, , ,

<<



 >>  ()

.

:

:

/_/

..

-

3 1127 27 2009 . 23 2009 . 1/1127, 02 2010 . 2/1127, 27 2010 . 3, 25 2011 . 4 : (): 2009-2013 ., 1.2.1 .

: :

/ () 2011 .

1127 27 - - :

:

..

, , :

. .

, , . .

, , ..

, , ..

, , ..

, , . .

, , ..

, , . .

, ,. .

, , . .

, , .

,.

, . .

, , ..

, , ..

, , . .

, , 182 ., 4 ., 57 ., 5 ., 57 ., 0 .

, , -, , , 3 1127 " " ( "-14") 27 2009 "" 1.2.1 " .", 1. " ", 1 " , ."

" - " 2009-2013 .

- .

, , , .

, , , .

- .

, , , , ..

, .

http://dodo.inm.ras.ru/research/freesurface , 2.1 2.1.1 2.1.2 .

2.1.2.1 2.1.2.2 2.1.2.3 2.1.2.4 2.1.3 2.1.3.1 2.1.3.2 2.1.3.3 2.1.3.4 2.1.3.5 2.1.3.6 .

2.1.4 2.1.4.1 2.1.4.2 .

2.1.5 2.1.5.1 2.1.5.2 2.1.5.3 2.1.5.4 2.1.6 2.2 2.2.1 2.2.2 2.2.3 2.2.3.1 2.2.3.2 2.2.3.3 2.2.4 2.2.4.1 2.2.4.2 2.2.4.3 3 3.1 3.2 3.3 4 , 1127. . , , , .

,, , , , , , . , .

, : , , , , , , ,, .

,. 3 1127. , , , , , . , , , , , , . , .

, , , :

- .

, .

, , . (, ), . , ,, : ( ). - , . .

- , , . , , . , , .

, .

- , . , .

-, , , . . (MAC) .

, . , .,, , , . 1/ 1/1024 . , .

, , . , ,. .

, , . General Mesh Viewer, PARAVIEW, Marble ( ) PR, H.

, , , .

1 , :

1.

- , 2.

, , 3.

, 4.

.

:

1.

- ,, 2.

.

2 2.1 2.1. (t ) R , (t ) = D (t ),, .

(t ) D , . (0, T ] (t ) - u (u )u u p = f, (t ), t u = (1) , p-,f- u ), (, .

t= :

(0) = 0, u |t =0 = u0. (2), :

D, u=g (3) (t ). g :

v = u | n (4) , n - v (t ). (t ) s = [u (u)T ] / 2 pI pext :

sn | = n pext n (t ). (5) , . , pext = 0.

pext (1)-(5) : , , , .

, (4).

, (t ) (t, x). (, , ) 0 (t ) (t, x) 0 3 (t ) t 0, T 0 (t ) .

(2) (0, x).

t0 [38]:

u = 0 R 3 (0,T t (6) (t ).

, u- u=u (1), (2), (3), (5) (t ) , (6).

, . (t ).

, n = / | |, (t ) = n.

, ( ) , | |= 1. (7) 2.1.2 (1) (6), . , , [24].

[1],[34], , . ,. [17],[20],[37]. , , , .

u(t ), p(t ), (t ) ( u(t t ), p(t t ), (t t ) ) , 1.

1: :

.

1.

u(t ).

2.

u(t ).

3.

.

4.

( ) .

5.

.

6.

u(t t ).

7.

u(t t ) u(t ).

8.

u(t t ) 9..

u(t t ) 10.

.

.

11.

.

.

2.1.2. (t ) (t t ) u(t ) (t ) (t t ).

1.

.

2.

: u(t ) |(t ) u(t ) | 3. , R , , . : 0 (x) khmin.

(t t ) 3. (6) [46] . .

y x( ) = u(x( ), ), x(t t ) = y, t t, t .

(8) :

t t x t y u(y, t ), 2 t t t t (9) x(t ) x t 3u(x t, t ) u(x t, t t ).

2 2 2 2 t x(t ) t t u(x(t u(x(t ), t t ) , ), t ) 2 .

(y, t t ) = (x(t ), t ). (10) (x(t ), t ) .

(10) , ( ) .

(t t ) (t t ) , 4.

.

( ) 5.

(t t ) (t t ) (t t ) , ) ( (7).

(t t ) (t t ). .

2.1.2.2 .

2.1.3.1.

2.1.2. u(t ), p(t )} {u(t t ), p(t t ) , ( ) .

,, 1.

, , y uk, k = 1,2,3, (10) uk (y, t t ) = uk (x(t ), t ).

