авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 | 4 |
-- [ Страница 1 ] --

МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ

ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра информационных технологий и моделирования

О.А. Карасева

Информатика и программирование

Курс лекций

направления 230700.62- Прикладная информатика

направления 080500.62-Бизнес-информатика ЕКАТЕРИНБУРГ 2012 1 Тема 1. Информатика. Информация Что такое информатика Определение информатики Еще не очень давно под информатикой понимали научную дисциплину, изучающей структуру и общие свойства научной информации, а также закономерности всех процессов научной коммуникации - от неформальных процессов обмена научной информацией при непосредственном устном и письменном общении ученых и специалистов до формальных процессов обмена путем научной литературы. Это понимание было близко к таким, как “библиотековедение”, “книговедение”. Синонимом понятия “информатика” иногда служил термин “документация” Стремительное развитие вычислительной техники изменило понятие “информатика”, придав ему значительно более направленный на вычислительную технику смысл. Поэтому имеются до сих пор различные толкования этого термина. В Америке, как аналогичный европейскому пониманию информатики, применяется термин “Computer Science” - наука о компьютерах.

Близким к понятию информатика является термин “системотехника”, для которого также часто словари дают перевод “Computer Science”. Информатика - это наука, изучающая все аспекты получения, хранения, преобразования, передачи и использования информации.

Основные составляющие Составляющие данной науки являются: теоретическая информатика, симеотика, кибернетика. Практически информатика реализуется в программировании и вычислительной технике.

Теоретическая информатика Теоретическая информатика является фундаментом для построения общей информатики.

Данная дисциплина занимается построением моделей, построением дискретных множеств, которые описывают эти модели. Неотъемлемой частью теоретической информатики является логика. Логика - совокупность правил, которым подчиняется процесс мышления. Математическая логика изучает логические связи и отношения, лежащие в основе дедуктивного (логического) вывода.

Симеотика Симеотика исследует знаковые системы, составляющие которых - знаки - могут иметь самую разнообразную природу, лишь бы в них можно было выделить три составляющие, связанные между собой договорными отношениями: синтаксис (или план выражения), семантику (или план значения) и прагматику (или план использования). Симеотика позволяет установить аналогии в функционировании различных систем как естественного, так и искусственного происхождения. Ее результаты используются в компьютерной лингвистике, искусственном интеллекте, психологии и других науках.

Кибернетика Кибернетика возникла в конце 40-х годов, когда Н.Винер выдвинул идею, что правила управления живыми, неживыми и искусственными системами имеют много общих черт.

Актуальность выводов Н.Винера была подкреплена появлением первых компьютеров.

Кибернетика сегодня может рассматриваться как направление информатики, рассматривающее создание и использование автоматизированных систем управления разной степени сложности.

Аналоговая и цифровая обработка информации Информатика, как наука об обработке информации, реализуется в аналоговой и цифровой обработке информации. К аналоговой обработке информации можно отнести непосредственные действия с цветом, светом, формой, линией и т.д. Смотреть на мир через розовые очки (буквально) - это аналоговая обработка визуальной информации.

Возможны и аналоговые вычислительные устройства. Они широко применялись раньше в технике и автоматике. Простейшим примером такого устройства является логарифмическая линейка. Раньше в школах учили с ее помощью производить умножения и деления и она была всегда под рукой любого инженера. Сейчас ее заменили цифровые устройства - калькуляторы. Под цифровой обработкой информацией обычно понимают действия с информацией посредством цифровой вычислительной техники. В настоящее время традиционные аналоговые способы записи звуковой и телевизионной информации заменяются цифровыми способами, однако они еще не получили широкое распространение. Однако мы уже все чаще используем цифровые устройства для управления традиционными “аналоговыми” устройствами. Например, сигналы, подающиеся от переносного устройства управления телевизором или видеомагнитофоном являются цифровыми. Появившиеся в магазинах весы, выдающие на табло вес и стоимость покупки, также являются цифровыми. Естественные способы отображения и обработки информации в природе являются аналоговыми. Отпечаток следа животного является аналоговым сигналом о величине животного. Крик является аналоговым способом передать внутреннее состояние: чем громче - тем сильнее чувство. Физические процессы выполняют аналоговую обработку сигналов в органах чувств: фокусировку изображения на сетчатке глазного яблока, спектральный анализ звуков в ушной улитке.

Системы аналоговой обработки сигналов более быстродействующие, чем цифровые, но выполняют узкие функции, плохо перестраиваются на выполнение новых операций.

Поэтому сейчас так стремительно развились числовые ЭВМ. Они универсальны и позволяют обрабатывать не только численную, но и любую другую информацию:

текстовую, графическую, звуковую. Цифровые ЭВМ способны принимать информацию от аналоговых источников, используя специальные устройства: аналогово-цифровые преобразователи. Также информация, после обработки на цифровой ЭВМ, может переводиться в аналоговую форму на специальных устройствах: цифро-аналоговых преобразователях. Поэтому современные цифровые ЭВМ могут говорить, синтезировать музыку, рисовать, управлять машиной или станком. Но может не так заметно для всех, как цифровые ЭВМ, но развиваются и аналоговые системы обработки информации. А некоторые устройства аналоговой обработки информации до сих пор не нашли и видимо в ближайшем будущем не найдут себе достойной цифровой замены. Таким устройством, например, является объектив фотоаппарата. Вероятно, что будущее техники за так называемыми аналогово-цифровыми устройствами, использующими преимущества тех и других. Повидимому органы чувств, нервная система и мышление также построены природой как на аналоговой, так и цифровой основе. При проектировании человеко машинных сис тем важно учитывать характеристики человека по восприятию того или иного вида информации. При чтении текстов, например, человек воспринимает 16 бит в сек, одновременно удерживая 160 бит [9]. Удобный дизайн в кабине самолета, на пульте управления сложной системой, значительно облегчает работу человека, повышает глубину его информированности о текущем состоянии управляемого объекта, влияет на быстроту и эффективность принимаемых решений.

2.3.Некоторые определения.

Наука - социальная сфера создания и использования информации как знания объективного мира человека.

Искусство - социальная деятельность по созданию и использованию источников информации, влияющих в первую очередь на чувства, во вторую на сознание.

Творчество - производство человеком новой информации. Педагогика - организация информационного процесса, связанного с максимальным усвоением информации.

Обучение - передача информации с целью приобретения знания и умения.

Проблема обучения информатике на начальном этапе как в старших классах среднеобразовательных школ, так и на первых курсах высшей школы вызывает многочисленные споры. До последнего времени считалось одной из основных задач общее знакомство с компьютерной техникой и умение программировать на одном из простейших языков (как правило “Школьный алгоритмический язык”, “Бейсик” или “Паскаль”). Такая ориентация наметила уклон в сторону программирования. У обучаемого появилась ассоциация слова “информатика” со словом “программирование”.

В данной методическом пособии сделана попытка раскрыть понятия информатики и информации с целью использования их специалистами гуманитарных направлений.

