, , ,

<<


 >>  ()
Pages:     | 1 | 2 ||

, .. ...

-- [ 3 ] --

74. Ab initio structural, elastic, and vibrational properties of carbon nanotubes / [Snchez-Portal D., Artacho E., Soler J.M. et al.] Phys.Rev.

a B. 1999. V.59. P.12678.

75. Jiang J.-W.Youngs modulus of graphene: A molecular dynamics study / Jiang J.-W., Wang J.-S., Li B. Phys.Rev. B. 2009. V.80. P.113405.

76. Wong E.W. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes / Wong E.W., Sheehan P.E., Lieber C.M. Science. 1997. V.277. P.1971.

77. Yakobson B.I. Nanomechanics of carbon tubes: Instabilities beyond linear response / Yakobson B.I., Brabec C.J., Bernholc J. Phys. Rev. Lett. 1996. V.76. P.2511.

78. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load / [Yu M.F., Lourie O., Dyer M.J. et al.] Science. 2000. V.287. P.637.

79. Structural exibility of carbon nanotubes / [Iijima S., Brabec C., Maiti A., Bernholc J.] J. Chem. Phys. 1996. V.104. P.2089.

80. Elastic strain of freely suspended single-wall carbon nanotube ropes / [Walters D.A., Ericson L.M., Casavant M.J. et al.] Appl. Phys. Lett. 1999. V.74. P.3803.

81. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation / [Tombler T.W., Zhou C., Kong J., at al.] Nature. 2000. V.405. P.769.

82. Treacy M.M.J. Exceptionally high Youngs modulus observed for individual carbon nanotubes / Treacy M.M.J., Ebbesen T.W., Gibson J.M. Nature. 1996. V.381. P.678.

83. Youngs modulus of single-walled nanotubes / [ Krishnan A., Dujardin E., Ebbesen T.W. et al.] Phys. Rev. B. 1998. V.58. P.14013.

84. Elastic and shear moduli of single-walled carbon nanotube ropes / [Salvetat J.P., Briggs G.A.D., Bonard J.M. et al.] Phys. Rev. Lett. 1999. V.82. P.944.

85. Determination of the Youngs Modulus of Structurally Dened Carbon Nanotubes / [Wu Y., Huang M., Wang F. et al. ] Nano Lett. 2008.

V.8. P.4158.

86. Tu Z. Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the eective Youngs moduli dependent on layer number / Tu Z., Ou-Yang Z. Phys.Rev. B. 2002. V.65. P.233407.

87. Electrostatic Deections and Electromechanical Resonances of Carbon Nanotubes / [Poncharal P., Wang Z.L., Ugarte D., de Heer W.A.] Science. 1999. V.283. P.1513.

88. Yao N. Youngs modulus of single-walled carbon nanotubes / Yao N., Lordi V. J. Appl. Phys. 1998. V.84. P.1939.

89. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes / [Demczyk B.G., Wang Y.M., Cumings J. et al.] Mater. Sci. Eng., A. 2002. V.334. P.173.

90. Tensile tests of ropes of very long aligned multiwall carbon nanotubes / [ Pan Z.W., Xie S.S., Lu L., et al.] Appl. Phys. Lett. 1999. V.74. P.3152.

91. Xin Z. The strain energy and Youngs modulus of single-wall carbon nanotubes calculated from the electronic energy-band theory / Xin Z., Jianjun Z., Zhong-can O.-Y. Phys. Rev. B. 2000. V.62. P.13692.

92. Li C. Chou Elastic moduli of multi-walled carbon nanotubes and the e?ect of van der Waals forces / Li C., Chou T.W. Composites Science and Technology. 2003. V.63. P.1517-1524.

93. Theoretical variations in the Youngs modulus of single-walled carbon nanotubes with tube radius and temperature: a molecular dynamics study / [Hsieh J.-Y., Lu J.-M., Huang M.-Y, Hwang C.-C.] Nanotechnology. 2006. V.17. P.3920.

94. Density Functional Tight-Binding Studies of Carbon Nanotube Structures / [Peralta-Inga Z., Boyd S., Murray J.S. et al.] Struct. Chem. 2003. V.14. P.431.

95. Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes / [Salvetat J.P., Kulik A.J., Bonard J. M. et al.] Adv. Mater.

1999. V.11. P.161.

96. Yakobson B.I. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response / Yakobson B.I., Brabec C.J., Bernholc J. Phys. Rev.

Lett. 1996. V.76. P.2511.

97. Sears A. Macroscopic properties of carbon nanotubes from molecular mechanics simulations / Sears A, Batra R.C. Phys. Rev. B. 2004.

V.69. P.235406.

98. Lu J.P. Elastic properties of carbon nanotubes and nanoropes / Lu J.P. Phys. Rev. Lett. 1997. V.79. P.1297.

99. Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes / [ Brar V.W., Samsonidze G.G., Dresselhaus M.S. et al.] Phys. Rev. B. 2002. V.66. P.235424.

100. Radial thermal expansion of single-walled carbon nanotube bundles at low temperatures / [Dolbin A.V., Eselson V.B., Gavrilko V.G. et al.] Fiz.

Nizk. Temp. 2008. V.34. P.860-862.

101. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes / [Kis A., Jensen K., Aloni S. et al.] Phys. Rev. Lett. 2006.

V.97. P.025501.

102. Energy Dissipation in Gigahertz Oscillators from Multiwalled Carbon Nanotubes / [Guo W., Guo Y., Gao H. et al.] Phys. Rev. Lett. 2003.

V.91. P.125501.

103. Low-temperature specic heat of single-wall carbon nanotubes / [ Lasjaunias J.C., Biljakovi K., Benes Z. et al.] Phys. Rev. B. 2002.

c V.65. P.113409.

104. Rivera J. L. The oscillatory damped behaviour of incommensurate double walled carbon nanotubes / Rivera J. L., McCabe C., Cummings P.T. Nanotechnology. 2005. V.16. P.186-198.

105. Gigahertz nanomechanical oscillators based on carbon nanotubes / [Legoas S.B., Coluci V.R., Braga S.F. et al.] Nanotechnology. 2004. V.15. P.184-189.

106. Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators / [Legoas S.B., Coluci V.R., Braga S.F. et al.] Phys. Rev.

Lett. 2003. V.90. P.055504.

107. Kang J.W. Frequency characteristics of triple-walled carbon nanotube gigahertz devices / Kang J.W., Lee J.H. Nanotechnology. 2008. V.19.

P.285704.



Pages:     | 1 | 2 ||
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .