авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 7 | 8 ||

«Международное полевое совещание Дата проведения: 13 августа 2009 - 18 августа 2009 Типовые разрезы карбона России и потенциальные глобальные ...»

-- [ Страница 9 ] --

Горожанина Е.Н., Горожанин В.М., Пазухин В.Н. Тектоностратиграфическая позиция олистостромовых отложений девона и карбона на Южном Урале // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана: Мат-лы / 6-ая Межрег. научно-практ. конференция. Уфа: ДизайнПолиграфСервис, 2006.

С. 84–87.

Горожанина Е.Н., Кулагина Е.И., Браун Д. и др. Литофациальная и палеонтологическая характеристика отложений нижнего и среднего карбона района р. Куруил (Южный Урал) // Геология и перспективы расширения сырьевой базы Башкортостана и сопредельных территорий: Мат-лы / 3-я Республиканская геол. конф. Т. 1. Уфа, 2001. С. 130–140.

Горожанина Е.Н., Пазухин В.Н. Этапы активизации геодинамических процессов в позднедевонское – среднекаменноугольное время на западном склоне Зилаирского мегасинклинория и их датирование по фауне конодонтов // Геологический сборник № 6 / ИГ УНЦ РАН. Уфа, 2007. С. 55–64.

Знаменский С.Е. Структурная эволюция Магнитогорской мегазоны (Южный Урал) в позднем палеозое // Доклады РАН. 2007. Т. 420, № 1. С. 1–4.

Камалетдинов М.А., Казанцева Т.Т. Новые данные по геологии Присакмарской зоны восточного склона Южного Урала // Стратиграфия палеозоя Южного Урала / БФАН СССР. Уфа, 1977. С. 73–77.

Камалетдинов М.А., Казанцева Т.Т., Казанцев Ю.В. К стратиграфии каменноугольных отложений Присакмар ской структурно-фациальной зоны Магнитогорского мегасинклинория // Стратиграфия и палеонтология палеозоя Южного Урала / БФАН СССР. Уфа, 1980. С. 34–44.

Кочеткова Н.М., Лутфуллин Я.Л., Пазухин В.Н., Аржавитина М.Ю. Новые материалы к стратиграфии погра ничных отложений девона и карбона района г. Верхнеуральска // Стратиграфия и палеонтология палеозоя Южного Урала / БФАН СССР. Уфа, 1980. С. 26–33.

Краузе С.Н., Алямкина Е.А. Особенности состава терригенных отложений нижнего карбона юго-восточного окончания Актаныш-Чишминской депрессии // Стратиграфия и геология карбона Южного Урала и восточной окраины русской платформы / БФАН СССР. Уфа, 1975. С. 118–128.

Кулагина Е.И., Пазухин В.Н. К биостратиграфии серпуховских отложений Зилаирского мегамегасинклинория // Докембрий и палеозой Южного Урала / БФАН СССР. Уфа, 1986. С. 70–79.

Кулагина Е.И., Пазухин В.Н., Кочеткова Н.М., Синицына З.А., Кочетова Н.Н. Стратотипические и опорные разрезы башкирского яруса карбона Южного Урала. Уфа: Гилем, 2001. 138 с.

Кулагина Е.И., Пазухин В.Н., Кочетова Н.Н., Гибшман Н.Б., Николаева С.В. Разрез серпуховского и башкир ского ярусов по р. Большой Кизил // Путеводитель геологических экскурсий по карбону Урала / Под ред.

Б.И. Чувашова. Ч. 1. Южноуральская экскурсия. Екатеринбург: ИГиГ УрО РАН, 2002. С. 49–58.

Кулагина Е.И., Румянцева З.С., Пазухин В.Н., Кочетова Н.Н. Граница нижнего – среднего карбона на Южном Урале и Среднем Тянь-Шане. М.: Наука, 1992. 112 с.

Кулагина Е.И., Пазухин В.Н. Новая граница турнейского и визейского ярусов в разрезах Южного Урала // Геологический сборник № 4 / ИГ УНЦ РАН. Уфа: ДизайнПолиграфСервис, 2004. С. 87–94.

Мизенс Г.А. К геологической истории Южного Урала в среднем палеозое // Доклады РАН. 2000. Т. 371, № 3.

С. 356–357.

Мизенс Г.А. О нижнекаменноугольном флише на восточном склоне Южного Урала // Ежегодник–2000 / ИГиГ УрО РАН. Екатеринбург, 2001. С. 51–55.

Мизенс Г.А. Седиментационные бассейны и геодинамические обстановки в позднем девоне – ранней перми юга Урала. Екатеринбург: ИГГ УрО РАН, 2002. 200 с.

Мизенс Г.А., Черных В.В., Мизенс Л.И. Отложения фаменской шельфовой зоны Магнитогорской островной дуги на юге Урала // Литосфера. 2002. № 1. С. 72–76.

Мосейчук В.М., Сурин Т.Н. Фамен-турнейская базальт-пикритовая толща (сара-тюбинская) толща Восточно Магнитогорской зоны Южного Урала: геология, геохимия, минералогия и петрогенезис. Уфа: УНЦ РАН, 1998. 111 с.

