O6 Limestone is not clear. Based on occurrence of Rauserites rossicus, O6 and O Limestone correlate with the Lower Gzhelian Upper Rusovkian Fm in Moscow Basin [Davydov et al., 2008], O6 Limestone conventionally correlates with the Lower Rusovkian Fm.

Conclusions 1. Within the Donets Basin succession, the traditional base of Krevyakian can be placed at N3 Limestone in Kalinovo section;

the upper part of Krevyakian Horizon, Suvorovo Fm, correlates with N5 and N5 interval;

Ratmirovo and Lower Neverovo of Khamovnikian Horizon correlate with O1 and O1 Limestone;

Middle and Upper Neverovo — with O2 and O3 Limestone.

2. Only advanced Protriticites can be used to define the traditional base of Kasimovian Stage. The FAD of Obsoletes is higher at the base of Voskresensk Fm. Thus, Krevyakian Horizon in Moscow Basin can be divided into two fusulinid zones: Protriticites pseudomontiparus (Suvorovo Fm) and Obsoletes obsoletus (Voskresenk Fm). Consequently, in Donets Basin these two zones correspond to N3–N4 (Protriticites pseudomontiparus) and N5–N5 (Obsoletes obsoletus) intervals.

References Aizenverg D.E. et al. Carboniferous stratigraphy of the Donets Basin. Kiev: Publishing House of Ukranian Academy of Sciences. 1963. 183 p.

Davydov V.I. Subdivision and correlation of Upper Carboniferous and Lower Permian deposits in Donets Basin according to fusulinid data // Soviet Geology. 1992. № 5. P. 53–61. (In Russian).

Davydov V.I. Middle/Upper Carboniferous Boundary: the problem of definition and correlation // Proceeding of the XIII International Congress on the Carboniferous and Permian / Edited by M. Podemski et al. Warszawa, 1997. P. 113–122.

Davydov V.I. et al. Faunal assemblage and correlation of Kasimovian-Gzhelian transition at Usolka section, Southern Urals, Russia (a potential candidate for GSSP to define base of Gzhelian Stage) // Stratigraphy. 2008. 5 (2).

P. 113–135.

Davydov V.I., Leven E.Ya. Correlation of Upper Carboniferous (Pennsylvanian) and Lower Permian (Cisuralian) Marine Deposits of the Peri-Tethys // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. 196 (1–2). P. 39–57.

Goreva N.V. et al. Afanasievo section — neostratotype of Kasimovian Stage (Upper Pennsylvanian Series), Moscow Basin, central Russia // Newsletter on Carboniferous Stratigraphy. 2007. 25. P. 8–14.


Makhlina M.K. et al. Stratigraphy, biostratigraphy and paleogeography of Upper Carboniferous of the Moscow Syneclise // Stratigraphy, paleontology and paleogeography of Carboniferous of the Moscow Syneclise. / Edited by M.

K. Makhlina, C. M. Shik. Moscow, 1979. P. 25–69. (In Russian).

Makhlina M.H., Alekseev A.S., Goreva N.V., Isakova T.N., Drutskoj V.N. Middle Carboniferous of the Moscow Syneclise (Southern Part). Vol. 1. Stratigraphy / Paleontological Institute of RAS. Moscow, 2001. 244 p. (In Russian).

BASHKIRIAN-MOSCOVIAN TRANSITION IN DONETS BASIN:

THE KEY FOR TETHYAN-BOREAL CORRELATION V. I. Davydov Departament of Geosciences, Boise State University, Boise, ID, 83725, e-mail: vdavydov@boisestate.edu The traditional position of the base of the Moscovian Stage in the Moscow Basin (MB) is at the base of the continental Azov Series [Khvorova, 1953]. Fusulinids Aljutovella aljutovica (Rauser) and Schubertella pauciseptata Rauser that were found in the overlying Aljutovo Formation are considered as practical indexes to define the base of Moscovian Stage in western Pangaea [Rauser-Chernousova and Reitlinger, 1954].

The Moscovian of the MB was redefined recently with its lower boundary at the base of the marine Aljutovo Formation, slightly above the traditional position [Makhlina et al., 2001 b]. Sharp contact and unconformity at the base of Moscovian Stage in MB is preventing in principal the understanding of fusulinid phylogenies within the Bashkirian-Moscovian transition in the region. Besides this, Boreal fusulinids are dominated in MB that makes correlation of Moscovian and its subdivisions even with nearest successions in Tethys difficult [Fohrer et al., 2007;

Leven et al., 2006]. Donets Basin (DB) in this respect is a key region because first the Moscovian-Bashkirian marine transition there is essentially complete. Second, the region, being close to MB, possesses both Boreal and Tethyan fusulinid taxa, although the latter are dominated in assemblages.