Обучаемые должны получить возможность оперировать с информацией любого вида:

лингвистической, изобразительной, музыкальной. Пособие поможет им приступит к получению навыков обработки и систематизации информации, ориентации в информационных сетях.

Определение информации Понятие “Информация” достаточно широко используется в обычной жизни современного человека, поэтому каждый имеет интуитивное представление, что это такое. Но когда наука начинает применять общеизвестные понятия, она уточняет их, приспосабливая к своим целям, ограничивает использование термина строгими рамками его применения в конкретной научной области. Так физика определила понятие силы, и физический термин силы это уже совсем не то, что имеется в виду, когда говорят: сила воли, или сила разума.

В то же время наука, занимаясь изучением явления, расширяет представление человека о нем. Поэтому, например, для физика понятие силы, даже ограниченное его строгим физическим значением, гораздо более богаче и содержательнее, чем для несведущих в физике. Так понятие информации, становясь предметом изучения многих наук, в каждой из них конкретизируется и обогащается. Понятие информация является одним из основных в современной науке и поэтому не может быть строго определено через более простые понятия. Можно лишь, обращаясь к различным аспектам этого понятия, пояснять, иллюстрировать его смысл [8]. Деятельность людей связана с переработкой и использованием материалов, энергии и информации. Соответственно развивались научные и технические дисциплины, отражающие вопросы материаловедения, энергетики и информатики. Значение информации в жизни общества стремительно растет, меняются методы работы с информацией, расширяются сферы применения новых информационных технологий. Сложность явления информации, его многоплановость, широта сферы применения и быстрое развитие отражается в постоянном появлении новых толкований понятий информатики и информации. Поэтому имеется много определений понятия информации, от наиболее общего философского - “Информация есть отражение реального мира”[1] до узкого, практического - “Информация есть все сведения, являющееся объектом хранения, передачи и преобразования”[2].

Приведем для сопоставления также некоторые другие определения и характеристики:

1. Информация (Information)- содержание сообщения или сигнала;

сведения, рассматриваемые в процессе их передачи или восприятия, позволяющие расширить знания об интересующем объекте.

2. Информация - является одной из фундаментальных сущностей окружающего нас мира (акад. Поспелов).

3. Информация - первоначально - сведения, передаваемые одними людьми другим людям устным, письменным или каким - нибудь другим способом (БСЭ).

4. Информация - отраженное разнообразие, то есть нарушение однообразия.

5. Информация - является одним из основных универсальных свойств материи.

Под информацией необходимо понимать не сами предметы и процессы, а их отражение или отображение в виде чисел, формул, описаний, чертежей, символов, образов. Сама по себе информация может быть отнесена к области абстрактных категорий, подобных, например, математическим формулам, однако работа с ней всегда связана с использованием каких-нибудь материалов и затратами энергии. Информация хранится в наскальных рисунках древних людей в камне, в текстах книг на бумаге, в картинах на холсте, в музыкальных магнитофонных записях на магнитной ленте, в данных оперативной памяти компьютера, в наследственном коде ДНК в каждой живой клетке, в памяти человека в его мозгу и т.д. Для ее записи, хранения, обработки, распространения нужны материалы (камень, бумага, холст, магнитная лента, электронные носители данных и пр.), а также энергия, например, чтобы приводить в действие печатающие машины, создавать искусственный климат для хранения шедевров изобразительного искусства, питать электричеством электронные схемы калькулятора, поддерживать работу передатчиков на радио и телевизионных станциях. Успехи в современном развити информационных технологий в первую очередь связаны с созданием новых материалов, лежащих в основе электронных компонентов вычислительных машин и линий связи.

1.2. Количественная мера информации Что такое величина или количество информации Каждый предмет или явление человек пытается охарактеризовать, для сравнения с подобными, его величиной. Не всегда это можно просто и однозначно сделать. Даже величины физических предметов можно оценивать по-разному: по объему, весу, массе, количеству составляющих его элементов, стоимости.

Поэтому, например, понятно, что даже на простой вопрос: ”Что больше, килограммовая гиря или детский воздушный шарик?”- можно ответить по разному. Чем явление более сложно и многопланово и чем больше характеристик у этого явления, тем труднее подобрать для него удовлетворяющее всех, кто занимается этим явлением, определение его величины. Так и количество информации можно мерить по-разному: в количествах книг, страниц, знаков, метрах кинопленки, тоннах архивных материалов, килобайтах оперативной памяти ЭВМ, а также оценивать по эмоциональному восприятию человека, по полученной пользе от обладания информацией, по необходимым затратам на обработку, систематизацию информации и т.д. Попробуйте оценить, где больше информации: в формуле Энштейна E=mc2, лежащей в основе физики водородной бомбы, в картине Айвазовского “Девятый вал” или в ежедневной телевизионной передаче “Новости”. Видимо проще всего оценить количество информации по тому, сколько необходимо места для ее хранения, выбрав какой-нибудь единый способ представления и хранения информации. С развитием ЭВМ таким единым способом стало кодирование информации с помощью цифр 1 и 0. Кодированием мы здесь называем перезапись информации из одного способа представления в другой. Количество позиций (называемых двоичными), в которых находятся только цифры 1 или 0, необходимое для прямой записи сообщения, является одним из критериев количества информации и называется объемом информации в битах. Для записи одного символа (буквы, цифры, пробела между словами, знаков препинания) в ЭВМ чаще всего используют 8 двоичных позиций, и это называется байтом. Таким образом фраза:

”белоснежка и семь гномов” состоит из 21 буквы (без кавычек) и двух пробелов между словами и будет занимать в памяти ЭВМ 23 байта или 184 бита. Возможна не прямая, а сжатая запись информации, т.е. кодирование его меньшим количеством бит. Это производится за счет специальной обработки и анализа частоты появления, расположения и количества символов в сообщении. На практике человек применяет также сжатие сообщение, исходя из его смысла. Например длинное сообщение объемом в 37 байт “тысяча девятисот девяносто шестой год” можно сжать до четырех символов “1996” Впервые, как научное понятие, информация стала применяться в библиотековедении, теории журналистики. Затем еe стала рассматривать наука об оптимальном кодировании сообщений и передаче информации по техническим каналам связи.

Формула Шеннона Клод Элвуд Шеннон предложил в 1948 году теорию информации, которая дала вероятностно-статистическое определение понятия количества информации. Каждому сигналу в теории Шеннона приписывается вероятность его появления. Чем меньше вероятность появления того или иного сигнала, тем больше информации он несет для потребителя. Шеннон предложил формулу для измерения количества информации:

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения "орла" и "решки" будут различаться.

Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

(1) где I - количество информации;

N - количество возможных событий;

рi - вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Р1 = 1/2, р2 = 1/4, р3 = 1/8, р4 = 1/8.

Тогда количество информации, которое мы получим после реализации одного из них, можно рассчитать по формуле (1):

I = -(l/2 log 2 l/2 + l/4 log 2 l/4 + l/8 log 2 l/8 + l/8 log 2l/8) = (1/2 + 2/4 + 3/8 + 3/8) битов = 14/ битов = 1,75 бита.