Пазухин В.Н., Горожанина Е.Н. Разрез Верхняя Кардаиловка // Путеводитель геологических экскурсий по карбону Урала. / Под ред. Б.И. Чувашова. Ч. 1. Южноуральская экскурсия. Екатеринбург: ИГиГ УрО РАН, 2002. С. 59–67.

Пазухин В.Н., Горожанина Е.Н., Кулагина Е.И. Характеристика разреза ямашлинской и мазитовской свит по левому берегу р. Большой Ик в районе д. Мурадымово // Геологический сборник № 4 / ИГ УНЦ РАН.

Уфа: ДизайнПолиграфСервис, 2004. С. 82–86.

Путеводитель геологической экскурсии 047: 27-й Международный геологический конгресс / О.Л. Эйнор, И.И. Синицын, Н.М.К очеткова и др. М.: Наука, 1984. 136 с.

Путеводитель геологической экскурсии по разрезам верхнего докембрия и палеозоя западного склона Южно го Урала / Под ред. В.Н. Пучкова. Уфа, 1995. 157 с.

Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.

Салихов Д.Н. Развитие Южного Урала в коллизионную эпоху позднего палеозоя. Уфа: ИГ УНЦ РАН, 1996.

42 с.

Салихов Д.Н., Яркова А.В. Нижнекаменноугольный вулканизм Магнитогорского мегамегасинклинория.

Уфа: БНЦ УрО РАН, 1992. 138 с.

Синицына З.А. Разрез нижнего карбона по р. Сиказа // Путеводитель экскурсии по разрезам карбона Южного Урала (Башкирия) / Под ред. А.Я. Виссарионовой: Труды / 86-й Международный конгресс по стратиграфии и геологии карбона, Москва, 1975 г. М.: Наука, 1975. С. 32–45.

Синицына З.А. Ранне- и средневизейские отложения западного борта Зилаирского мегасинклинория // Докембрий и палеозой Южного Урала / ИГ БФАНСССР. Уфа, 1986. С. 64–69.

Степанова Т.И., Кучева Н.А. Разрез Худолаз — стратотип горизонтов субрегиональной схемы нижне каменноугольных отложений восточного склона Урала // Литосфера. 2006. № 1. С. 45–75.

Стратиграфические схемы Урала (докембрий, палеозой). Екатеринбург, 1993. 151 л.

Сюндюков А.З. Литология, фации и нефтегазоносность карбонатных отложений Западной Башкирии. М.:

Наука, 1975. 174 с.

Тевелев Ал.В., Дегтярев К.Е., Кошелева И.А., Правикова Н.В. Раннекаменноугольный вулканизм Южного Урала и Зауралья (проблемы геодинамической интерпретации) // Тектоника и геодинамика континенталь ной литосферы: Мат-лы / 34-е тектонич. совещ. М.: Наука, 2003. С. 226–230.

Ферштатер Г.Б. Гранитоидный магматизм и формирование континентальной земной коры в ходе развития Уральского орогена // Литосфера. 2001. № 1. С. 62–85.

Формирование земной коры Урала / С.Н. Иванов, В.Н. Пучков, К.С. Иванов и др. М.: Наука, 1986. 248 с.

Чибрикова Е.В., Лутфуллин Я.Л., Кочеткова Н.М., Архипова А.А. К геологии района р. Зирень-Агач (восточный склон Южного Урала) // Биостратиграфия и условия образования палеозойских отложений Южного Урала и восточной окраины Русской платформы / БФАН СССР. Уфа, 1976. С. 98–109.

Чувашов Б.И. Позднедевонские и каменноугольные карбонатные платформы Уральского складчатого пояса (условия становления и отмирания) // Осадочные бассейны: закономерности строения и эволюции, минерагения: Мат-лы / 4-е регион. Уральск. литолог. совещ. Екатеринбург, 2000. С. 163–165.

Alvarez-Marron J., Brown D., Perez-Estaun A., Puchkov V., Gorozhanina Y. Accretionary complex structure and kinematics during Paleozoic arc-continent collision in the Southern Urals // Tectonophysics. 2000. V. 325.

P. 175–191.

Gorozhanina Y.N., Brown D.L., A. Willner A., Pazukhin V.N., Zuffa G.G., Puchkov V.N. The sedimentary response of the arc-continent collision in the Southern Urals (Russia) // Abstracts of the 32 IG Congress. Florence, 2004. P. 162.