Thanks to F.S. Putrja, N.E. Brazhnikova, G.D. Kireeva, V.F. Manukalova and many other foraminiferal workers, the fusulinid taxonomy and refined biostratigraphy for the Bashkirian-Moscovian transition in DB has been established. The base of Moscovian in the Donets Basin was placed either at the I2 limestone [Grozdilova, 1966], at the K1 limestone [Kireeva, 1951], or up to the K3 limestone where Aljutovella aljutovica (Rauser) was first reported [Aizenverg et al., 1963;

Putrja, 1956]. The conodont species Declinognathodus donetzianus designated from DB [Nemyrovska, 1999] has been proposed as an index of the base of the global Moscovian Stage [Groves and Group, 2007]. The FAD of this species in DB is at the K1 limestone [Ueno, Nemirovskaya, 2008]. Conodont Diplognathodus ellesmerensis Bender, recently proposed as another potential index for the base of the global Moscovian Stage [Wang et al., 2007], appears in the DB at the K3 limestone [Nemyrovska et al., 1999].

In this study the following fusulinid assemblages were recognized within Bashkirian-Moscovian transition in DB (Fig. 1):

I2 Limestone: Eostaffella lepida Grozdilova and Lebedeva, E. korobcheevi Rauser, Ozawainella nikitovkensis (Brazhnikova), O. pararhomboides Manukalova, O. plana Potievskaya, O. crassiformis Putrja, Neostaffella pseudoquadrata (Manukalova), Profusulinella pseudorhomboides Putrja, Pr. rhomboides (Lee and Chen), Aljutovella skelnevatica (Putrja), Verella prolixa (Sheng).

Most of Ozawainella in this assemblage appear in late Bashkirian and ranged into early Moscovian.

Neostaffella pseudoquadrata (Manukalova) originally described from K3 and K8 Limestone in DB, and is an index of lower Vereian fusulinid zone in S. Hissar, C. Asia [Bensh, 1969]. Pr. pseudorhomboides Putrja, and Al. skelnevatica described from K3–K5 Limestone in DB [Putrja, 1956] and known from Aljutovo Fm in MB [Makhlina et al., 2001 a] and in upper Vereian in S. Hissar, C. Asia. Verella prolixa with weak septal fluting originally described from Hsiaoshin Lm of lower Penchi Series somewhat transitional in morphology between V. varsanofieva (latest Bashkirian in east of Russian Platform, Central Asia and C. Urals) and Verella? transiens Ginkel and Villa from Vereian of Cantabrian Mountains [van Ginkel, 1987].

I3 Limestone — Verella? transiens Ginkel and Villa transitional form to Paraeofusulina with well developed septal fluting described from the base of Lena Fm in Cantabrian Mnt and correlates with middle Vereian [van Ginkel, 1987].

I4 Limestone — Ozawainella paraumbonata Potievskaya, Aljutovella skelnevatica (Putrja), Al. aff.

skelnevatica (Putrja), Profusulinella? sp. More advanced forms of Al. skelnevatica group occur in this Lm, but none of the species in this assemblage provide precise correlation with type section in Moscow Basin.

K1 Limestone — Novella intermedia Rauser, Millerella symmetrica Manukalova, Ozawainella pseudotingi Putrja, O. pararhomboides Manukalova, Oz. mosquensis Rauser, Hanostaffella aff. pseudoquadrata (Manukalova), Fig. 1. Distribution of fusulinids within the Bashkirin-Moscovian transition in Donets Basin Paraeofusulina imporplana (Rumjantzeva), Profusulinella sp. The assemblage possesses several new and prominent elements. Oz. mosquensis usually considered characteristic for early Kashirian and younger sediments. First Paraeofusulina, i. e. P. imporplana described from lower Moscovian in Central Kizilkum in association with Al. aljutovica and other typical Vereian species [Rumjantzeva, 1974]. The rest of the taxa are range from upper Bashkirian into lower Moscovian.

K2 Limestone — Eostaffella grozdilovae Maslo and Vachard, E. levenconica Manukalova, Millerella angusta (Kireeva), M. uralica Kireeva, M. symmetrica Manukalova, Ozawainella mosquensis Rauser, Oz. cf.

nikitovkensis (Brazhnikova), Oz. concinna Dzhenchuraeva, Grovesella tabasensis Davydov and Arefifard, Schubertina miranda (Leontovich), Sch. pauciseptata (Rauser), Sch. anachomata (Rauser), Neostaffella rotundata (Bensh), N. syzranica (Rauser and Safonova), N. larionovae (Rauser and Safonova), Eofusulina triangula (Rauser and Beljaev), E. ozawai (Tor.), Paraeofusulina trianguliformis Putrja.

The limestone undoubtedly correlates with Vereian because it has several typical species and genera.

First of all, abundant Schubertina are found in this assemblage, including Sch. pauciseptata — an index of lower Vereian in MB [Makhlina et al., 2001 a]. Advanced Neostaffella, i. e. N. larionovae, N. syzranica and N. rotundata reported from Kashirian Horizon and its analogues [Bensh, 1969;

Makhlina et al., 2001 a]. First Eofusulina, i. e. E. triangula, is ranging from Vereian upwards. Although Paraeofusulina trianguliformis described from K5 Lm, it is first appears in K2 Lm.

K3 Limestone — Eostaffella grozdilovae Maslo and Vachard, Schubertina galinae (Safonova), Neostaffella rotundata (Bensh), Profusulinella pararhomboides Rauser and Beljaev, Pr. pseudorhomboides Putrja, Paraeofusulina rasdorica (Putrja). Profusulinella that were found in this Lm characterize the Vereian Horizon in MB [Makhlina et al., 2001 a].

K4 Limestone (Plate 1) — Eostaffella grozdilovae Masl. and Vach., E. acutissima Kireeva, E. kashirica Rauser, Millerella carbonica Grozdilova and Lebedeva, Ozawainella vozhgalica Safonova, Oz. mosquensis Rauser, Schubertina acuta (Rauser), Sch. pseudoglobulosa (Safonova), Sch. miranda (Leontovich), Sch. gracilis (Rauser), N. larionovae Rauser and Safonova, N. vozhgalica (Safonova), Profusulinella rhomboides (Lee and Chen), Pr. arta kamensis Safonova, Aljutovella postaljutovica Safonova, Al. dilucida Leontovich, Al. tumida Bensh, Eofusulina triangula (Rauser and Beljaev), Eo. gissarica Bensh, Eo. aff. binominata Putrja, Paraeofusulina aff. trianguliformis Putrja, Neofusulina sp. nov.

The assemblage from this Lm is quite diverse. Very prominent Aljutovella postaljutovica, Al. dilucida, and Al. tumida with strongly fluted septa first appear there. Such forms believed to characterize Kashirian Horizon in MB [Makhlina et al., 2001 a]. Abundant Schubertina including quite developed Sch. acuta that considered being Kashirian are also found. Pr. arta kamensis occurs in upper Vereian, Ordynka Fm of MB [Makhlina et al., 2001 a]. First Neofusulina, i. e. Paraeofusulina — like forms with multiple tunnels appear in this Lm as well.

Conclusions 1. In Donets Basin some important taxonomical elements that usually considered “typical Moscovian” appear in latest Bashkirian, i. e. earlier than in MB.

2. I2, I3 and I4 Lms most probably are pre-Vereian (Azov Series) in age although possess some taxa that in MB characterize only Moscovian Stage.

3. K1–K3 Lms most likely correlate with Aljutovo and Sknigov Fms in Moscow Basin.

4. It seems that FAD’s of Paraeofusulina and Eofusulina are best events to designate the base of Moscovian in Tethys.

Plate 1. Fusulinids from K4 Limestone. 1 — Eostaffella grozdilovae Maslo and Vachard;

2 — E. acutissima Kireeva;

3–4 — E. kashirica Rauser-Chernousova;

5–6 — Schubertina pseudoglobulosa (Safonova);

7–9 — Sch. miranda (Leontovich);

10 — Sch. acuta (Rauser Chernousova);

11 — Millerella carbonica Grozdilova and Lebedeva;

12 — Neostaffella cuboides (Rauser);

13–14 — Ozawainella vozhgalica Safonova;

15 — Oz. mosquensis Rauser-Chernousova;

16–18 — Schubertina gracilis (Rauser-Chernousova);

19 — Neostaffella larionovae (Rauser and Safonova);

20 — Profusulinella rhombiformis Brazhnikova and Potievskaya, 1948;

21 — Pr. arta kamensis Safonova;

22 — Aljutovella tumida Bensh;

23 — Aljutovella postaljutovica Safonova;

24–26 — Paraeofusulina trianguliformis Putrja;

27 — Eofusulina triangula (Rauser-Chernousova and Beljaev);


28–29 — E. aff. binominata Putrja. Scale bars: 1–9, 18 — 0.1 mm;

10, 12–17 — 0.5 mm;

19–29 — 1.0 mm Plate 5. K4 Lm with advanced Aljutovella and Pr. arta might be an analogue of lower Ordynka Fm. The FAD of Neofusulina could be an index of Ordynka Fm (upper Vereian) in Tethys.