Этот подход к определению количества информации называется вероятностным.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (pi= 1/N), величину количества информации I можно рассчитать по формуле:

(2) По формуле (2.3) можно определить, например, количество информации, которое мы получим при бросании симметричной и однородной четырехгранной пирамидки:

I= log 2 4 = 2 бита. Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной (1,75 бита), когда события неравновероятны.

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

Выбор оптимальной стратегии в игре "Угадай число". На получении максимального количества информации строится выбор оптимальной стратегии в игре "Угадай число", в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй - должен "угадать" задуманное число. Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При оптимальной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и отгадывание интервалов равновероятно. В этом случае на каждом шаге ответ первого игрока ("Да" или "Нет") будет нести максимальное количество информации ( бит).

Как видно из табл. 1.1, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщения от первого участника, содержащего 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Таблица 2.1. Информационная модель игры "Угадай число" Полученное Вопрос второго Ответ первого Неопределенность знаний количество участника участника (количество возможных событий) информации Число больше Нет 1 бит 8?

Число больше Нет 1 бит 4?

Число больше Да 1 бит 2?

Число 3? Да 1 бит Формула показывает зависимость количества информации от числа событий и от вероятности появления этих событий. Информация равна нулю, если возможно только одно событие. С ростом числа событий информация увеличивается. I=1 - единица информации, называемая “бит”. Бит - основная единица измерения информации.

Бит и байт В технике возможны два исхода, которые кодируются следующим образом: цифрой один “1” - “да”, “включено”, “ток идет”... цифрой ноль “0” - “нет”, “выключено”, “ток не идет”.

Цифры 1 и 0 являются символами простейшей знаковой системы исчисления. В каждом знаке или символе двоичной системы исчисления содержится один бит информации.

Особое значение для измерения объемов символьной информации имеет специальная единица - байт. 1 байт = 8 битов, что соответствует восьми разрядам двоичного числа.

Почему именно 8? Так сложилось исторически. Объем информации измеряется также в производных от байта единицах: Кбайтах, Мбайтах и Гбайтах, только приставки “К”, “М” и “Г” не означают, как в физике “кило”, “мега” и “гига”, хотя их часто так и называют. В физика “кило” означает 1000, а в информатике “К” означает 1024, так как это число более естественно для вычислительных машин. Они в основе своей арифметики используют число 2, как человек в основе своей арифметики применяет число 10. Поэтому числа 10, 100, 100 и т.д. удобны для человека, а числа 2, 4, 8, 16 и наконец число 1024, получающееся перемножением двойки десять раз, “удобны” для ЭВМ.

1 Кбайт (КБ) = 1024 байта = 8192 бита 1 Мбайт (МБ) = 1024 Кбайта = 2 20байта = 2 23 бита 1 Гбайт (МБ) = 1024 Мбайта = 2 20Кбайта = 2 30байта = 2 33бита.

Введенное таким образом понятие количество информации не совпадает с общепринятым понятием количества информации, как важности полученных сведений, но оно с успехом используется в вычислительной технике и связи.

Экспертные методы оценки информации и становление новых мер информации Поскольку у информации имеются разнообразные характеристики, практическое значение которых в различных приложениях информатики различно, то не может быть единой меры количества информации, удобной во всех случаях. Например, количеством меры информации может служить сложность вычисления при помощи некоторого универсального алгоритма. Следует ожидать, что дальнейшее проникновение информатики в те направления человеческой деятельности, где она еще слабо применяется, в том числе в искусство, приведет к разработке новых научных определений количества информации. Так восприятие произведения искусства, которое нравится нам, приносит ощущение наполнения новой, неизведанной ранее информацией. Не даром часто эффект, произведенный на человека великим музыкальным произведением, полотном художника, а иногда просто созерцанием природы: живописных гор, глубокого неба, - характеризуют словом “откровение”. Поэтому могут появиться характеристики количества информации, характеризующие ее эстетическое и художественное значение.

Пока не созданы простые, математически выраженные определения меры количества того или иного свойства информации, для оценки его величины служат так называемые экспертные оценки, т.е. заключения специалистов в данной области. Они свои оценки дают на основании личного, часто очень субъективного опыта. Профессиональное общение между экспертами и творческое обсуждение предмета анализа приводит к выработке более или менее общепринятых критериев оценки, которые могут в конечном счете стать основой для создания формальной меры, однозначной, как международный эталон метра. Примерами становления будущих мер информации, в ее разных проявлениях, могут служить следующие экспертные оценки и другие уже применяемые показатели:

баллы, даваемые судьями соревнований за художественность исполнения, например, по фигурному катанию;

обзоры кинофильмов в прессе с проставлением балов по степени их интереса кинозрителю;

стоимость произведений живописи;

оценка работы ученого по количеству опубликованных статей;

оценка работы ученого по количеству ссылок на его работы в работах других ученых (индекс реферируемости);

индексы популярности музыкальных произведений и их исполнителей, публикуемые в прессе;

оценки студентов, выставляемые преподавателями колледжа.

Кроме измерения объема памяти в битах и байтах, в технике применяются и другие единицы измерения, характеризующие работу с информацией:

количество операций в секунду, характеризующее скорость обработки информации вычислительной машиной;

количество байт или бит в секунду, характеризующее скорость передачи информации;

количество знаков в секунду, характеризующие скорость чтения, набора за компьютером текстов или быстродействие печатающего устройства.

1.3. Классификация информации Информацию можно условно делить на различные виды, основываясь на том или ионом ее свойстве или характеристике, например по способу кодирования, сфере возникновения, способу передачи и восприятия и общественному назначению и т.д..

По способу кодирования По способу кодирования сигала информацию можно разделить на аналоговую и цифровую. Аналоговый сигнал информацию о величине исходного параметра, о котором сообщается в информации, представляет в виде величины другого параметра, являющегося физической основой сигнала, его физическим носителем. Например, величины углов наклона стрелок часов - это основа для аналогового отображения времени. Высота ртутного столбика в термометре - это тот параметр, который дает аналоговую информацию о температуре. Чем больше длина столика в термометре, тем больше температура. Для отображения информации в аналоговом сигнале используются все промежуточные значения параметра от минимального до максимального, т.е.

теоретически бесконечно большое их число. Цифровой сигнал использует в качестве физической основы для записи и передачи информации только минимальное количество таких значений, чаще всего только два. Например, в основе записи информации в ЭВМ применяются два состояния физического носителя сигнала - электрического напряжения.

Одно состояние - есть электрическое напряжение, условно обозначаемое единицей (1), другое - нет электрического напряжения, условно обозначаемое нулем (0). Поэтому для передачи информации о величине исходного параметра необходимо использовать представление данных в виде комбинации нулей и единиц, т.е. цифровое представление.