Part 1. Geology and Biostratigraphy of the Carboniferous of the Southern Urals Часть 1.Геология и биостратиграфия карбона Южного Урала STRUCTURE OF THE URALS (WITH A SPECIAL REFERENCE TO THE CARBONIFEROUS COMPLEXES) Viktor N. Puchkov Institute of Geology, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russia, e-mail: puchkv@anrb.

ru СТРУКТУРЫ УРАЛА (СО СПЕЦИАЛЬНЫМ АКЦЕНТОМ НА КАМЕННОУГОЛЬНУЮ СИСТЕМУ) В. Н. Пучков Институт геологии Уфимского научного центра РАН, Уфа The Urals are a Late Palaeozoic orogenic belt. It is located at the western flank of a huge (more than 4000 km long) intracontinental Uralo-Mongolian mobile belt. The orogen developed mainly between the Late Devonian and the Late Permian, with a brief resumption of orogenic activity in the Lower Jurassic and Pliocene – Quaternary time. Although its evolution is commonly related to the Variscides of Western Europe, its very distinctive features argue against a simple geodynamic connection. To a first order, the evolution of Uralian orogen shows similarities with the “Wilson cycle”, beginning with epi-continental rifting (Late Cambrian – Lower Ordovician) followed by passive margin (Middle Ordovician – Late Devonian and partly Early Carboniferous) development, onset of subduction and arc-related magmatism (Late Ordovician) followed by arc-continent collision (Late Devonian in the South and Early Carboniferous in the North) and continent – continent collision (beginning in the mid-Carboniferous). In detail, however, the Uralides preserve a number of rare features. Oceanic (Ordovician to Lower Devonian) and island-arc (Ordovician to Lower Carboniferous) complexes are particularly well preserved as is the foreland belt in the Southern Urals, which exhibits very limited shortening of deformed Mesoproterozoic to Permian sediments. Geophysical studies indicate the presence of “cold”, isostatically equilibrated root. Other characteristic features include a Silurian platinum-rich belt of subduction-related layered plutons, a juxtaposition of orogenic and rift related magmatism, a succession of collisions that are both diachronous and oblique, and a single dominant stage of transpressive deformation. The end result is a pronounced bi-vergent structure. The Uralides are also characterized by Meso-Cenozoic post-orogenic stage and plume-related tectonics. The evolution of the Uralides is consistent with the development and destruction of a Paleouralian ocean to form part of a giant Uralo-Mongolian orogen, which involved an interaction of cratonic Baltica and Siberia with a young and rheologically weak Kazakhstanian continent. The Uralides, oppositely to Variscides, are characterized by recurrent and much more protracted orogenesis, interrupted in the Early Triassic by tectonothermal activity associated with the Uralo-Siberian superplume.

The relics of earlier orogens are traced in the basement of the Uralides. In particular, the Late Neoproterozoic pre-Uralian (Timanian) orogen is reconstructed and identified as a counterpart of the Late Precambrian Cadomian orogen. The Timanian orogen was partly destroyed by Late Cambrian – Early Ordovician epicontinental rifting and formation of the Paleo-Uralian ocean whose remnants are Palaeozoic ophiolites. Calc-alkaline volcanites and plutons, typical of island arcs and active margins, are widely developed in the eastern Urals.

The Uralian foldbelt results from oblique collision between the East European (Laurussia) passive margin and the active margin on the Kazakhstanian continent. Collision began in the south of the Urals and moved, wave-like, to the north. The eastern and northern parts of the Urals have been also affected by the Pre-Middle Jurassic Cimmerian intracontinental (intra-Pangaean) shortening. The Uralian – Cimmerian mountain belt (Uralides) was eroded and partially inundated by seas in the Late Jurassic – Early Cretaceous times and has been reactivated since the Pliocene in response to a recent intracontinental shortening.

The Uralian foldbelt is one of the oldest and richest mining regions of Russia. Therefore, it has attracted attention of many geologists among whom one should mention Murchison (the founder of the Permian system), Karpinsky, (the proponent of the contractionist ideas who suggested that the changes in the Ural's strike were influenced by the outline of the rigid Russian plate) and Shatsky (who established the Riphean system in the Urals, discovered relics of a Late Proterozoic foldbelt and developed a theory of relationships between geosynclines and platforms). In the early 1970s, in light of the introduction of plate tectonics, Hamilton, Peyve and Ivanov proposed that the Urals represent a closed Palaeozoic ocean.

The north-south-trending mountain range, approximately 2000 km long, is the geographic Europe – Asia boundary and is commonly divided into the Polar, Cis-Polar, Northern, Central and Southern Urals (Fig. at colored inset). The characteristic feature of the fold belt is a distinct, though disturbed, linearity of tectonic zones. Thanks to Late Cenozoic tectonic movements the tectonic zones are all exposed in the Southern Urals. In the north, the Mesozoic and Cenozoic sediments of the West Siberian basin cover the easternmost zones. The Urals are divided into six sub-longitudinal zones that differ both in their structure and stratigraphy (see Fig. 1). From west to east they are (1) the Uralian Foredeep, (2) the West Uralian, (3) the Central Uralian, (4) the Tagilo-Magnitogorskian, (5) the East Uralian and (6) the Transuralian zones. Zones 1, and 3 represent the former passive margin of the East European (Laurussia) continent [Puchkov, 1979]. This margin formed from the Late Cambrian to Early Ordovician and was stable during the Ordovician, Silurian and Devonian times. In the Late Palaeozoic, the platform was deformed to become a part of the Uralian foldbelt.

The Uralian foredeep, 50–75 km wide, is filled with Permian flysch and molasse of eastern provenance, up to 6 km thick [Nalivkin 1949;

Chuvashov, Dyupina 1973], underlain by 4–7 km thick Ordovician – Carboniferous shelf deposits, which, in turn, unconformably cover Precambrian sedimentary, metamorphic and magmatic complexes.