References Aizenverg D.E. et al. Carboniferous stratigraphy of the Donets Basin. Kiev: Publishing House of Ukranian Academy of Sciences, 1963. 183 p.

Bensh F.R. Carboniferous stratigraphy and foraminifera of the southwestern spurs and southern slope of the Hissar Range. Tashkent: Fan Publishing House. 1969.

Fohrer B. et al. The Pennsylvanian (Moscovian) Izvarino section, Donets Basin, Ukraine;

a multidisciplinary study on microfacies, biostratigraphy (conodonts, foraminifers, and ostracodes), and paleoecology // Journal of Paleontology.

2007. No. 81, Suppl. 5. P. 85.

Groves J.R. and a.T. Group. Report of the Task Group to establish a GSSP close to the existing Bashkirian-Moscovian boundary // Newsletter on Carboniferous Stratigraphy. 2007. No 25. P. 6–7.

Grozdilova L.P. Foraminifera of the upper Carboniferous of the northern Timan range // Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel’skogo Geologorazvedochnogo Instituta, edited. Leningrad: Nedra, 1966.

P. 254–331.

Khvorova I.V. Istoriya razvitiya sredne- i verkhnekamennougolnogo morya zapadnoi chasti Moskovskoi sineklizy (Razvitie fauny sredne- i verkhnekamennougolnogo morya zapadnoi chasti Moskovskoi sineklizy v svyazi s ego istoriei, kniga 2) / Rossiyskaya Akademiya Nauk, Paleontologicheskiy Institut. Moscow, 1953. 210 p.

Kireeva G.D. Stratigraficheskoe polozhenie moskovskogo yarusa v razreze Donetskogo basseyna (na osnove raspredeleniya fuzulinidy) // Byulleten’ Moskovskogo Obshchestva Ispytateley Prirody. Otdel Geologicheskiy. 1951. 26 (3), P. 35–51.

Leven E.Y. et al. Pennsylvanian stratigraphy and fusulinids of central and eastern Iran // Palaeontologia Electronica.

2006. 8 (1).

Makhlina M.K. et al. Middle Carboniferous of southern Moscow Syneclise. Vol. 2. Paleontological Characteristics / Rossiyskaya Akademiya Nauk, Paleontologicheskiy Institut. Moscow, 2001 a. (In Russian).

Makhlina M.H., Alekseev A.S., Goreva N.V., Isakova T.N., Drutskoj V.N. Middle Carboniferous of the Moscow Syneclise (Southern Part). Vol. 1. Stratigraphy / Paleontological Institute of RAS. Moscow, 2001 b. 244 p. (In Russian).

Nemyrovska T.I. Bashkirian conodonts of the Donets Basin, Ukraine // Scripta Geologica. 1999. 119. P. 115.

Nemyrovska T.I. et al. On Moscovian (Late Carboniferous) conodonts of the Donets Basin, Ukraine // Neues Jahrbuch fuer Geologie und Palaeontologie. 1999. 214 (1–2). P. 169–194.

Putrja F.S. Middle Carboniferous foraminifers of the eastern Donets basin // Mikrofauna SSSR. Foraminifery, mshanki i ostrakody Russkoi platformy, Donbassa, Tengizskoi vpadiny i Kuzbassa: Micropaleontologishesky Sbornik.

Moscow, 1956. P. 333–519.

Rauser-Chernousova D.M., Reitlinger E.A. Biostratigraphic distribution of foraminifers in Middle Carboniferous depositis of southern limb of Moscow Syneclise // Regional Stratigraphy of the U.S.S.R. Vol. 2. Stratigraphy of Middle Carboniferous deposits of Central and Eastern parts of Russian Platforms (based on foraminifers study).

1. Moscow Syneclise / Ed. D.V. Nalivkin, V.V. Menner. Moscow, 1954. P. 7–120. (In Russian).

Rumjantzeva Z.S. Stratigraphy and foraminifers of Middle Carboniferous of Central Kyzylkums. Tashkent: Fan Publishing House, 1974. 179 p.

Ueno K., Nemirovskaya T.I. Bashkirian-Moscovian (Pennsylvanian, Upper Carboniferous) Boundary in the Donets Basin Ukrain // Journal of Geography. 2008. 117 (5). P. 919–932.