Интересно, что одно время были разработаны и использовались вычислительные машины, в основе которых стояла троичная арифметика, так как в качестве основных состояний электрического напряжения естественно взять три следующие: 1) напряжение отрицательно, 2) напряжение равно нулю, 3)напряжение положительно. До сих пор выходят научные работы, посвященные таким машинам и описывающие преимущества троичной арифметики. Сейчас в конкурентной борьбе победили производители двоичных машин. Будет ли так всегда? Приведем некоторые примеры бытовых цифровых устройств.

Электронные часы с цифровой индикацией дают цифровую информацию о времени.

Калькулятор производит вычисления с цифровыми данными. Механический замок с цифровым кодом тоже можно назвать примитивным цифровым устройством.

По сфере возникновения По сфере возникновения информацию можно классифицировать следующим образом.

Информацию, возникшую в неживой природе называют элементарной, в мире животных и растений - биологической, в человеческом обществе - социальной. В природе, живой и неживой, информацию несут: цвет, свет, тень, звуки и запахи. В результате сочетания цвета, света и тени, звуков и запахов возникает эстетическая информация. Наряду с естественной эстетической информацией, как результат творческой деятельности людей возникла другая разновидность информации - произведения искусств. Кроме эстетической информации в человеческом обществе создается семантическая информация, как результат познания законов природы, общества, мышления. Деление информации на эстетическую и семантическую очевидно очень условно, просто необходимо понимать, что в одной информации может преобладать ее семантическая часть, а в другой эстетическая.

По способу передачи и восприятия По способу передачи и восприятия информацию принято классифицировать следующим образом. Информация, передаваемая в виде видимых образов и символов называется визуальной;

передаваемая звуками - аудиальной;

ощущениями - тактильной;

запахами вкусовой. Информация, воспринимаемая оргтехникой и компьютерами называется машинно-ориентированной информацией. Количество машинно-ориентированной информации постоянно увеличивается в связи с непрерывно возрастающим использованием новых информационных технологий в различных сферах человеческой жизни.

По общественному назначению По общественному назначению информацию можно подразделять на массовую, специальную и личную. Массовая информация подразделяется в свою очередь на общественно-политическую, обыденную и научно-популярную. Специальная информация подразделяется на производственную, техническую, управленческую и научную.

Техническая информация имеет следующие градации:

станкостроительная, машиностроительная, инструментальная...

Научная информация подразделяется на биологическую, математическую, физическую...

1.4. Свойства информации Информация имеет следующие свойства:

- атрибутивные;

- прагматические;

- динамические.

Атрибутивные - это те свойства, без которых информация не существует. Прагматические свойства характеризуют степень полезности информации для пользователя, потребителя и практики. Динамические свойства характеризуют изменение информации во времени.

Атрибутивные свойства информации Неотрывность информации от физического носителя и языковая природа информации Важнейшими атрибутивными свойствами информации являются свойства неотрывности информации от физического носителя и языковая природа информации. Одно из важнейших направлений информатики как науки является изучение особенностей различных носителей и языков информации, разработка новых, более совершенных и современных. Необходимо отметить, что хотя информация и неотрывна от физического носителя и имеет языковую природу она не связана жестко ни с конкретным языком, ни с конкретным носителем.

Дискретность Следующим атрибутивным свойствам информации, на которое необходимо обратить внимание, является свойство дискретности. Содержащиеся в информации сведения, знания - дискретны, т.е. характеризуют отдельные фактические данные, закономерности и свойства изучаемых объектов, которые распространяются в виде различных сообщений, состоящих из линии, составного цвета, буквы, цифры, символа, знака.

Непрерывность Информация имеет свойство сливаться с уже зафиксированной и накопленной ранее, тем самым способствуя поступательному развитию и накоплению. В этом находит свое подтверждение еще одно атрибутивное свойство информации - непрерывность.

Прагматические свойства информации Смысла и новизна Прагматические свойства информации проявляются в процессе использования информации. В первую очередь к данной категории свойств отнесем наличие смысла и новизны информации, которое характеризует перемещение информации в социальных коммуникациях и выделяет ту ее часть, которая нова для потребителя.

Полезность Полезной называется информация, уменьшающей неопределенность сведений об объекте.

Дезинформация расценивается как отрицательные значения полезной информации.

Встречается применение термина полезности информации для описания, какое влияние на внутреннее состояние человека, его настроение, самочувствие, наконец здоровье, оказывает поступающая информация. В этом смысле полезная или положительная информация - это та, которая радостно воспринимается человеком, способствует улучшению его самочувствия, а отрицательная информация угнетающе действует на психику и самочувствие человека, может привести к ухудшению здоровья, инфаркту, например.

Ценность Следующим прагматическим свойством информации является ее ценность. Необходимо обратить внимание, что ценность информации различна для различных потребителей и пользователей.

Кумулятивность Свойство кумулятивности характеризует накопление и хранение информации.

Динамические свойства информации Динамические свойства информации, как следует из самого названия, характеризуют динамику развития информации во времени.

Рост информации Прежде всего необходимо отметить свойство роста информации. Движение информации в информационных коммуникациях и постоянное ее распространение и рост определяют свойство многократного распространения или повторяемости. Хотя информация и зависима от конкретного языка и конкретного носителя, она не связана жестко ни с конкретным языком ни с конкретным носителем. Благодаря этому информация может быть получена и использована несколькими потребителями. Это свойство многократной используемости и проявление свойства рассеивания информации по различным источникам.

Старение Среди динамических свойств необходимо также отметить свойство старения информации.

Итак, поведем итоги.

Термин информация происходит от латинского слова informatio, что означает «сведения, разъяснения, изложение».

Информация - это настолько общее и глубокое понятие, что его нельзя объяснить одной фразой. В это слово вкладывается различный смысл в технике, науке и в житейских ситуациях.

В обиходе информацией называют любые данные или сведения, которые кого-либо интересуют, например сообщение о каких-либо событиях, о чьей-либо деятельности и т.

п. «Информировать» в этом смысле означает «сообщить нечто, неизвестное раньше».

Информация — сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, которые воспринимают информационные системы (живые организмы, управляющие машины и др.) в процессе жизнедеятельности и работы.

Одно и то же информационное сообщение (статья в газете, объявление, письмо, телеграмма, справка, рассказ, чертеж, радиопередача и т. п.) может содержать разное количество информации для разных людей в зависимости от их накопленных знаний, от уровня понимания этого сообщения и интереса к нему. Так, сообщение, составленное на японском языке, не несет никакой новой информации человеку, не знающему этого языка, но может быть высокоинформативным для человека, владеющего японским. Никакой новой информации не содержит и сообщение, изложенное на знакомом языке, если его содержание непонятно или уже известно.

Информация есть характеристика не сообщения, а соотношения между сообщением и его потребителем. Без наличия потребителя, хотя бы потенциального, говорить об информации бессмысленно.

В случаях, когда говорят об автоматизированной работе с информацией посредством каких-либо технических устройств, обычно в первую очередь интересуются не содержанием сообщения, а тем, сколько символов это сообщение содержит.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т. п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объем сообщения.