The western boundary of the foredeep is marked only in the Southern Urals by a chain of barrier reefs of Early Permian age (Asselian to Early Artinskian [Chuvashov, Nairn 1993]) (Fig. 2). The terrigenous facies of the eastern provenance are spread far onto the platform, and the western boundary of the foredeep is usually expressed only by a more or less pronounced downward bend of the top surface of carbonates underlying the molasse and in a corresponding eastward increase in the molasse thickness. Facies changes of the foredeep sediments are complex;

but the main steps in the foredeep development are the same at all latitudes. The foredeep began with the establishment of a “preflysch” deep-water basin on shelf sediments, west of the orogenic front. The basin was filled then by flysch and molasse sediments grading westward into deep-water facies and still further west into reefs and biostromes (see Fig. 2). The basin was filled with depositional evaporites of Kungurian (latest Early Permian) age. In the north the evaporites are replaced by terrigenous sediments with paralic coals. The Late Permian is represented in the foredeep by shallow marine and continental sediments, mostly terrigenous, red-colored and variegated in the south, grey-colored and coal-bearing in the north. The eastern boundary of the foredeep was affected by westward thrusting. To the east the molasse and flysch are preserved in some deep synclines of the West Uralian fold zone.

The outer (western) subzone of the foredeep is characterized mostly by smooth, open, nonlinear folds typical for platform areas;

the inner (eastern) subzone is characterized by thrusts and folds of a thin- to medium-skinned type [Puchkov, 1997;

Yudin, 1994].

To article by Viktor N. Puchkov “Structure of the Urals (with a special reference to the Carboniferous complexes)” Fig. 1. Tectonic zoning of the Urals Zones: A — Preuralian foredeep, B — West Uralian zone, C — Сentral Uralian zone, D — Tagilo-Magnitogorskian zone, E — East Uralian zone, F —Transuralian zone;

MUF — Main Uralian Fault, MGA — Main granitic Axis of the Urals, PBB — Platinum-bearing belt, URSEIS — the seismic line shown in the Fig. The West Uralian zone comprises predominantly intensely folded and thrusted Lower and Middle Palaeozoic sediments characterizing the former passive margin of the East European continent. There is no conspicuous facies change at the boundary between the Uralian foredeep and the West Uralian zone. Such a change, partially affected by later thrusts, occurs further to the east within the zone, as an abrupt transition from shelf to bathyal sediments. Such sedimentary facies changes occur across the passive margin as well as along its 2000 km length.

Shelf sediments are up to 2.5–3 km in the Middle and Southern Urals. In the western sections of zone, Ordovician, Silurian and Lower Devonian sediments are absent, so the Middle Devonian strata unconformably overlie Riphean and Vendian (Meso- and Neoproterozoic) sediments. The Lower Devonian regressive succession of argillaceous limestones, dolomitic marls, siltstones and shales, are followed by Emsian transgressive quartzites, sandstones and siltstones grading upwards mostly into shallow-water open-sea limestones.

The longest Lower Devonian barrier reef is traced along the margin of the shelf zone from the Polar to the Southern Urals. In the south Middle Devonian basinal shales, marls and cherts (so-caled infradomanik) are developed. In the Latest Mid-Devonian a new transgresive series was deposited with thin quartzites and shales in the bottom. Over area of development of the Upper Givetian terrigenous facies and open-sea limestones, the so-called Kama – Kinel system of deep-water troughs was established in the Mid Frasnian time in the eastern part of the Laurussia continent.

The basinal, “domanik” facies in the axial parts of the troughs is represented by a starved, condensed unit of marls, cherts and oil shales. Reef limestones border the troughs. This type of sediment distribution persisted through the Famennian and Tournaisian, related to the high stand of sea level across platform.

The regressive Lower Visan and transgressive Upper Visan sediments are characterized by the wide development of terrigenous and carbonate-terrigenous facies, including quartzites, shales and siltstones with coal layers. The Kama – Kinel troughs were filled with Early Visan sediments and ceased to exist.

The outer part of the continental margin was marked by a formation of bathyal facies which are contemporary to the shelf ones (Ordovician to Devonian). They are represented mainly by turbidites of the western provenance alternating with condensed shaly-carbonate and cherty sediments [Puchkov, 2002].

Starting with the Late Frasnian – Early Famennian, the passive margin of the continent in the territory of the future Southern Urals, firstly bathyal and then shelf zone, was affected by orogenic movements as a result of a collision between the Magnitogorsk arc and passive margin of the Laurussia continent [Puchkov, 2009]. The collision was accompanied by a formation of an accrettionary complex with exhumed HP-LT metamorphics, Main Uralian Fault (MUF), west-vergent thrust-and-fold system of the footwall of MUF and a deposition of Famennian – Tournaisian greywacke flysch of eastern provenance, prograding to the west onto the marginal shelf of Laurussia continent.

The Early Carboniferous, Late Visan – Serpukhovian as well as the Upper Carboniferous Bashkirian stage in the platform and partly in the Preuralian foredeep and West Uralian zone, are represented mostly Fig. 2. Cartoon summarizing the principal lithofacies across the Late Carboniferous – Artinskian Uralian foredeep (after [Nalivkin, 1949] and [Chuvashov et al., 1984]).