(11) uk (x(t ), t ) (11) .

:

2.

u (t t ) = u (t t ) t u(t ) f (t ).

p(t t ) :

: 3.

p(t t ) = u (t t ) (t t ), t p(t t ) = (t t ) (t t ) (12) p(t t ) D, n = :

u(t t ) = u (t t ) p(t t ).

= | | ,, , , (12) .

2.1.2.4 t, :

[t ]new = Ccfl hmin max | u(t t ) |, x (t t ) , .

Ccfl , .

: (8) [t, t t ] (9) n . n = 2, n = 1, .

2.1. 2.1.3. , (t ).

, . . . ( ), .

, . , , 1.

[43],[44].

, ,.. , , [10],[15].

, .

1:

( ) .

t (t t ), ,, t.

(. 2).

2:

.

, , (t t ) , , . .

;

p-, 3:

{u, v, w } - ,f- ,, .

- [25] ( . 3):

, - , .

2.1.3. h ., px, .

u , , .

, .

px ( x f ).

4:

, ,. x xf, 4.

x1,, x p ( xi ) :

p(x f ) p(xi ) = p(x f ) p(x f ) (xi x f ) O(| xi x f |2 ).

, 4 .

x :

px ( x f ) p1 p2 p D f,1 D f,2 D f,3 D f, p4, (13) Df Df Df Df 4 4, a D f,i Df 3 3.

2.1.3. xT T udx = u nds, (14) T T . n- FT T, .. T = f, f FT xf f FT. (14) | f | (u n)(x f ).

(divhu h )(xT ) =| T |1 (15) f FT h , , (uh n)(x f ) .

2.1.3. hu h uh ( ) .

, h . , - ,. [30],[33],[40], ( ), ( , ,,. [36]). , , u `` '' `` '' u.

x- uh. :

2uh 2u 2u huh = 2 yz,huh, yzu = 2 2.

x h y z (16) , xT T , (14)(15), :

| F | (u n )(x uh (xT ) =| T | x h ). (17) f FT h1 f T xf.

n = (n1, n2, n3 ) 2u h x h , u , , , u x (13) ( ), p f.

2 / y2 2 / z2 . (16) T, .

yz - F ( ) f, ne Ef e Ef yz.

u qe n e , (15) q ( yz,huh )(x f ) =| f |1 | e|.

eE f e qe e.

xe , e, . (1) . (2) e yz e f2, yz - f1. (3) f1 f ( xz - ) yz - xy f e T2. qe . .

e (2) (3) xi, i = 1,2,3.

(2) .

5:

e (2) f1 f f3, f2 (.

yz - f1 5).

(3) .

6:

e (3) f1, yz T, T2 (. T1 6).

.

u ( xi ) T e :

u (xe ) u (xe ) u ( xi ) = u ( x e ) (xi xe ) O(| xi xe | ), i = 1,2,3.

T ne t e, te e.

, u (xe ) u (xe ) n e t e 3 : u (xe ),.

qe.

, , [5], L2, .

C 2.1.3. 2.1.2. (6):

(6) , .

( ) . :

(t ).

1.

.

2.

(6). t n = 2,3.

n n.

3. [20], [34], [21].

, .

4.

, . :

meas{x: (x) } = Vol reference new =.

, , [16].

2.1.3. , ( ) .

:

| (x) |= 1, x R 3 (18) (t ) :

(x) = 0, x (t ).

(18) . , ( ) , ( ).

(t ) . , , ( ) , [26],[29].

.

:

(.. , ), . `` '' (FSM - Fast Marching Method) .

[7], (t ) .

[35], , 1 [7].

, , , ., . .

,.

(. 7), : d = Sx.

7: :

.

. ( 8), 2 1 1.

Sx Sz :d= 8: :

.

. ( 9), , 1 1 : d = Sx Sy Sz.

9: : .

x d ( x) .

.

.

, ( ). :

.

1.

2. , .

3.

.

4.

, 5.

, 6.

7.

8..

9.

10..

, (t ) -.

, .

- x, T , , x. T( 10).

(t ) = f3t 3 f2t 2 f1t f0, (t ) = (0) = (x). Hx. , Hx T,. ., Hx.

{h (x) = 0}.

10:

: 1 {h (x) = 0}, h.

3 , . 3 , .

( 2.1.4.1), .

( 2.1.5.3).

.

2.1. 2.1.4. (18), 2.1.3.6.

, ( x 0.5)2 ( y 0.5)2 ( z 0.5)2 = 0.3142, .

(6) . T.

T: , V(V) V.