Van Ginkel A.C. Systematics and biostratigraphy of fusulinids of the Lena Formation (Carboniferous) near Puebla de Lillo (LeSn, NW Spain) // Proceeding Koninklijke Nederlandse Akadademie van Wetenschappen. Amsterdam, 1987. 90 (3). P. 189–276.

Wang Z. et al. Conodont sequence across Bashkirian-Moscovian boundary in the Nashui Section, Luodian, Guizhou, South China // Journal of Stratigraphy. 2007. 31 (1). P. 102–103.

РАДИОЛЯРИИ И КОНОДОНТЫ ПОЗДНЕГО ТУРНЕ ОРЕНБУРГСКОГО ПРЕДУРАЛЬЯ, РОССИЯ М. С. Афанасьева 1, Л. И. Кононова Палеонтологический институт им. А.А. Борисяка РАН, Москва, e-mail: mafan@paleo.ru Московский государственный университет им. М. В. Ломоносова, e-mail: conodont@mail.ru LATE TOURNASIAN RAD IOLARIANS AND CONODONTS FROM THE ORENBURG REGION, RUSSIA M. S. Afanasieva 1, L. I. Kononova Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia, e-mail: mafan@paleo.ru Moscow State University, Moscow, Russia, e-mail: conodont@mail.ru Radiolarian zonations of the Low-Middle Carboniferous of Northern America and Western Europe are based on trends in evolution of genera Albaillella and Pseudoalbaillella. They occurred against a background of development of numerous spherical, stauraxon and pylomate forms of radiolarians.

The comparative analysis of the Lower Carboniferous radiolarians has shown the absence of Albaillellata and mass occurrence of spherical Entactiniidae in Tournaisian sediments of the Precaspian Basin and Orenburg Region. For the first time, we recorded the Late Tournaisian radiolarians from the lower part of the Cherepets Horizon in the Mologosvitskaya Borehole-200, interval 2939–2946, in the Orenburg Region of Southern Fore-Urals. The same beds yielded Late Tournaisian conodonts of the Siphonodella quadruplicata (=Lower crenulata) Zone. The new assemblage includes seven species of spherical radiolarians Belowea tenuistesta, Bientactinosphaera altasuleata, B. linquidombarfructa, Entactinia inaequoporosa, E. ormistoni, E. rostriformis, E. vulgaris, and one spiny species Palacantholithus stellatus. The species of the new Late Tournaisian radiolarian assemblage are identical to spherical radiolarians of Rhenish Slate Mountains of Germany;

but radiolarians from the Orenburg Region are less diverse taxonomically than the Lower Carboniferous radiolarian assemblage from Germany. Therefore we consider the Late Tournaisian radiolarian association as a characteristic assemblage of a new biostraton, Beds with Entactinia ormistoni. The ecological adaptation of Tournaisian radiolarians reflect ecological changes of the environment, which happened synchronously with changes of physical-geographical characteristics in the ancient basins.

Раннекаменноугольные турнейские радиолярии известны в настоящее время: (1) из фосфат ных конкреций гор Монтань-Нуар Южной Франции [Deflandre, 1952, 1958, 1960, 1964, 1972, 1973;

Gourmelon, 1985, 1986, 1987];

(2) в кремнисто-сланцевых толщах формации Балталимани Турции [Holdsworth, 1973, 1977;

Noble et al., 2008];

(3) в Северной Америке в нижнней толще сикаморских известняков Оклахомы [Ormiston, Lane, 1976], из формаций Форд Лейк на Аляске и Фиш-Крик Рейндж Невады [Holdsworth, Jones, 1980], из каменноугольных отложений Оклахомы и Арканзаса [Cheng, 1986], в разрезе Кринер Хиллс Оклахомы [Scwartzapfel, Holdsworth, 1996];

(4) из шарфтен бергских сланцев Рейнских сланцевых гор Германии [Won, 1983, 1991, 1998;

Braun, 1990];

(5) из фосфатных конкреций пачки Нодулар Бед провинции Бекар на западе Алжирской Сахары [Gourmelon, 1988];

(6) в офиолитовой формации Чарской зоны Казахстана, в кремнистых сланцах Ошских гор Средней Азии и в кремнистых отложениях Понтонейских гор Корякского нагорья [Назаров, 1975, 1988;

Назаров, Ормистон, 1990;

Nazarov, Ormiston, 1993];

(7) в органогенно-детритовых известняках бортовых уступов Прикаспийской впадины [Афанасьева, 1987, 2000];

(8) в Оренбургском Пред уралье (рис. 1).