Legend: 1 — shallow-water sediments, mostly bedded carbonates;

2 — reef limestones;

3 — carbonate olistostrome;

4 — basinal (preflysch) shales, cherts, marls;

5 — turbidites;

6 — molasse by pure shallow-water limestones. A very important transgressive – regressive boundary of the stratigraphic sequences, marked by unconformity and the deposition of terrigenous sediments is within the Moscovian, but in the West Uralian zone this unconformity is not pronounced due to a general eastward inclination of the shelf. The Upper Carboniferous is represented in the West Uralian zone predominantly by shallow water limestones, restricted above, in many places, by a stratigraphic unconformity.

However the Carboniferous of the southern part of the West Uralian zone displays again the signs of the westward terrigenous influx, which started in the Famennian. From this time on, the area of flysch sedimentation influenced by the eastern source of terrigenous material was present and widening in the western zones of the Urals, and finally the Preuralian foredeep in its modern boundaries was formed above the shelf zone. During the whole time since the Famennian till the Early Permian, flysch trough was prograding to the west, being preceded by a deep-water preflysch and heralded by barrier reefs.

The modern structure of the West Uralian zone is characterized by thin-skinned to thick-skinned thrusts and folds of western vergency, with detachment surfaces under them [Brown et al., 2006];

Fig. 3 at colored inset, the western part.

The Central Uralian zone up to 70–75 km wide is characterized by well-exposed Precambrian sedimentary, metamorphic and magmatic rocks which are, in some places, thrust over the rocks of West Uralian zone. The core of the Bashkirian anticlinorium, an exhumed Precambrian basement of the Palaeozoic continental margin, includes crystalline complexes, produced by two or more stages of deformation and metamorphism, sedimentary sequences of Riphean aulacogens and Vendian molasse of the Late Precambrian Timanide orogen.

The Tagilo-Magnitogorskian, East Uralian and Transuralian zones belonged to the active margin of the Kazakhstanian continent [Yazeva et al., 1989;

Puchkov, 1996]. They are less uniform compared the first three zones. What unites them, is a wide development of magmatic complexes, indicators of subduction.

The Central Uralian and Tagilo-Magnitogorskian zones are thought to be divided by an east-dipping major suture zone called the Main Uralian Fault. A considerable part of it is marked by serpentinitic mlanges.

The Tagilo-Magnitogorskian zone is composed of Lower-Middle Palaeozoic complexes of oceanic crust, island arcs, flysch troughs, covered by Carboniferous shallow-water sediments: limestones, coal-bearing terrigenous sequences and widespread rift and subductional volcanics. The development of subductional complexes was finally stopped in the Bashkirian time. From this moment on, the subduction was changed by a collision, resulted in a formation of the Uralian orogen.

The East Uralian zone is distinguished by the presence of sialic, microcontinental complexes, fragments of Precambrian continental crust. This is a collage of microcontinental blocks with relics of an autochthonous Palaeozoic sedimentary and volcano-sedimentary cover and allochthonous Palaeozoic ophiolite and island-arc formations. The distinct feature of the zone is also a chain of granite intrusions (Main Granitic Axis of Urals), developed during the last stages of subduction (Tournaisian to Bashkirian) and later stages of collision (Moscovian to Permian). The relicts of collision-induced intermontane depressions, traced in the East Uralian zone, were filled by Moscovian flysch-like deposits and a Gzhelian – Kasimovian molasse.

The Transuralian zone. This, the easternmost, most poorly exposed and least studied zone, has a rather controversial eastern boundary separating the Uralides from the Kazakstanides (Caledonides). The zone has accretionary features, including Precambrian blocks, Ordovican rift complexes and ophiolites, Silurian and Devonian shallow and deep-water complexes. The most important are calc-alkaline volcano-plutonic subductional) complexes of the Tournaisian to Bashkirian age.

The modern structure of the Uralian orogen. The complex geological and geophysical studies at URSEIS-95 and SB-ESRU profiles demonstrated a well-preserved bi-vergent structure of the Uralian orogen ([Puchkov, in print], and references therein).

The origin of the modern Ural mountains. The Late Palaeozoic mountain belt rejuvenated by the Old Cimmerian dislocations existed only for a short time, due to rapid erosion. By the end of the Jurassic and during the Cretaceous the Urals were low hills and partially a lowland ingressed and covered by seas [Papulov, 1974]. Only since the Pliocene have Ural mountains started to grow again. These processes are still active, To article by Viktor N. Puchkov “Structure of the Urals (with a special reference to the Carboniferous complexes)” Fig. 3. A — uninterpreted combined (vibro- and explosion) seismic section along the URSEIS-95 geotraverse profile Sterlitamak – Nikolayevka).