:

| V | | hi (x) (x) | max max | (x) (x) | 1/ = iL = V | V | ) (x) i V(V ) V(V ) max max | (x) | h V C,, i V(V ) V V V(V hi , i-.

L2 C-, , .

, : max | (x) |= O(hmin ).

V(V ) 1C 1L 2 2L 3C 3L C hmin 321 1.4e-1 1.0e-1 5.1e-2 3.5e-2 5.0e-2 3.5e- 641 1.9e-1 1.1e-1 2.7e-2 1.8e-2 2.5e-2 1.8e- 1281 1.9e-1 9.7e-2 1.5e-2 9.9e-3 1.3e-2 8.8e- 2561 2.2e-1 9.8e-2 8.6e-3 6.7e-3 6.4e-3 4.4e- 5121 2.2e-1 9.7e-2 5.5e-3 5.6e-3 3.3e-3 2.4e- ( 1:

).

. , 1 , 2 , .

2.1.4.2 ., n = / | | on (t ). ( ).

( ) = n = ( / | |)., hh. hh / | hh | ., h (h ) = h hh / | hh | .

, ( ) .

.

, , . V(V) (t ) , V, V (t ).

V V(V) C.

| V | | hh (x) (x) | 1/ = max max | hh (x) (x) |, = V | V | ) | (x) | V(V ), C L V(V ) V (x) V V(V | V | h (h )(x) 1/ | (x) | V xC = max | h (h )(x) ( (x)/ | (x) |) |, = | V | ( (x)/ | (x) |) C L, xC xC V h (h ) ,.

L C L C hmin 321 6.8e-3 2.2e-3 1.8e-2 1.0e- 641 1.4e-3 5.9e-4 8.8e-3 3.6e- 1281 3.2e-4 1.5e-4 6.6e-3 1.4e- 2561 7.9e-5 3.9e-5 3.3e-3 6.2e- .

2:

.

C -, . L2 ,.

2.1.5 .

2.1.5. , . 0.05 ( 0. ) . Z (0,1).

(0,1)3, :

(0.5 y), v = ( x 0.5), w = 0. u= 3.14 3. ) ) ) , , hmin = hmax = 11:, ) ,) , ) .

) ) ) 1 1 , , , hmin =, hmax =, hext = 12:

256 64 ) ,) , ) .

) ) ) 1 1 , , , hmin =, hmax =, hext = 13:

512 64 ) ,) , ) .

. , ., hmin = hmax =.

, (. , 12 13), . 1 1 , , hmax =, hext = hmin = 512 h=.

,, [19].

, , .

) ) ) 1 1 , ,, hmin =, hmax =, hext = 14:

256 64 ) ,) , ) .

, [20] [21].

, . , , , .

, . , ,

. ,, , . , , .

, ., 1 1, hmax =, hext = ) , ( hmin = 256 1 1 ( hmin =, hmax =, hext = ) .

512 : 30 , 0.15hmin r 0.65hmin.

r, :

1 , .

, , N ), N ( .

[20], [21] [34].

, ,, ,.

. , , , , .,, , (. 2.1.5.3), , , .

2.1.5. , .

: , : 15: [31].

15 ( ), 15 ( ). . , x = y = h = 5. , f = (0,0, 9.80665) / 2.

: u n = 0 tk sn = 0, s , tk, k = 1,2 - . :

= 0. = 0,9982 / , /, 3 = 0. / 2.

, : .

16: [31] : hmin 1 1 1 ,,.

64 128 256 16 :

[31] . . h = 5. hmin 1 1 1 ,,.

64 128 256 17: [31]. hmin 1 1 1 ,,.

64 128 256 , .

2.1.5. , . , f = 0. t = 0, . (r,, ) r = r0 (1 S2 ( )), S2 .

r0 = 1, = 1, = 0.3.

t=0 , . , .

, : [11].

.

, T ( = 1), [27] :

r Tref = 2 ref r 8 (19), =.

hmin 11 1 ,,, 32 64 128 1 . hmax = hext = 16 hmax = hmin / 2, .

3, 2.1.3.6.

2 , 1 , , .

18:, t = {0,0.726,1.286} = 0, , ,.

t 0, 0.726, 1 1.286, ( ) hmin = hmax =, 128 ( ).

19: z 1 hmin = hmin =.

64 1 hmin =, hmax = 20:

256 .

19 20.

, , (. 19), (. , 20).