Американские и западноевропейские радиоляриевые шкалы нижнего – среднего карбона основаны на закономерностях эволюционного становления родов Albaillella и Pseudoalbaillella Рис. 1. Распространение радиолярий в турнейских отложениях нижнего карбона Условные обозначения: 1 — Южная Франция;

2 — Германия (Рейнские сланцевые горы);

3 — Турция;

4 — Северная Африка;

5–9 — США: 5 — Арканзас, 6 — Оклахома, 7 — Калифорния, 8 — Невада, 9 — Аляска;

10–12 — Россия: 10 — Дальний Восток, Пенжинский хребет, 11 — Восточная Якутия, 12 — Оренбургское Предуралье;

13, 14 — Казахстан: 13 — Чарская зона, 14 — Прикаспийская впадина. Местонахождения радиолярий нанесены на схему реконструкции континентов и океанов нижнего карбона [Scotese, McKerrow, 1990] (см. табл. 1 в [Афанасьева, Амон, настоящий сборник]), происходившего на фоне развития много численных сферических, ставраксонных и пиломных форм радиолярий.

Сравнительный анализ комплексов радиолярий карбона Прикаспийской впадины и Южного Урала [Афанасьева и др., 2002] показал полное отсутствие в раннем – среднем карбоне Albaillellata (единичные сильно перекристаллизованные Parafollicucullus и Pseudoalbaillella появляются только в верхах московского подъяруса) и массовое распространение сферических радиолярий Entactiniidae.

Комплексы радиолярий нижнего турне – нижнего башкира Прикаспийской впадины ха рактеризуются появлением и широким распространением радиолярий с пиломом рода Caspiaza, которые развиваются на фоне сферических форм Bientactinosphaera aenigma (Nazarov), Spongentactinia fungosa Nazarov, Astroentactinia mendosa Nazarov, A. paronae (Hinde) [Афанасьева и др., 1986;

Афанась ева, 1987, 2000]. Анализ распределения различных представителей радиолярий по разрезу каменно угольных отложений массива Карачаганак и по семи площадям северного, восточного и южного бортов Прикаспийской впадины позволил выделить пять характерных комплексов радиолярий нижнетурнейского – нижнебашкирского возраста: Entactiniidae gen. et sp. indet., Caspiaza spp. – Tormentum ruestae, Caspiaza spp. – Astroentactinia paronae, Caspiaza calva – Caspiaza aculeata, Caspiaza spp. – Bientactinosphaera aenigma (см. табл. 1 в [Афанасьева, Амон, настоящий сборник]).

Однако радиолярии в низах турнейского яруса Прикаспия имеют крайне неудовлетворитель ную сохранность, сильно перекристаллизованы, замещены низкотемпературным кварцем и редко могут быть определены даже до родового уровня. Точное определение радиолярий, лишенных каких-либо внешних и внутренних структурных элементов, невозможно. И только в редких случаях на сферах видны основания трехгранных игл. Вместе с тем массовое присутствие сферических радиолярий позволило установить в основании нижнетурнейского подъяруса Прикаспийской впадины слои с Entactiniidae gen. et sp. indet. [Афанасьева и др., 1986;

Афанасьева, 1987, 2000] (см. табл. 1 в [Афанасьева, Амон, настоящий сборник]), возраст которых по конодонтам Siphonodella ex gr. semichatovae Kon. et Lipn. соответствует нижней половине турне [Журавлев, 2000].

Похожая картина наблюдается на западе Европы в нижнекаменноугольных разрезах Германии и Бельгии, где отмечены различные варианты диагенетических трансформаций скелетов радио лярий, приводящие к перекристаллизации и замещению первичного опала низкотемпературным кварцем и другими минералами [Braun, 1990;

Braun, Amon, 1991].

Первые радиолярии достаточно хорошей сохранности позднетурнейского возраста обнару жены нами в нижней части черепетского горизонта в разрезе скв. Мологосвицкая-200, инт. 2939– 2946 м Оренбургского Предуралья.

В данном интервале разреза вместе с радиоляриями найдены конодонты Siphonodella crenulata Cooper, 1939, S. cooperi Hass, 1959, S. obsoleta Hass, 1959, Pseudopolygnathus triangulus Voges, 1959, Neoprioniodus sp. и Hindeodus sp. Комплекс типичен для зоны Lower crenulata стандартной коно донтовой шкалы [Sandberg et al., 1978], которой в России отвечает зона Siphonodella quadruplicata, характеризующая нижнюю часть черепетского горизонта верхнетурнейского подъяруса (табл. 1).

Комплекс конодонтов зоны Lower crenulata широко распространен в различных регионах.