The seismic data after [Suleimanov, 2006], SpetsGeofizika. B — geological interpretation, overlain on the profile. The symbols belong to this part of the picture Legend: 1 — Faults and directions of movements;

2 — Moho boundary after the wide-angle seismics;

3 — Top of the Archean – Paleoproterozoic basement;

4 — Top of the Riphean (Meso-Neoproterozoic minus Ediacarian) sequence;


5 — Top of the island-arc crystalline (ophiolitic) basement;

6 — Base of the Lower Carboniferous;

7 — Gebyk granites proved by geodetic and horizontal stress measurements as well by weak to medium earthquakes. This orogeny probably results from an intracontinental process, a far-reached alpine deformation of a continental crust, that followed favorable, weak directions in the lithosphere of Eurasia [Puchkov, 1988;

Puchkov, Danukalova, 2009]. The Shikhans (hills, representing Lower Permian carbonate reefs) were uplifted and devoid of their evaporitic envelope during this late orogeny, in the Pliocene – Quaternary time.

References Brown D., Juhlin C., Tryggvason A., Friberg M., Puchkov V., Rybalka A., Petrov G. Structural architecture of the southern and middle Urals from reflection seismic profiles // Tectonics. 2006. V. 25. P. 1–12.

Chuvashov B.I., Dyupina G.V. Late Paleozoic terrigenous sediments of the western slope of the Middle Urals. M.:

Nauka, 1973. 208 p. [in Russian].

Chuvashov B.I., Nairn A.E.M. (eds) Permian system: Guides to geological Excursions in the Uralian Type Localities.

Occasional Publications ESRI, University of South Carolina, 1993. New Ser. 10. 352 p.

Nalivkin V.D. Facies and geological history of the Ufimian plateau and Yurezan – Sylva depression. M.: Gostoptehizdat, 1949. 205 p. (Trudy / VNIGRI (Oil Research Institute), Nov. ser., 46). [in Russian].

Peyve A.V., Ivanov S.N., Necheukhin V.M., Perfilyev A.S., Puchkov V.N. Tectonics of the Urals. The explanatory notes for the 1:1 000 000-scale tectonic map. M.: Nauka, 1977. 119 p. [in Russian].

Papulov G.N. Cretaceous Deposits of the Urals. M.: Nauka Press, 1974. 202 p.

Puchkov V.N. Bathyal complexes of the passive margins of geosynclines. M.: Nauka, 1979. 260 p. [in Russian].

Puchkov V.N. Intraplate events in the geological history of mobile belts, at the example of the Urals // Intraplate phenomena in the Earth’s crust. M.: Nauka, 1988. P. 167–175.

Puchkov, V. N. The Paleozoic geology of the Asiatic Russia and adjacent territory // The Phanerozoic geology of the world I. The Paleozoic, B. Amsterdam – Tokyo, 1996. P. 1–107.

Puchkov V.N. Paleozoic evolution of the East European continental margin involved into the Urals // D. Brown, C. Juhlin, V. Puchkov (eds). Mountain Building in the Uralides: Pangea to the Present. AGU Geophysical Monograph Series, 2002. V. 132. P. 9–32.

Puchkov V.N. The diachronous (step-wise) arc-continent collision in the Urals // Tectonophysics. 2009. In press.

doi:10.1016/ j.tecto.2009.01. Puchkov V.N. The evolution of the Uralian orogen // Mem. of Geol. Soc. of London. In press.

Puchkov V.N., Danukalova G.A. The Late Pliocene and Pleistocene history of the Southern Urals Region in the light of neotectonic data // Quaternary International. 2009. V. 201. P. 4–12.

Yazeva R.G., Puchkov V.N., Bochkarev V.V. Relics of the active continental margin in the Urals // Geotektonika. 1989.

No 3. P. 76–85. [in Russian].

Yudin V. The orogeny of the Northern Urals and Pay-Khoy. Ekaterinburg: Nauka, 1994. 286 p. [in Russian].

Russian Academy of Sciences (RAS) Earth Sciences Division Biological Sciences Division Borissiak Paleontological Institute, RAS Institute of Geology, Ufa Scientific Centre, RAS Geological Institute, RAS Karpinsky All-Russia Research Geological Institute Academy of Sciences of the Republic of Bashkortostan Interdepartmental Stratigraphic Committee of Russia I.U.G.S. Subcommission on Carboniferous Stratigraphy Carboniferous Type Sections in Russia and Potential Global Stratotypes Southern Urals Session Proceedings of the International Field Meeting “The Historical Type Sections, Proposed and Potential GSSP of the Carboniferous in Russia” Ufa – Sibai, 13–18 August, Ufa, УДК 55 (470, 57) ББК 26.3 (2Рос.Баш) Т Carboniferous Type Sections in Russia and Potential Global Stratotypes: Proceedings of the International Field Meeting “The historical type sections, proposed and potential GSSP of Т the Carboniferous in Russia”. Southern Urals Session. Ufa – Sibai, 13–18 August, 2009.

Ufa: DesignPolygraphService Ltd., 2009. 240 p.

ISBN 978-5-94423-182- The volume includes the proceedings of the International Field Meeting “The Historical Type Sections, Proposed and Potential GSSP of the Carboniferous in Russia”. The volume consists of two parts. Part “Geology and Biostratigraphy of the Carboniferous of the Southern Urals” includes data on geology and biostratigraphy of the sections to be visited during the field excursion in the Southern Urals. Part 2 “New Data on Carboniferous Stratigraphy” includes contributions on Carboniferous stratigraphy and paleontology presented at the conference.