, . , c exp( ) t : zmax (tn ) r, tn , zmax (t ) r ,, . r02 (5 num )1.

num , , (19), num T Tref # cells hmin TimeDt T 321 2.80 0.579 3,248 0. 641 2.475 0.254 12.75 0.0157 14,544 0. 1281 2.378 0.157 21.63 0.0092 61,976 4. 2561 2.275 0.054 28.59 0.0070 258,552 18. , , 3:

h (0) ( hmin = 1/ ).

, 3.

hmin. .

:

2 (t ) | u(t ) |2 dx Du : Du dx dt | (t ) |= 1 t 0 (t ) | u(0) |2 dx | (0) |, t 0, (20) 2 (t ) = | (t ) | (t ). u(0) . ( , ), .

1 hmin = hmin = 21:.

64 1 hmin =, hmax =.

22:

256, , , , Altix XE 2.66 GHz Intel Quad-Core Xeon X5355 ., , , .

2.1.5. .

, r =1. s =11 z = 5. v = (0,0, 3.1) /, h =1.65.

.

. : 23: [57], : .

hmin 1/32 1/64 1/128 1/256 1/ 18 824 37 948 109 222 426 077 1 519 N Nw 4332 15 568 61 056 195 638 738 tmesh 0.055 (17.6%) 0.17 (15.8%) 0.61 (15.1%) 2.3 (14.1%) 9.1 (14%) tls 0.065 (20.6%) 0.20 (18.8%) 0.71 (17.7%) 2.7 (16.9%) 10.7 (16.4%) tpart 0.026 (8.4%) 0.08 (7.7%) 0.29 (7.2%) 1.4 (8.5%) 5.1 (7.8%) treinit 0.065 (20.8%) 0.18 (17.3%) 0.67 (16.6%) 3.2 (19.4%) 13.3 (20.4%) tadv 0.069 (22.1%) 0.27 (25.9%) 1.05 (26.3%) 4.1 (25.2%) 14.7 (22.6%) tproj 0.032 (10.1%) 0.15 (14.2%) 0.67 (16.7%) 2.5 (15.5%) 12.0 (18.4%) ttotal 0.314 1.05 4.0 16.3 65. 4:

. N , Nw , (t t ) hmin, ttotal , : tmesh , tls , tpart , treinit , tadv , tproj .

. ,. 23 ( ). 23 ( ) [57], , . , , .

.

hmin ( ), s = 1/16 1/32. , , , , . , , , hmin.

2.1. , ,(. 2.2.3.3).

Houdini (. 24), Pr (. 25).

24: Houdini.

25: Povray.

, , MPI.

sr-sλ

., , .

15 30 60 367 195 107 4096 3072 ( ).

5:

4096,, 25, 5.

2.2 2.2. .

.

, .

, . ,, .

, , . , ,, .

, , , .

, .

, . , , ., :

. , .

. .

. , 40. 4603 . .

, 26:.

, ,, .

, , , .

Natural Earth [53], . : 1:10, 1:50 1:110. Natural CIA World DataBank II [54].

, Earth ,.

Natural Earth, 400 ..

27:

1:10. 400 . , , , . . ESRI , , .

( ) 28:

( ).

.

60 . 5.

. .

. .

. ( ) ( ) 29:.

. ., 55.

.

30:.

, .

Natural Earth (1:50 ) (1:110 ) , , , . , .

. , . , 4343, 7481, 15264, 28784.

31: .

, .

.

, .

32: , .

, , .

:

h0 gH h0 , g , H .

, 33:

gH.

, gH. ETOPO [9].

, . 8062, 13685. 272761 34.

10. 20 .

, 34:

gH, 141491, 272761 .

, 33 34, -1 -2 .

2.2.2 , .

, : x , y , , x 0,2, y 0,. .

g u u u v u lv Rbu u f t rx x ry y rx x (21) g v u v v v lu Rbv v f t rx x ry y ry y (22) 1 H ryu H rxv t rxry x y (23) :

u, n 0, u, n 0, v, n 0 (24).

n (u, v).

:

1 u r x r y,, (25) x y :

1 ry rx l l x v y u rxry (26) l 20 cos y , 0 , rx Rsin y, ry R, R , g, Rb 0c f u 2 v 1/ , Rb ,, f1, f2 ,, .

:

1 ry r H x H, H 0 const ryrx H 0 x rx x y ry y (27) , , .

(21)-(24) . , .

, u j,vj , :

u u j u v j u u t rx x ry y (28) v u j v v j v v t rx x ry y (29) (21)-(23):

g u lv Rbju f t rx x (30) g v lu Rbj v f t ry y (31) 1 H ryu H rxv t rxry x y j j (32) : , ., -, , . , .

.

P1NC P1, iso P2P1 [28], RT0-P0 [52].