Информация может существовать в виде:

текстов, рисунков, чертежей, фотографий;

световых или звуковых сигналов;

радиоволн;

электрических и нервных импульсов;

магнитных записей;

жестов и мимики;

запахов и вкусовых ощущений;

хромосом, посредством которых передаются по наследству признаки и свойства организмов, и т. д.

Предметы, процессы, явления материального или нематериального свойства, рассматриваемые с точки зрения их информационных свойств, называются информационными объектами.

Что можно делать с информацией создавать принимать комбинировать хранить передавать копировать обрабатывать искать воспринимать формализовать делить на части измерять использовать распространять упрощать разрушать запоминать преобразовывать собирать и т. д.

Все эти процессы, связанные с определенными операциями над информацией, называются информационными процессами.

Свойства информации Информация обладает следующими свойствами:

достоверность полнота точность ценность своевременность понятность доступность краткость и т. д.

Информация достоверна, если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений. Достоверная информация со временем может стать недостоверной, так как она обладает свойством устаревать, т. е. перестает отражать истинное положение дел.

Информация полна, если ее достаточно для понимания и принятия решений. Как неполная, так и избыточная информация сдерживает принятие решений или может повлечь ошибки.

Точность информации определяется степенью ее близости к реальному состоянию объекта, процесса, явления и т. п.

Ценность информации зависит от того, насколько она важна для решения задачи, а также от того, насколько в дальнейшем она найдет применение в каких-либо видах деятельности человека.

Только своевременно полученная информация может принести ожидаемую пользу.

Одинаково нежелательны как преждевременная подача информации (когда она еще не может быть усвоена), так и ее задержка.

Если ценная и своевременная информация выражена непонятным образом, она может стать бесполезной. Информация становится понятной, если она выражена языком, на котором говорят те, кому предназначена эта информация.

Информация должна преподноситься в доступной (по уровню восприятия) форме.

Поэтому одни и те же вопросы по-разному излагаются в школьных учебниках и научных изданиях.

Информацию по одному и тому же вопросу можно изложить кратко (сжато, без несущественных деталей) или пространно (подробно, многословно). Краткость информации необходима в справочниках, энциклопедиях, всевозможных инструкциях.

Тема 2. Алгебра логики История Своим существованием наука «алгебра логики» обязана английскому математику Джорджу Булю, который исследовал логику высказываний. Первый в России курс по алгебре логики был прочитан П. С. Порецким в Казанском государственном университете.

Не следует путать с булевой алгеброй.

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н.

бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Определение Базовыми элементами, которыми оперирует алгебра логики, являются высказывания.

Высказывания строятся над множеством {B,,,, 0, 1}, где B — непустое множество, над элементами которого определены три операции:

отрицание (унарная операция), конъюнкция (бинарная), дизъюнкция (бинарная), а также константы — логический ноль 0 и логическая единица 1.

— пропозициональная формула, являющаяся дизъюнкцией одного или более литералов (например ). Конъюнкт — пропозициональная формула, являющаяся конъюнкцией одного или более литералов (например ).

Аксиомы, инволютивность отрицания, закон снятия двойного отрицания 1.

2.

3.

4.

5.

6.

7.

8.

9.

Логические операции Простейшим и наиболее широко применяемым примером такой алгебраической системы является множество B, состоящее всего из двух элементов:

B = { Ложь, Истина } Как правило, в математических выражениях Ложь отождествляется с логическим нулём, а Истина — с логической единицей, а операции отрицания (НЕ), конъюнкции (И) и дизъюнкции (ИЛИ) определяются в привычном нам понимании. Легко показать, что на данном множестве B можно задать четыре унарные и шестнадцать бинарных отношений и все они могут быть получены через суперпозицию трёх выбранных операций.

Опираясь на этот математический инструментарий, логика высказываний изучает высказывания и предикаты. Также вводятся дополнительные операции, такие как эквивалентность («тогда и только тогда, когда»), импликация («следовательно»), сложение по модулю два («исключающее или»), штрих Шеффера, стрелка Пирса и другие.

Логика высказываний послужила основным математическим инструментом при создании компьютеров. Она легко преобразуется в битовую логику: истинность высказывания обозначается одним битом (0 — ЛОЖЬ, 1 — ИСТИНА);

тогда операция приобретает смысл вычитания из единицы;

— немодульного сложения;

& — умножения;

— равенства;

— в буквальном смысле сложения по модулю 2 (исключающее Или — XOR);

— непревосходства суммы над 1 (то есть A B = (A + B) = 1).

Впоследствии булева алгебра была обобщена от логики высказываний путём введения характерных для логики высказываний аксиом. Это позволило рассматривать, например, логику кубитов, тройственную логику (когда есть три варианта истинности высказывания:

«истина», «ложь» и «не определено») и др.

Свойства логических операций 1. Коммутативность (подвергающийся перемещению): x y = y x, {&, }.

2. Идемпотентность(от лат. idem – тот же самый и potens – сильный, мощный;

букв. – равносильность): x x = x, {&, }.

3. Ассоциативность (от лат. associatio — соединение) (x y) z = x (y z), {&, }.

В математике (также сочетательность) — свойство любой операции, такое что для неё выполняется равенство:

для любых элементов.

Например, для умножения:.

В программировании (также очерёдность) ассоциативностью операторов называют последовательность их выполнения (или направление вычисления), реализуемое, когда операторы имеют одинаковый приоритет и отсутствует явное (с помощью скобок) указание на очерёдность их выполнения. При этом различается левая ассоциативность, при которой вычисление выражения происходит слева-направо, и правая ассоциативность — справа-налево. Соответствующие операторы называют левоассоциативными и правоассоциативными.

4. Дистрибутивность конъюнкций и дизъюнкции относительно дизъюнкции, конъюнкции и суммы по модулю два соответственно:

,,.

5.

,.

6. Законы поглощения:

,.

7. Другие (1):

.

.

.

.

, инволютивность отрицания, закон снятия двойного отрицания.

8. Другие (2):

.

.

.

.

9.

.

.

10. Базовые логические элементы "И", "ИЛИ", "НЕ".

Алгебра логики – это математический аппарат, с помощью которого записывают, вычисляют, упрощают и преобразовывают логические высказывания.

Создателем алгебры логики является английский математик Джордж Буль (19 век), в честь которого она названа булевой алгеброй высказываний.

Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.

Например, предложение «6 – четное число» - высказывание, так как оно истинное.

Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: 1 и 0.

Логический элемент компьютера — это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера.

Работу логических элементов описывают с помощью таблиц истинности.

Базовые логические элементы И, ИЛИ, НЕ Схема И реализует конъюнкцию (логическое умножение) двух или более логических значений.

Эл. схема Таблица истинности х хиу y 0 0 0 1 1 0 1 1 12. Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет нуль, на выходе также будет нуль.

Связь между выходом z этой схемы и входами х и у описывается соотношением z = х ^ у (читается как «х и у»).

Операция конъюнкции на функциональных схемах обозначается знаком & (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

Схема ИЛИ реализует дизъюнкцию (логическое сложение) двух или более логических значений.

Эл. схема Таблица истинности х х или у y 0 0 0 1 1 0 1 1 Когда хотя бы на одном входе схемы ИЛИ будет единица, на ее выходе также будет единица.

Знак «1» на схеме — от устаревшего обозначения дизъюнкции как «=!» (т.е. значение дизъюнкции равно единице, если сумма значений операндов больше или равна 1). Связь между выходом z этой схемы и входами х и у описывается соотношением z = х или у.

Схема НЕ (инвертор) реализует операцию отрицания.

Таблица истинности х не х 0 1 Связь между входом х этой схемы и выходом z можно записать соотношением Z =, где х читается как «не х» или «инверсия.

Если на входе схемы 0, то на выходе 1. Когда на входе 1 на выходе 0.

Тема 3 История ЭВМ История компьютера тесным образом связана с попытками облегчить и автоматизировать большие объемы вычислений. Даже простые арифметические операции с большими числами затруднительны для человеческого мозга. Поэтому уже в древности появилось простейшее счетное устройство - абак. В семнадцатом веке была изобретена логарифмическая линейка, облегчающая сложные математические расчеты. В 1642 году Блез Паскаль сконструировал восьмиразрядный суммирующий механизм. Два столетия спустя в 1820 году француз Шарль де Кольмар создал арифмометр, способный производить умножение и деление. Этот прибор прочно занял свое место на бухгалтерских столах.

Все основные идеи, которые лежат в основе работы компьютеров, были изложены еще в 1833 году английским математиком Чарльзом Бэббиджем. Он разработал проект машины для выполнения научных и технических расчетов, где предугадал основные устройства современного компьютера, а также его задачи. Управление такой машиной должно было осуществляться программным путем. Для ввода и вывода данных Бэббидж предлагал использовать перфокарты - листы из плотной бумаги с информацией, наносимой с помощью отверстий. В то время перфокарты уже использовались в текстильной промышленности. Отверстия в них пробивались с помощью специальных устройств перфораторов. Идеи Бэббиджа стали реально воплощаться в жизнь в конце 19 века.

В 1888 году американский инженер Герман Холлерит сконструировал первую электромеханическую счетную машину. Эта машина, названная табулятором, могла считывать и сортировать статистические записи, закодированные на перфокартах. В году изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую пятьсот сотрудников выполняли в течение семи лет, Холлерит сделал с 43 помощниками на 43 табуляторах за один месяц.

В 1896 году Герман Холлерит основал фирму Computing Tabulating Recording Company, которая стала основой для будущей Интернэшнл Бизнес Мэшинс (International Business Machines Corporation, IBM) - компании, внесшей гигантский вклад в развитие мировой компьютерной техники.

Дальнейшие развития науки и техники позволили в 1940-х годах построить первые вычислительные машины. Создателем первого действующего компьютера Z1 с программным управлением считают немецкого инженера Конрада Цузе.

В феврале 1944 года на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета по заказу ВМС США была создана машина "Mark 1".

Это был монстр весом около 35 тонн. В "Mark 1" использовались механические элементы для представления чисел и электромеханические - для управления работой машины.

Числа хранились в регистрах, состоящих из десятизубных счетных колес. Каждый регистр содержал 24 колеса, причем 23 из них использовались для представления числа (т.е. "Mark 1" мог "перемалывать" числа длинной до 23 разрядов), а одно - для представления его знака. Регистр имел механизм передачи десятков и поэтому использовался не только для хранения чисел;

находящееся в одном регистре, число могло быть передано в другой регистр и добавлено к находящемуся там числу(или вычтено из него). Всего в "Mark 1" было 72 регистра и, кроме того, дополнительная память из 60 регистров, образованных механическими переключателями. В эту дополнительную память вручную вводились константы - числа, которые не изменялись в процессе вычислений.

Умножение и деление производилось в отдельном устройстве. Кроме того, машина 10x имела встроенные блоки, для вычисления sin x, и log x.

Скорость выполнения арифметических операций в среднем составляла: сложение и вычитание - 0,3 секунды, умножение - 5,7 секунды, деление - 15,3 секунды. Таким образом "Mark 1" был "эквивалентен" примерно 20 операторам, работающим с ручными счетными машинами.

Наконец, в 1946 в США была создана первая электронная вычислительная машина (ЭВМ) - ENIAC (Electronic Numerical integrator and Computer - Электронный числовой интегратор и компьютер).Разработчики: Джон Мочи (John Маuchу) и Дж. Преспер Эккерт (J. Prosper Eckert).

Он был произведен на свет в Школе электрической техники Moore (при университете в Пенсильвании).

Время сложения - 200 мкс, умножения - 2800 мкс и деления - 24000 мкс.

Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов.

Общая стоимость базовой машины - 750000 долларов. Стоимость включала дополнительное оборудование, магнитные модули памяти (по цене 29706,5 доллара) и аренду у IBM (по 82,5 доллара в месяц) устройства считывания перфокарт ( 125 карт в минуту). Она также включала и арендную плату (по 77 долларов в месяц) за IBM перфоратор (100 карт в минуту).

Потребляемая мощность ENIAC -174 кВт. Занимаемое пространство - около 300 кв.

м.

В Советском Союзе первая электронная цифровая вычислительная машина была разработана в 1950 году под руководством академика С. А. Лебедева в Академии наук Украинской ССР. Она называлась «МЭСМ» (малая электронная счётная машина).

Основоположниками компьютерной науки по праву считаются Клод Шеннон создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до сих пор лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика, наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер. Одно время слово "кибернетика" использовалось для обозначения вообще всей компьютерной науки, а в особенности тех ее направлений, которые в 60-е годы считались самыми перспективными:


искусственного интеллекта и робототехники. Вот почему в научно-фантастических произведениях роботов нередко называют "киберами". А в 90-е годы это слово опять всплыло для обозначения новых понятий, связанных с глобальными компьютерными сетями - появились такие неологизмы, как "киберпространство", "кибермагазины" и даже "киберсекс".

Первое поколение ЭВМ Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг от друга элементной базой и математическим обеспе чением. Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой. Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей.Хотя такой способ программирования и требовал много времени для подготовки машины, то есть для соединения на наборном поле(коммутационной доске) отдельных блоков машины, он позволял реализовывать счетные "способности" ENIAC'а и тем выгодно отличался от способа программной перфоленты,характерного для релейных машин. Солдаты, приписанные к этой огромной машине, постоянно носились вогруг нее, скрипя тележками, доверху набитыми электронными лампами. Стоило перегореть хотя бы одной лампе, как ENIAC тут же вставал, и начиналась суматоха: все спешно искали сгоревшую лампу. Одной из причин -возможно, и не слишком достоверной - столь частой замены ламп считалась такая: их тепло и свечение привлекали мотыльков, которые залетали внутрь машины и вызывали короткое замыкание. Если это правда, то термин "жучки" (bugs), под которым подразумевают ошибки в программных и аппаратных средствах компьютеров, приобретает новый смысл. Когда все лампы работали, инженерный персонал мог настроитьENIAC на какую-нибудь задачу, вручную изменив подключение 000 проводов.Все эти провода приходилось вновь переключать, когда вставала другая задача.

Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс.UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США.

Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.

Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал»,«Урал-2», «Минск-1», «Минск-12», «М-20» и др.br Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп.Например, машина «Стрела» состояла из электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3тыс. операций в секунду, оперативная память не превышала 2Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс.

операций в секунду. /br Основные технические характеристики ЭВМ "УРАЛ-1" Структура команд одноадресная.

Система счисления двоичная.

Способ представления чисел - с фиксированной запятой и с плавающей запятой по стандартным программам.

Разрядность-35 двоичных разрядов (10,5 десятичных) и один разряд для знака числа.

Время выполнения отдельных операций:

а) деления - 20 мксек;

б) нормализации - 20 мсек;

в) остальных операций-10 мсек.

Количество команд-29.

Характеристики ЗУ:

емкость ОЗУ на магнитном барабане - 1024 тридцатишестиразрядных числа или команды;

емкость НМЛ - до 40 000 тридцатишестиразрядных чисел или 8000 команд.

Устройство ввода на перфорированной киноленте шириной 35 мм.

Вывод - печатающее устройство. Скорость печати - 100±10 чисел в минуту.

Машина построена на одноламповых типовых ячейках.

Питание машины от сети трехфазного переменного тока напряжением 220В ±10%, частотой 50Гц.

Потребляемая мощность 7,5 кВт.

Занимаемая площадь 50 кв. м.

Второе поколение ЭВМ ЭВМ 2-го поколения были разработаны в 1950—60 гг. В качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны -далекие предки современных жестких дисков.

Второе отличие этих машин —это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32»,«Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.

Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс.операций в секунду, и оперативной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике;

компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.

Основные технические характеристики ЭВМ "Урал-16":

Структура команд двухадресная.

Система счисления двоичная, Способ представления чисел: с плавающей запятой.

Разрядность: 36 двоичных разрядов (мантисса числа — 29 разрядов, знак мантиссы -- 1 разряд, порядок — 5 разрядов, знак порядка — 1 разряд).

Быстродействие 5000 операций/с.

Количество команд (основных) 17. Каждая операция имеет 8 модификаций.

Характеристики запоминающих устройств.

Емкость ОЗУ на ферритах 2 К слов;

время обращения к ОЗУ 24 мкс, Емкость внешнего НМЛ 120000 чисел;

скорость считывания с НМЛ 2000 чисел/с.

Устройства ввода — вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с.

Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц.

Потребляемая мощность около 3 кВт.

Занимаемая площадь 20 кв. м.

Третье поколение ЭВМ Разработка в 60-х годах интегральных схем- целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи мо друг от друга, оперативно взаимодействовать с машиной.

В эти годы производство компьютеров приобретает промышленный размах.

Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей.

Наиболее распространенным в те годы было семейство System/360 фирмы IBM.

Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы.

Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб.

К ЭВМ этого поколения также относится «IВМ-370», «Электроника — 100/25», «Электроника — 79», «СМ-3», «СМ-4» и др.

Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.).

Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.


Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям.

Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера.

Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение ЭВМ К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб.

Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ.

Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени).

Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г.

не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Развитие ЭВМ 4-го поколения пошло по 2-м направлениям:

1-ое направление — создание суперЭВМ - комплексов многопроцессорных машин.

Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS 4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли.

Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.

2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC ( XT, AT, PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС 1841» и др.

Начиная с этого поколения ЭВМ повсеместно стали называть компьютерами. А слово «компьютеризация» прочно вошло в наш быт.

Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной.

Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Пятое поколение ЭВМ ЭВМ пятого поколения — это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний.

Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете:

благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

Современные персональные компьютеры Современные персональные компьютеры (ПК или РС в английской транскрипции) в соответствии с принятой классификацией надо отнести к ЭВМ четвертого поколения.

Но с учетом быстро развивающегося программного обеспечения, многие авторы публикаций относят их к 5-му поколению.

Персональные компьютеры появились на рубеже 60 – 70-х годов.Американская фирма Intel разработала первый 4-разрядный микропроцессор (МП) 4004для калькулятора. Он содержал около тысячи транзисторов и мог выполнять 8000 операций в секунду. Вскоре была выпущена 8-битная версия данного МП, получившая название 8008.

Оба МП всерьез восприняты не были, поскольку рассчитывались для конкретных применений. Они относятся к МП первого поколения.

В конце 1973 г. Intel разработала однокристальный 8-разрядный МП 8080,рассчитанный для многоцелевых применений. Он был сразу замечен компьютерной промышленностью и быстро стал "стандартным". По стоимости он был доступен даже для любителей. Одни фирмы начали выпускать МП 8080 по лицензиям, другие - предложили его улучшенные варианты. Так, группа инженеров фирмы Intel, образовав собственную фирму Zilog, в 1976 г. выпустила МП Z80, сохраняющий базовую архитектуру8080. Фирма Motorola разработала собственный 8-разрядный МП М6800,нашедший впоследствии широкое применение.

Стив Возняк (будущий «отец» компьютеров Apple) собрал свой первый компьютер в году из деталей, забракованных местным производителем полупроводников в городе Беркли, штат Калифорния.Стив назвал свое изобретение Cream Soda Computer, поскольку пил именно этот напиток во время сборки аппарата.

В начале 1976 года Стив Возняк, работая в Hewlett-Packard, предложил свой компьютерApple руководству HP, но не нашел поддержки. В Hewlett-Packard победил другой проект – HP-85, основанный на идее совмещения компьютера и калькулятора.

Тогда 1 апреля 1976 года два Стива – Возняк и Джобс –полушутя-полусерьезно зарегистрировали Apple Computer Company. И уже в июле предложили магазинам компьютер Apple-1 по цене $666,66.

Apple-1 стал пользоваться спросом. Его успех был вызван простотой операционной системы. Прежде ПК управлялись через "командную строку", и пользователь, для того чтобы ставить задачи компьютеру,должен был быть хоть немного программистом.

Создание же "мышки"и графически удобного интерфейса сделало ПК доступным для"чайников" и во многом определило успех Apple-1.

Фирма IBM обратила внимание на персональные компьютеры, когда рынок "вырос из пеленок". К 1980 году только в США уже было продано более миллиона ПК, и маркетологи предсказывали взрывообразный рост спроса. Свои модели представили десятки компаний. Компьютеры при всей внешней схожести отличались большим разнообразием и были несовместимы друг с другом. Каждый производитель разрабатывал собственную архитектуру ПК. Считалось, что наиболее перспективной архитектурой обладает компьютер PDP-11, разработанный компанией DEC.Технические решения этой компании легли в основу первых отечественных компьютеров «Электроника».

Однако, в конце 1980 года совет директоров IBM принял решение создать "машину, которая нужна людям". Стратегическим партнером в качестве поставщика процессоров была выбрана Intel.Команда разработчиков IBM PC заключила союз и с недоучившимся студентом Гарвардского университета Биллом Гейтсом. На существовавшие тогда ПК ставилась популярная операционная система CP/M, созданная компаниейDigital Research, или система UCSD компании Softech. Однако эти операционные системы стоили $450 и $550 соответственно, а Гейтс за свою PC-DOSбрал всего лишь $40. IBM сделала выбор в пользу дешевизны.

12 августа 1981 года IBM представила свой ПК, который был спроектирован не хуже, чем изделия тогдашних лидеров рынка –Commodore PET, Atari, Radio Shack и Apple.

IBM пошла на неожиданный шаг. Решив утвердить свою архитектуру в качестве стандарта, она открыла техническую документацию. Теперь каждый производитель ПК мог приобрести лицензию у IBM и собирать подобные компьютеры, а производители микропроцессоров – изготавливать элементы для них. IBM рассчитывала «перетянуть одеяло» на себя, уничтожив стандарты конкурентов. Так и произошло. Сохранить собственную архитектуру смогла только Apple: она нашла свою нишу в сферах графического дизайна и образования. Все остальные производители либо разорились, либо приняли стандарт IBM.

Весной 1983 г. фирма IBM выпускает модель PC XT с жестким диском, а также объявляет о создании нового поколения микропроцессоров - 80286. Новый компьютер IBM PC AT (Advanced Technologies), построенный на основе МП 80286, быстро завоевал весь мир и несколько лет оставался наиболее популярным.

Первые 32-разрядные микропроцессоры появились на мировом рынке в 1983- гг., но их широкое использование в высокопроизводительных ПК началось с 1985 г. после выпуска фирмами Intel и Motorola микропроцессоров 80386 и М68020 соответственно.

Эти БИС открыли новое микропроцессорное поколение, реализующее обработку данных на уровне "больших" ЭВМ.

В 1989 г. был начат выпуск более мощного МП 80486 с быстродействием более млн. операций в секунду. В марте 1993 г. фирма Intel продолжает ряд 80х86 выпуском микропроцессора Р5 "Pentium" с 64-разрядной архитектурой. Потом были "Pentium 2", "Pentium 3". Сегодня (2006 г.) самым популярным МП является "Pentium 4" с технологией НТ, позволяющей обрабатывать информацию по 2-м параллельным потокам. Т.е.

получать как бы два процессора. Появляются и многоядерные МП.

Тактовые частоты современных ПК превышают 3 ГГц, объмы ОЗУ свыше 4 ГБ.

Емкость накопителей на жестких дисках измеряется уже в террабайтах. Вычислительные мощности ПК просто колоссальны (хотя и остаются еще недостаточными для решения многих прикладных задач).

Кроме стационарных (так называемых, настольных) ПК широкое распространение получили сегодня переносные ПК - nootbook, карманные ПК (КПК) и мобильные ПК смартфоны, объединяющие функции ПК и телефона. Появляются мобильные мультимедийные коммуникаторы iPhone.

Тема4. Устройство современного компьютера Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ.

Это серьезно беспокоило руководство фирмы IBM ( International Business Machines Corporation ) - ведущей компании по производству больших ЭВМ. И в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров.

Однако руководство фирмы недооценило будущую важность этого рынка, рассматривая создание компьютера всего лишь как мелкий эксперимент. Чтобы не тратить на этот эксперимент много средств, руководство фирмы разрешило подразделению использовать блоки, изготовленные другими фирмами. Фирма IBM сделала компьютер не единым неразъемным устройством, а обеспечила его сборку из независимо изготовленных частей по принципу открытой архитектуры.

На основной электронной плате ( системной или материнской ) размещены только блоки, которые осуществляют обработку информации (вычисления): процессор, возможно математический сопроцессор, контроллеры, микросхемы оперативной памяти. Схемы, управляющие всеми остальными устройствами компьютера (монитором, дисками, принтером и т. д.), реализованы на отдельных платах, которые вставляются в стандартные разъемы ( слоты ) на системной плате. К этим электронным схемам подводится электропитание из единого блока питания, а для удобства и надежности все это заключается в общий металлический или пластиковый корпус - системный блок.

Компьютер состоит из разрозненных частей. Для того чтобы он работал как единый механизм, необходимо осуществлять обмен данными между различными устройствами, за это отвечает системная (магистральная) шина. К ней через контроллеры подключены внешние устройства, которые обмениваются данными с оперативной памятью. Обмен данными между устройствами ЭВМ обусловлен ограничением функций, выполняемых этими устройствами, и должен быть запрограммирован. Выполняемая программа хранится в оперативной памяти компьютера и через системную шину передает в процессор команды на выполнение определенных операций. Процессор на их основе формирует свои команды управления, которые по системной шине поступают на соответствующие устройства. Для выполнения операций обработки данных процессор передает в оперативную память адреса необходимых данных и получает их. Результаты обработки направляются в оперативную память. Данные из оперативной памяти могут быть переданы на хранение во внешние запоминающие устройства, для отображения на дисплее, вывода на печать, передачи в вычислительную сеть.

Важными техническими характеристиками, влияющими на производительность компьютера, являются показатели частоты процессора, разрядность и машинное слово.

Количество разрядов, которое может быть воспринято, передано или получено за одно обращение к процессору, называется его разрядностью.

Количество информации, записываемое или извлекаемое из памяти за одно обращение, называется машинным словом.

В состав современного ПК (настольного) входят:

1. Системный блок o материнская плата с адаптерами HDD, FDD, CD/DVD-ROM, шины, порты, микросхема, BIOS, таймер центральный процессор линейки ОЗУ видео-карта (может быть интегрированна в материнскую плату) аудиo-карта (может быть интегрированна в материнскую плату) сетевая карта (может быть интегрированна в материнскую плату) Накопители на жестких и гибких магнитных дисках o Приводы CD- и DVD-ROM o Блок питания o Корпус o Монитор 2.

Клавиатура 3.

Манипулятор "мышь" 4.

Звуковые колонки 5.

Принтер 6.

Сканер 7.

Модем или адаптер ADSL 8.

Ну, и конечно же, компьютер нельзя представить без программного обеспечения. Как архитектура IBM PC стала стандартом для аппаратной части ПК, так и продукция фирмы MicroSoft (Билл Гейтс) стала эталоном для программ. Особенно популярны ее операционные системы Windows и офисные приложения MS-Office.

Понятие о принципах работы ЭВМ.

Понятие о программном управлении работой компьютера.

В основу архитектуры современных персональных компьютеров положен магистрально модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления.

Шины представляют собой многопроводные линии.

Шина данных. По этой шине данные передаются между различными устройствами.

Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

Магистрально-модульное устройство компьютера Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина).

Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N =2I, где I — разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:



Pages:   || 2 | 3 | 4 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.