Editors:

V. N. Puchkov (Editor-in-Chief), E. I. Kulagina, S. V. Nikolaeva, N. N. Kochetova УДК 55 (470, 57) ББК 26.3 (2Рос.Баш) ISBN 978-5-94423-182- Publication of this volume is supported by the Russian Foundation for Basic Research, project no. 09-05-06056, Division of the Earth Sciences (Russian Academy of Sciences), and Academy of Sciences of the Republic of Bashkortostan.


Российская академия наук Отделение наук о Земле Отделение биологических наук Геологический институт РАН Институт геологии Уфимского научного центра РАН Палеонтологический институт им. А.А. Борисяка РАН Всероссийский геологический научно-исследовательский институт им. А.П.Карпинского Академия наук Республики Башкортостан Межведомственный стратиграфический комитет I.U.G.S. Subcommission on Carboniferous Stratigraphy Типовые разрезы карбона России и потенциальные глобальные стратотипы Южноуральская сессия Материалы Международного полевого совещания «Стратотипические разрезы, предлагаемые и потенциальные ТГСГ карбона в России»

Уфа – Сибай, 13–18 августа, 2009 г.

Уфа, УДК 55 (470, 57) ББК 26.3 (2Рос.Баш) Т Типовые разрезы карбона России и потенциальные глобальные стратотипы: Материалы Международного полевого совещания «Стратотипические разрезы, предлагаемые Т и потенциальные ТГСГ карбона в России». Южноуральская сессия. Уфа – Сибай, 13–18 августа 2009 г. Уфа: ООО ДизайнПолиграфСервис, 2009. 240 с.

ISBN 978-5-94423-182- Сборник включает материалы Международного полевого совещания «Стратотипические разрезы, предлагаемые и потенциальные ТГСГ карбона в России». Сборник состоит из двух частей. В первую часть «Геология и биостратиграфия карбона Южного Урала» помещены материалы по геологии и биостратиграфии экскурсионных объектов. Вторая часть «Новые данные по стратиграфии карбо на» включает научные доклады по различным вопросам стратиграфии и палеонтологии.

Редакторы:

В. Н. Пучков (ответственный редактор), Е. И. Кулагина, С. В. Николаева, Н. Н. Кочетова УДК 55 (470, 57) ББК 26.3 (2Рос.Баш) ISBN 978-5-94423-182- Сборник опубликован при финансовой поддержке Российского фонда фундаментальных исследований, проект № 09-05-06056, Отделения Наук о Земле РАН и Академии наук Республики Башкортостан.

FOREWORD The International Field Meeting “The Historical Type Sections, Proposed and Potential GSSP of the Carboniferous in Russia” is conducted under the guidance of the International Subcommission on Carbon iferous Stratigraphy (SCCS) of the International Committee on Stratigraphy (ICS) of the International Union of Geological Sciences (IUGS). It is being organized by the Russian Academy of Sciences: Borissiak Paleontological Institute (PIN RAS), Institute of Geology of the Ufa Scientific Center (IG URC RAS), Geological Institute (GIN RAS) and All-Russia Research Geological Institute (VSEGEI).

The conference deals with the development of the Global Geochronological Scale of the Carbonifer ous. This scale is ratified by the International Union of Geological Sciences (IUGS) [Gradstеin et al., 2004] and includes the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian stages of the strati graphic scale of Russia. The final stage in the development of the scale is related to the choice of global stratotypes (standards) for the bases of its subdivisions. In Russia, in the Moscow Syncline and in the Southern Urals, there are historical type sections of the above-mentioned Carboniferous stages. The conference includes field excursions and demonstration of the Carboniferous type sections in the Moscow Basin and in the Southern Urals. The Southern Urals Session in Bashkortostan is a continuation of the conference.

Part 1 of the volume includes papers on the geology of the Urals, description of the type sections and their fossil content. The Devonian-Carboniferous boundary beds on the western slope of the Southern Urals and the Visan-Serpukhovian boundary beds on the eastern slope of the Southern Urals are described and illustrated. The Verkhnyaya Kardailovka Section on the right bank of the Ural River, which includes relatively deep marine carbonates with cephalopods, is proposed as a potential global boundary stratotype (GSSP) of the base of the Serpukhovian. For the first time, the boundaries of the horizons of the Serpukhovian in the eastern subregion of the Urals along the Khudolaz River in the shallow coral-brachiopod carbonates are substantiated. The fossil assemblages of the regional subdivisions of the Serpukhovian and Bashkirian stages (bioherm facies) are examined along the Bolshoi Kizil section. Foraminiferal and conodont assemblages are described from the Moscovian and overlying and underlying beds (relatively deep-water carbonates) from the Basu section on the western slope of the Southern Urals. The advantages of the section on the Usloka River exposing the Kasimovian-Gzhelian boundary beds as potential stratotype (GSSP) of the base of the Gzhelian are discussed.