P1DGP2 [18] : , .

(P2) (P1DG) . .

: (u,v) (-v,u).

, , .

: P1P1. . , . . - , ., .

: RT0 [41].

. . , RT0.

P1DGP2.

- :

. , . , . - , .

.

P1DGP2 , . .

(28)-(32) P1DGP2.

. , , 6NT, NT . , 6NT + NV + NE, NV , NE .

.

, : 42NT .

156NT + NV + 7NE .

.

LU 2.2. .

2.2.3. , , , 2.2.2, 2.2.1.

-1 ( . 33).

-2 ( .

34).

. 20.. 80.. 3200 ,., 3400 3500 . 3000 , 2100 3000 . 300, 50.

.

.

35:

- . , h , . , , .

, . , H=2. gH 140 / 500 /.

t = 1. , , .

36 t = 180, , . 50 5.

. .

, , .

( ) ( ) 36: t = .

(3 ) 37 t = 360 (6 ), , , ( 500 / ).

( ) ( ) 37: t = . (6 ).

38 t = 500.

, .

, -1, , . , .

( ) ( ) 38: t = 20 ) . (, ,.

, , , .

. ETOPO [9].

( ) ( ) 39: t = .

(2 ) (. 36).

t = , , H=2 t = 180.

2, . .

( ) ( ) 40: t = . (3 ) .

t = 180 (. 40) . . .

( ) ( ) 41: t = ) . , (.

t = 240 (. 41) , , . , 750 /, .

( ) ( ) 42: t = . (5 ), .

42 t =300.

, ,, .

. , .

(.

, 38 42), , .

300 - 31 , t = 1 5. , .

- 2 ,, ., .

-1 ( ) 43:

-2 ( ) 30 ) t = 150 ( .

-1 -2 t = 150.

, - . - , .

2.2.3. .

. .

.

44:

.

.

: ( ), ( ), ( ) ( ).

, .

.

45:

.

46:

,. , , , .

2.2.3. .

, .

47:

, , . . , , ,. , .

. .

48:

.

, , .

2.2. 2.2.4. Marble [55] , . KDE , Marble OpenStreetMap [56], : Linux, MS Windows Mac OS X.

, . . ,, 33.

OpenStreetMap . .

OpenStreetMap 49:

.

BlueMarble, 50:

.

50 - .

BlueMarble, . , .

51:.

, . .

= 100 = 350.

52:

, 940'.. 9230'.., . . , . = 100 ( 40 ) = 350 (4 50 ).

2.2.4. , . , Google SketchUp.

, .

53:

.

, .

, (. 54).

, (.

(.

55) 56).

54: .

.

55:

.

56:

, ,.

2.2.4. (. 57).

, . .

.

57:

, , .

3.1 , - ,. , - .

, .

3.2 . , .

, , . , .

3. , .

- ( , , ).

, ,, .

18 .

, , :

.. . 1.

// , 2010.. 70, 6.. 6064.

- A.D. Usrr r r ( 2.

) //, 2010,. 50 . 146163.

3. Yu.Vassilevski, A.Agouzal, K.Lipnikov, On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes. ( ) // Mathematics and Computers in Simulation, 2011, V.81, No.10, P.1949-1961.

..,.. ,..,..,..

4.

. // . , 2010,. 46, 6,.734-770.

:

1.

;

;

2.

3.

;

4.

;

;

5.

6.

.

.

-,, .

-. , , , , .. , . http://dodo.inm.ras.ru/research/freesurface - .

, , :

2009 :

1. A.A.Danilov, Yu.V.Vassilevski. A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes ( ) // Russ. J. Numer. Anal. Math.

Modelling. 2009. V. 24. N. 3. P. 207-227.

2. S.S.Simakov, A.S.Kholodov. Computational Study of Oxygen Concentration Frequency Disturbances ( in Human Blood under Low ) // Math. Models and Comp. Simulations.

2009. V. 1. N. 2. P. 283295.

3. K.Lipnikov, D.Svyatskiy, Yu.Vassilevski. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes ( ) // J.Comp.Phys. 2009, V.228, No.3, P.703- 4. A.Agouzal, K.Lipnikov, Yu.Vassilevski. Error estimates for a finite element solution of the diffusion equation based on composite norms ( ) // J.Numer.Math. 2009, Vol.17, No.2, P.77- 2010 :

.. . 1.

// , 2010.. 70, 6.. 6064.

- ... 2.

// -. 2010.. 65, 1.. 8792.

..,... 3.

// . 2010.. 68, 4,. 9499.