Он отмечен в Северной Америке и Европе [Sandberg et al., 1978], прослежен на Южном Урале [Пазухин, 1982], в Башкирском Приуралье [Пазухин, Барышев, 1997], на Южном Тянь-Шане [Bardasheva et al., 2004] и встречен в Китае в провинции Yunnan [Dong, Wang, 2006]. Представители рода Siphonodella обычно распространены в депрессионных участках бассейна, следовательно, вскрытые черепетские отложения образовывались в относительно глубоководных условиях.

Таблица Сопоставление стратиграфических схем расчленения турнейских отложений Русской платформы со стандартной конодонтовой шкалой Конодонтовые зоны Подъярус Ярус Общая шкала каменноугольной Горизонт Стандартная конодонтовая шкала системы России (фрагмент) [Sandberg et. al., 1978] [Постановление МСК, 2003] Dollymae bouckaerti Косьвинский Верхний Scaliognathus anchoralis Кизеловский Gnathodus typicus Турнейский Siphonodella isosticha isosticha – Upper crenulata – Zone Черепетский Siphonodella quadruplicata Lower crenulata – Zone Упинский Siphonodella belkai sandbergi – Zone Нижний Upper Малевский Siphonodella duplicata duplicata – Zone Lower Гумеровский Siphonodella sulcata sulcata – Zone Новый комплекс радиолярий (рис. 2) объединяет преимущественно сферические формы:

Belowea tenuistesta Won, 1983, Bientactinosphaera altasuleata Won, 1983, B. linquidombarfructa Ormiston, Lane, 1976, Entactinia ormistoni Won, 1983, E. inaequoporosa Won, 1983, E. rostriformis Afanasieva, Amon, 2008, E. vulgaris Won, 1983, и один иглистый вид Palacantholithus stellatus Deflandre, 1973. Рассмат риваемые радиолярии позволили нам установить новый верхнетурнейский биостратон слои с Entactinia ormistoni (табл. 1 в [Афанасьева, Амон, настоящий сборник]).

При этом, несмотря на то, что таксономический состав радиолярий Оренбургского Пред уралья менее разнообразен (8 видов 4 родов), чем комплекс радиолярий Рейнских сланцевых гор (51 вид 22 родов), установленные виды идентичны сферическим радиоляриям нижнего карбона Германии [Won, 1983].

Таким образом, экологическая адаптация радиолярий в турнейском веке отражает изменения среды обитания, происходившие синхронно с изменением физико-географических условий древ них бассейнов. При этом наиболее устойчивые погружения происходили на востоке Русского моря и на западе Уральского моря.

Рис. 2. Позднетурнейские иглистые (а, б) сферические (в–н) радиолярии Оренбургского Предуралья, скв. Мологосвицкая-200, инт. 2939–2946 м, обр. М-220/6- а, б — Palacantholithus stellatus Deflandre, 1973: а — экз. № 089-15666 (штрих = 148 мкм), б — экз. № 089-15658 (штрих = 367 мкм);

в, г — Belowea tenuistesta Won, 1983: в — экз. № 193-15678 (штрих = 86 мкм), г — экз. № 193-15686 (штрих = 98 мкм);

д — Bientactinosphaera altasuleata Won, 1983, экз. № 192-15661 (штрих = 114 мкм);

е, ж — B. linquidombarfructa Ormiston, Lane, 1976: е — экз. № 230-15674 (штрих = 76 мкм), ж — экз. № 230-15669 (штрих = 76 мкм);

з, и — Entactinia inaequoporosa Won, 1983: з — экз. № 191-15665 (штрих = 63 мкм), и — экз. № 191-15676 (штрих = 63 мкм);

к — E. ormistoni Won, 1983, экз. № 222-15670 (штрих = 100 мкм);

л, м — E. rostriformis Afanasieva, Amon, 2008: л — экз. № 198-15668 (штрих = 61 мкм), м — экз. № 198-15681 (штрих = 68 мкм);

н — E. vulgaris Won, 1983, экз. № 223-15683 (штрих = 57 мкм) Работа выполнена при поддержке Программы Президиума РАН «Происхождение биосферы и эволюция гео-биологических систем» и РФФИ, проект № 07-04-00649.

Литература Афанасьева М.С. Атлас радиолярий палеозоя Русской платформы. Москва: Научный Мир, 2000. 480 с.

Афанасьева М.С., Амон Э.О., Чувашов Б.И. Радиолярии в биостратиграфии и палеогеографии карбона Прикаспия и Южного Предуралья // Литосфера. 2002. № 4. С. 22–62.

Назаров Б.Б. Радиолярии палеозоя. Практическое руководство по микрофауне СССР. Т. 2. Л.: Недра, 1988.

232 с.

Назаров Б.Б., Ормистон А.Р. Биостратиграфический потенциал радиолярий палеозоя // Радиолярии в био стратиграфии. Свердловск: УрО АН СССР, 1990. С. 3–25.

Пазухин В.Н. Позднетурнейские комплексы конодонтов Урала // Верхний докембрий и палеозой Южного Урала. Уфа: БФАН СССР, 1982. С. 107–115.

Пазухин В.Н., Барышев В.Н. Конодонтовые комплексы фаменско-турнейских отложений Башкирского Приуралья // Биостратиграфия и нефтегазоносность палеозоя Башкирского Приуралья. Вып. 93. Уфа:

БашНИПИнефть, 1997. С. 49–63.

Braun A. Evolutionary trends and biostratigraphic potential of selected radiolarian taxa from the Early Carboniferous of Germany // Marine Micropaleontol. 1990. Vol. 15. P. 351–364.

Holdsworth B.K., Jones D.L. Preliminary radiolarian zonation for Late Devonian through Permian time // Geology.

1980. No. 8. P. 281–285.

Nazarov B.B., Ormiston A.R. New biostratigraphically important Paleozoic Radiolaria of Eurasia and North America // Radiolaria of giant and subgiant fields in Asia. New York: Micropaleontology Press, 1993. Special publ. No. 6.

P. 22–60.

Ormiston A.R., Lane H.R. A unique radiolarian fauna from the Sycamore Limestone (Mississippian) and its biostatigraphic significance // Palaeontographica. 1976. Abh. A. Bd 154. S. 154–180.

Bardasheva N.P., Bardashev I.A., Weddige K., Ziegler W. Stratigraphy and conodonts of the Lower Carboniferous of the Shishkat Section (southern Tien Shan, Tajikistan) // Senckergiana Lethaea. 2004. Bd 84, № 1–2. P. 225–301.

Dong Zhi-Zhong, Wang Wei. The Cambrian-Triassic Conodont faunas in Yunnan, China // Regional Geological Survey.

Yunnan Inst. Geological Survey. 2006. 347 p.

Noble P., Tekin K., Gedik I., Pehlivan S. Middle to Upper Tournasian Radiolaria of the Baltalimani Formation, Istanbul, Turkey // J. Paleontol. 2008. Vol. 82, No 1. P. 37–56.

Sandberg Ch.A., Ziegler W., Leuteritz K., Brill S.M. Phylogeny, speciation, and zonation of Siphonodella (Conodonta, Upper Devonian and Lower Carboniferous) // Newsl. Stratigr. 1978. Vol. 7, No 2. P. 102–120.

Won M.-Z. Radiolarien aus dem Unter-Karbon des Rheinischen Schiefergebirges (Deutschland) // Palaeontographica.

1983. Abt. A. Bd 182, No 4–6. S. 116–175.

Won M.-Z. A Tournaisian (Lower Carboniferous) radiolarian zonation and radiolarians of the A. pseudoparadoxa Zone from oese (Rheinische Schiefergebirge), Germany // J. Korea Earth Science Society. 1998. Vol. 19, No 2.

P. 216–259.

О ЗНАЧЕНИИ РАДИОЛЯРИЙ В СТРАТИГРАФИИ КАРБОНА М. С. Афанасьева 1, Э. О. Амон Палеонтологический институт им. А.А. Борисяка РАН, Москва, e-mail: mafan@paleo.ru Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения РАН, Екатеринбург, e-mail: amon@igg.uran.ru THE ROLE OF RADIOLARIANS IN CARBONIFEROUS STRATIGRAPHY M. S. Afanasieva 1, E. O. Amon Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia, e-mail: mafan@paleo.ru Zavaritsky Institute of Geology and Geochemistry, Urals Division, Russian Academy of Sciences, Ekaterinburg, Russia, e-mail: amon@igg.uran.ru The biostratigraphic potential of Carboniferous radiolarians is analyzed. The Carboniferous radiolarian biostratigraphic associations in the Peri-Caspian Region are similar to those in the Southern Urals.

New biostratigraphic regional radiolarian beds are established. These include beds with Entactinia – Pseudoalbaillella (Upper Moscovian), beds with Haplodiacanthus – Albaillella (Upper Kasimovian), beds with Astroentactinia aff. multispinosa (Upper Visan – Early Serpukhovian) in the Southern Urals, and beds with Entactinia ormistoni (Upper Tournaisian) in Northern Peri-Caspian Region. It is shown that the adaptive radiation of Carboniferous radiolarians was connected with changes in the ecology and environment in the basins.



Pages:     | 1 || 3 | 4 |   ...   | 9 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.