Part 2 of the volume “New Data on Carboniferous Stratigraphy” contains papers by workers from Russia, Kazakhstan, Uzbekistan, Japan, Slovenia, United Kingdom, Ireland, and the USA on various problems of biostratigraphy and correlation of Carboniferous beds of the Russian Platform, Urals, Donets Basin, Western Europe, Central Asia, and Japan, new fossil records, and on the development of the dating of the geochronological scale. Many articles in this part are on the biostratigraphy and fossils of the Gzhelian stage in Russia, Western Europe, and Japan, particularly the problem of its base. Criteria suitable for defining the boundaries of stratigraphic units in various regions, and stratigraphic distribution of potential biomarkers, are discussed.

Papers in the volume contain data on the stratigraphic distribution of various Carboniferous fossils:

algae, miospores, foraminifers, radiolarians, corals, ostracodes, brachiopods, crinoids, ammonoids, and conodonts.

ACKNOWLEDGMENTS The Organizing Committee is grateful to the Russian Foundation for Basic Research, the Division of Earth Sciences of the Russian Academy of Sciences, and the Academy of Sciences of the Republic of Bashkortostan for financial support.

ПРЕДИСЛОВИЕ Международное полевое совещание «Стратотипические разрезы, предлагаемые и потенциальные ТГСГ карбона в России» проводится под эгидой Международной подкомиссии по каменноугольной стратиграфии (SCCS) Международной комиссии по стратиграфии (ICS) Международного союза геологических наук (IUGS). В ее организации приняли участие ведущие научные Учреждения Российской Академии наук: Палеонтологический институт имени А.А. Борисяка РАН (ПИН РАН), Институт геологии Уфимского научного центра РАН (ИГ УНЦ РАН), Геологический институт РАН (ГИН РАН), а также Всероссийский научно-исследовательский институт им. А.П. Карпинского (ВСЕГЕИ).

В центре внимания конференции стоят вопросы, связанные с разработкой Глобальной гео хронологической шкалы карбона. Эта шкала ратифицирована Международным союзом геологических наук (МСГН) [Gradstеin et al., 2004]. В нее вошли серпуховский, башкирский, московский, каси мовский и гжельский ярусы стратиграфической шкалы России. Заключительный этап разработки шкалы связан с выбором глобальных стратотипов (эталонов) для нижних границ ее подразделений.

На территории России, в Московской синеклизе и на Южном Урале, расположены исторические типовые разрезы названных ярусов каменноугольной системы. Конференция включает экскурсии с демонстрацией типовых разрезов карбона Подмосковного бассейна и Южного Урала. Начинается конференция в Москве, Южноуральская сессия является продолжением конференции на терри тории Башкортостан.

В первую часть сборника помещены статьи по геологическому строению Урала, описанию типовых разрезов и их палеонтологической характеристике. Дана характеристика пограничных интервалов девона и карбона на западном склоне Южного Урала, визейского и серпуховского ярусов на восточном склоне Южного Урала. Разрез Верхняя Кардаиловка по правому берегу р. Урал, представленный в относительно глубоководной цефалоподовой фации, предложен в качестве глобального стратотипа (GSSP) нижней границы серпуховского яруса. Впервые палеонтологически обоснованы границы горизонтов серпуховского яруса восточного субрегиона Урала в стратотипи ческом разрезе по р. Худолаз в мелководной кораллово-брахиоподовой фации. Комплексы фауны региональных подразделений серпуховского и башкирского ярусов в биогермной фации рассмот рены по разрезу Бол. Кизил. Описаны комплексы фораминифер и конодонтов из московских и пограничных с ними относительно глубоководных отложений разреза р. Басу западного склона Южного Урала. Показаны преимущества разреза пограничных отложений касимовского и гжель ского ярусов по р. Усолка, как кандидата в международный стандарт (GSSP) нижней границы гжельского яруса. В стратиграфических схемах, принятых в настоящем разделе, унифицированы английские транскрипции названий региональных подразделений стратиграфической шкалы в соответствии с правилами.

Вторая часть сборника содержит материалы специалистов России, Казахстана, Узбекистана, Японии, Словении, Великобритании, Ирландии, США по различным вопросам биостратиграфии и корреляции каменноугольных отложений Русской платформы, Урала, Донбасса, Западной Европы, Центральной Азии и Японии, новым палеонтологическим находкам, а также разработке временной шкалы абсолютного возраста. Большое число статей посвящено гжельскому ярусу, его биостратиграфии и палеонтологии на территории России, Западной Европы, Японии, проблемным вопросам выбора стратотипа его нижней границы. Рассмотрены критерии определения границ стратиграфических подразделений в различных регионах.

В статьях содержатся данные о стратиграфическом распространении различных групп иско паемых: водоросли, миоспоры, фораминиферы, радиолярии, кораллы, остракоды, брахиоподы, криноидеи, аммоноидеи, конодонты.

Оргкомитет выражает благодарность РФФИ, Отделению Наук о Земле РАН и Академии наук Республики Башкортостан за финансовую поддержку.

The map of pre-Quarternary deposits (N-40 (41) Ufa) (reduced). Compiled by V.N. Kozlov, A.A. Makushin, V.V. Shalaginov, Карта дочетвертичных образований (N-40 (41) Уфа) (уменьшено). Составили В.И. Козлов, А.А. Макушин, В.В. Шалагинов,

Pages:     | 1 |   ...   | 7 | 8 ||
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.