- 4. A.Agouzal, K.Lipnikov, Yu.Vassilevski. Hessian-free metric-based mesh , adaptation via geometry of interpolation error ( , ) // J. Cp Ms Mathematical Physics, 2010, V.50, No.1, P. 124-138.

5. A.Agouzal, K.Lipnikov, Yu.Vassilevski. Edge-based a posteriori error estimators for generating quasi-optimal simplicial meshes ( ) // M. M. N. P. 2010, V.5, N.7, P.91- 6. K.Lipnikov, D.Svyatskiy, Yu.Vassilevski. A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes ( ) // J.Comp.Phys. 2010, V.229, P.4017-4032.

7. K.Nikitin, Yu.Vassilevski. A monotone nonlinear finite volume method for advectiondiffusion equations on unstructured polyhedral meshes in 3D ( ) // Russian J. Numer. Anal. Math. Modelling 2010, V.25(4), P.335- 8. A.Agouzal, Yu.Vassilevski. Minimization of gradient errors of piecewise r rp sp ss ( ) // Comp.Meth. Appl.Mech.Engnr. 2010, V.199, P.2195- 9. S.Simakov, S.Kapranov, Yu.Vassilevski. A multi-model approach to intravenous filter optimization ( ) // International Journal for Numerical Methods in Biomedical Engineering. 2010, V.26, P.915- 10. A.D. Usrr r r ( ) //, 2010,. 50 . 146163.

11. . . // , 2010,. 22, 11,. 131147.

12. Yu.Vassilevski, K.Lipnikov, On discrete boundaries and solution accuracy in anisotropic adaptive meshing ( ) // Engineering with Computers, 2010, V.26, P.281-288.

13. Yu.Vassilevski, I.Boursier, D.Tromeur-Dervout, Parallel solution of Mixed Finite Element/Spectral Element systems for convection-diffusion equations on non-matching grids ( / ) // J. Applied Numerical Mathematics, 2010, V.60, No.11, P.1131-1147.

2011 :

1. Yu.Vassilevski, S.Simakov, V.Salamatova, Yu.Ivanov, T.Dobroserdova.

Blood flow simulation in atherosclerotic vascular network ( ) // Mat. Model.

Natur. Phenom., 2011, V.6, No 4.

2. Yu.Vassilevski, S.Simakov, V.Salamatova, Yu.Ivanov, T.Dobroserdova.

Vessel wall models for simulation of atherosclerotic vascular networks ( ) // Mat. Model. Natur. Phenom., 2011, V.6, No.7, P.82 99.

3. Yu.Vassilevski, A.Agouzal, K.Lipnikov, Families of meshes minimizing P , interpolation error for functions with indefinite Hessian ( P1 ) // Russian J. Numer. Anal. Math. Modelling., 2011, V.26, No.4, P.337-352.

4. Yu.Vassilevski, A.Agouzal, K.Lipnikov, On optimal convergence rate of finite element solutions of boundary value problems on adaptive anisotropic meshes. ( ) // Mathematics and Computers in Simulation, 2011, V.81, No.10, P.1949-1961.


5. Yu.Vassilevski, G.Bocharov, A.Danilov, Marchuk, V.Chereshnev, B.Ludewig, Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs ( ) // Mathematical Modelling of Natural Phenomena, 2011, V.6, No.7, P.13-..,.. ,..,..,.

6..

. // . , 2010,. 46, 6,.734-770.

2009-2011. :

1.

..

...

... 2.

..

.. .

3.

..

... 4.

.. .

.

5.

.. .. , .. . :

..,... // :

-, 2009. www.inm.ras.ru/library.htm 1.

Advances on numerical methods for multiphase and free surface flows ( ), ,,.., ( 2009.) 2.

, 16 ( 2010.) http://dodo.inm.ras.ru/biomath/workgroup.html 3.

, ( 2011.) http://dodo.inm.ras.ru/biomath/workgroup.html 4.

Matrix Methods in Mathematics and Apps MMMA-2011 ( ), 80 , , ,,,, ,,, ( 2011.), :

Workshop Advances on numerical methods for multiphase and free surface

1.

, , 2009 (,, ) 2. 2009 SIAM Conference on Mathematical & Computational Issues in the, Geosciences (,, ) 3. Computational Methods in Applied Mathematics (CMAM), , (, ) 4. The Third International Workshop on Grid Generation for Numerical Computations (Tetrahedron III),, ( ) Ir IMACS/ISGG r Nr r, r ration 5.

, and scientific computing,, 2010 (,, ) 6.

, ,, 2010 ( ) 7.

, ,, 2011 (, ) 8. Matrix Methods in Mathematics and Applications (MMMA-2011), ,,, (, ) , 9. Computational & Mathematical Biomedical Engineering,, 2011 (, ) 10. SIAM Conference on Mathematical & Computational Issues in the ( Geosciences (SIAM GS 2011), -, ), , , 11. Domain Decomposition Methods-XX, ( ) 12. Finite Volumes for Complex Applications (FVCA6), ,, , 2011 ( , ) -.

2009. , , :

II 1. " " VI (, ,,, ) VIII " -2009" 2. (,,, ) 2009 (, ) 3.

2010 (, ) 4.

-2010 (, ) 5.

2010 ( ) 6.

05.13.18 , :

.. .

.. .

.

6 :

.. ( ) 1. . .

.. ( ) 2. . .

.. ( 3.

) . .

.. ( 4.

) .

.

.. ( 5.

) . .

.. ( 6.

) . .

:

.. ( ) 7. - . .

,,, .

:

1.

, .

- 2.

( , , ).

3.

, ,, .

.. [1] // , ..:, 2008..

183198.

.. [2] // . 2010.. 70, 6.. 6064.

.., .., .. [3] // .... 2009.. 39.. 305 307.

. . [4] //. 2004..

44, 8.. 14501479.

[5] . . . ,.- ...., -.

, 2010.

.. [6] . :, 1967.

[7] Adalsteinsson D., Sethian J. A. The fast construction of extension velocities in level set methods // J. Comput. Phys. 1999. Vol. 148. Pp. 222.

[8] Adalsteinsson G. D., Sethian J. A. On maximum principles for monotone matrices // Linear Algebra Appl. 1986. Vol. 78. Pp. 147161.

[9] Amante, C. and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp, March 2009.

[10] Bank R. E., Dupont T. F., Yserentant H. The hierarchical basis multigrid method // Numer. Mathem. 1988. Vol. 52. Pp. 427458.

[11] Bs E. F sr Nr-Stokes equations with a free capillary surface // Numer. Math. 2001. Vol. 88. Pp. 203235.

[12] Behr M. Stabilized space-time finite element formulations for free surface flows // Comm. Numer. Meth. Engrg. 2001. Vol. 11. Pp. 813819.

[13] Benson D. A new two-dimensional flux-limited shock viscosity for impact calculations // Comput. Meth. Appl. Mech. Engr. 1991. Vol. 93. Pp. 39 95.

[14] Bertakis E., Gross S., Grande J. et al. Validated simulation of droplet sedimentation with finite-element and level-set methods // Chem. Eng. Science.

2001. Vol. 65. Pp. 20372051.

[15] Bramble J., Pasciak J., Xu. J. Parallel multilevel preconditioners // Math.

Comp. 1990. Vol. 88. Pp. 122.

[16] Buscaglia G. C., Dari E. A., Mut F. A new mass-conserving algorithm for level set redistancing on unstructured meshes // Mecanica Computacional.

2004. Vol. 23. Pp. 16591678.

[17] Chorin A. Numerical solution of the Navier-Stokes equations // Math.

Comp. 1968. Vol. 22. Pp. 745762.

[18] Cotter C., Ham D., Pain C. A mixed discontinuous/continuous finite element pair for shallow-water ocean modeling // Ocean Modelling. V.26, 2009, P.8690.

[19] Croce R., Griebel M., Schweitzer M. A. Numerical simulation of bubble and droplet deformation by a level set approach with surface tension in three dimensions // Int. J. Numer. Meth. Fluids. 2010. Vol. 62. Pp. 963993.

[20] Enright D., Fedkiw R., Ferziger J., Mitchell I. A hybrid particle level set method for improved interface capturing // J. Comp. Phys. 2002. Vol. 183. Pp.

83116.

[21] Enright D., Losasso F., Fedkiw R. A fast and accurate semi-Lagrangian particle level set method // Comput. Struct. 2005. Vol. 83. Pp. 479490.

[22] Esser P., Grande J., Reusken A. An extended finite element method applied to levitated droplet problems // Int. J. for Numer. Meth. in Engineering.

2010. Vol. 84, no. 7. Pp. 757773.

[23] Ginzburg I., Wittum G. Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants // J. Comp.

Phys. 2001. Vol. 166. Pp. 302335.

[24] Gross S., Reichelt V., Reusken A. A finite element based level set method for two-phase incompressible flows // Computing and Visualization in Science. 2006. Vol. 9, no. 4. Pp. 239257.

[25] Harlow F., Welch J. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface // Phys. Fluids. 1965. Vol. 8. Pp.

21822189.

[26] Lachaud J.-O. Topologically defined iso-surfaces // DGCI. 1996. Pp.

245256.

[27] Lamb H., Hydrodynamics, Cambridge University Press, 1932.

[28] Le Roux, D., Staniforth, A., Lin C.A., Finite elements for shallow-water equation ocean models // Monthly Weather Review, V.126, N.7, 1998, P. 1931 1951.

[29] Lorensen W., Cline H. Marching Cubes: A High Resolution 3D Surface Construction Algorithm // Computer Graphics. 1987. Vol. 21, no. 4. Pp. 163 169.

[30] Losasso F., Gibou F., Fedkiw R. Simulating water and smoke with an octree data structure // ACM Transactions on Graphics. 2004. Vol. 23, no. 3. Pp.

457462.

[31] Martin J., Moyce W. An experimental study of the collapse of liquid columns on a rigid horizontal plane // Philos.Trans.R.Soc.Lond.Ser.A. 1952. Vol.

244. Pp. 312324.

[32] Meagher D. Geometric modeling using octree encoding // Computer Graphics and Image Processing. 1982. Vol. 19. Pp. 129147.

[33] Min C., Gibou F. A second order accurate level set method on non graded adaptive cartesian grids // J. Comp. Phys. 2007. Vol. 225. Pp. 300321.

[34] Nikitin K., Vassilevski Yu. Free surface flow modelling on dynamically refined hexahedral meshes // Russ. J. Numer. Anal. Math. Modelling. 2008. Vol.

23, no. 5. Pp. 469485.

[35] Nikitin K. D., Olshanskii M. A., Terekhov K. M., Vassilevski Yu. V.

Preserving distance property of level set function and simulation of free surface flows on adaptive grids // , . 2010. Pp. 2532.

[36] Olshanskii M. A. Analysis of semi-staggered finite-difference method with application to Bingham flows // Comp. Meth. Appl. Mech. Eng. 2009. Vol.

198. Pp. 975985.

[37] Osher S., Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces.

Springer-Verlag, 2002.

[38] Osher S., Sethian J. Fronts propagating with curvature-dependent speed:

Algorithms based on Hamilton-Jacobi equations // J. Comp. Phys. 1988. Vol. 79.

Pp. 1249.

[39] Pilliod J. E., Puckett E. G. Second-order accurate volume-of-fluid algorithms for tracking material interfaces // J. Comp. Phys. 2004. Vol. 199. Pp.

465502.

[40] Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows // J. Comp. Phys. 2009. Vol. 228. Pp. 58385866.

[41] Raviart P. A., Thomas J. M. A mixed finite element method for 2nd order elliptic problems // Mathematical Aspects of the Finite Element Method.

Lecture Notes in Mathematics. Springer, Berlin, 1977, P.292315.

[42] Saad Y. Iterative methods for sparse linear systems. SIAM, 2000.

[43] Samet H. The Design and Analysis of Spatial Data Structures. New York: Addison-Wesley, 1989.

[44] Samet H. Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS. New York: Addison-Wesley, 1990.

[45] Sethian J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge: Cambridge University Press, 1999.

[46] Strain J. Semi-Lagrangian methods for level set equations // J. Comput.

Phys. 1999. Vol. 151, no. 2. Pp. 498533.

[47] Strain J. Tree Methods for Moving Interfaces // J. Comp. Phys. 1999.

Vol. 151. Pp. 616648.

[48] Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow // J. Comp. Phys. 1994. Vol. 114. Pp.

146159.

[49] Szeliski R. Rapid octree construction from image sequences // CVGIP:

Image Understanding. 1993. Vol. 58. Pp. 2332.

[50] Tryggvason G., Bunner B., Esmaeeli A. et al. A front-tracking method for the computations of multiphase flow // J. Comp. Phys. 2001. Vol. 169. Pp.

708759.

[51] Unverdi S. O., Tryggvason G. A front-tracking method for viscous, incompressible multi-fluid flows // J. Comp. Phys. 1992. Vol. 100. Pp. 2537.

[52] Walters, R., Casulli, V. A robust, finite element model for hydrostatic surface water flows // Communications in Numerical Methods in Engineering, V.14, 1998, P.931940.

[53] Natural Earth. http://www.naturalearthdata.com/.

[54] CIA World DataBank II. http://www.evl.uic.edu/pape/data/WDB/.

[55] The KDE Education Project Marble. http://edu.kde.org/marble/.

[56] OpenStreetMap. http://www.openstreetmap.org/.

: T rp. p://-warp.ru/.

[57]

 
 >>  ()



:





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .