авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 | 2 ||

«1 Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ...»

-- [ Страница 3 ] --

Важной особенностью полученного результата была высокая точность, с которой выполнялось это соотношение. При повторных экспериментах не только на образцах различной формы, но и на транзисторах, изготовленных из различных материалов, величину отношения неизменно удавалось измерить с погрешностью около одной десятимиллионной. Такая стабильность измерений позволила Клитцингу сразу же высказать гипотезу о том, что явление, известное ныне под названием квантового эффекта Холла, могло бы стать основой абсолютно нового стандарта электрического сопротивления. Работы Клитцинга имеют особое значение, ибо они стимулировали исследования электронов, эффективно ограниченных двухмерным пространством. С 1985 по настоящее время Клаус фон Клитцинг – директор института исследований твердого тела имени Макса Планка в Штутгарте.

43 Герд Карл Бинниг (1947) Немецкий физик Герд Карл Бинниг родился во Франкфурте-на-Майне в семье Карла Франца Биннига, заводского инженера, и Рут Бинниг, чертежницы.

Завершив среднее образование в школе Рудольфа Коха, он получил докторскую степень по физике за работу по сверхпроводимости во Франкфуртском университете в 1978 г.

Сразу же после получения степени Бинниг стал научным сотрудником исследовательской лаборатории в корпорации «Интернэшнл бизнес мэшинс»

(ИБМ) в Цюрихе, Швейцария. Здесь он стал сотрудничать в исследованиях поверхности материалов. Ученые обратились к данной проблеме, привлеченные тем, что прежде полного анализа поверхности материалов получить, по существу, не удавалось. Трудности заключались в том, что расположение атомов на поверхности твердого тела существенно отличается от их расположения внутри него, так что известные методы исследования бесполезны, когда дело касается поверхности. Однако поверхность представляет большой интерес, поскольку именно здесь происходит большинство взаимодействий между телами.

Для исследования поверхности материалов Бинниг и Рорер решили использовать один из вариантов квантово-механического эффекта, известного под названием туннельного. Этот эффект, впервые экспериментально подтвержденный в 1960 г., представляет собой один из путей, в которых проявляется так называемый принцип неопределенности Гейзенберга. Согласно этому принципу, невозможно измерить одновременно положение и скорость элементарной частицы. В результате положение такой частицы, как электрон, «размазывается» по пространству: частица ведет себя как размытое облако материи. Такое материальное облако может «туннелировать», или диффундировать, между двумя поверхностями, даже если они и не соприкасаются, во многом подобно тому, как вода может просачиваться сквозь почву из одной лужи в другую.

Туннельный эффект был хорошо известен к тому времени, когда Бинниг и Рорер начали совместную работу, и даже использовался – хотя порой и довольно грубо – при исследовании природы поверхностных взаимодействий в «сандвичах» из материалов. Все, что оставалось сделать Биннигу и Рореру, так это позволить электронам туннелировать сквозь вакуум, и это идея неожиданно оказалась плодотворной. Их подход привел в конце концов к созданию нового инструмента, названного сканирующим туннелирующим микроскопом.

Основной принцип, лежащий в основе этого прибора, включает в себя сканирование поверхности твердого тела в вакууме тонким кончиком иглы.

Между кончиком и образцом приложено напряжение, а расстояние между ними поддерживается настолько малым, чтобы электроны могли через него туннелировать. Появляющийся в итоге поток электронов называется туннельным током. Величина туннельного тока экспоненциально зависит от расстояния между образцом и кончиком иглы. Следовательно, водя иглой по образцу и измеряя ток, можно составить карту поверхности в атомном масштабе.

Бинниг и Рорер впервые успешно опробовали туннелирующий микроскоп весной 1981 г. Вместе с двумя другими служащими компании ИБМ Кристофом Гербером и Эдмундом Вейбелем им удалось различать особенности высотой всего в один атом на поверхности кальциево-иридиево-оловянных кристаллов.

При разработке сканирующего туннелирующего микроскопа группа из ИБМ встретилась с существенными трудностями: прежде всего, пришлось устранить все источники вибрационного шума. Вертикальное положение сканирующего кончика должно контролироваться с точностью до доли диаметра атома, поскольку туннельный ток существенно зависит от расстояния между кончиком и исследуемым образцом. Уличные шумы и даже шаги могли вызвать сотрясение тонкого прибора. Сначала Бинниг и Рорер решили справиться с задачей, подвесив микроскоп с помощью постоянных магнитов над чашей из сверхпроводящего свинца, поставленной на тяжелый каменный стол. Сам стол они изолировали от здания лаборатории с помощью надувных резиновых шин. Чтобы передвигать кончик иглы с высокой точностью, использовались пьезоэлектрические материалы, которые сжимаются или расширяются, если к ним приложить соответствующее напряжение.

В результате дальнейших усовершенствований сканирующий туннелирующий микроскоп может ныне разрешить по вертикали размеры до 0,1 ангстрема. Разрешающая способность по горизонтали в 2 ангстрема достигнута благодаря использованию сканирующих кончиков шириной всего лишь в несколько атомов, а кончики шириной в 1 атом разрабатываются в настоящее время. После того как в конструкцию сканирующего туннелирующего микроскопа были внесены усовершенствования, он стал обычным инструментом во многих исследовательских лабораториях. Кроме вакуума, этот инструмент оказывается эффективным и во многих других средах, включая воздух, воду и криогенные жидкости. Он применяется для изучения различных образцов, отличных от неорганических веществ, в частности вирусов.

Бинниг и Рорер разделили в 1986 г. половину Нобелевской премии по физике «за изобретение сканирующего туннелирующего микроскопа». Другую половину премии получил Эрнст Руска за работу над электронным микроскопом.

44 Фредерик Райнес (1918-1998) Родился в Нью-Джерси, США в семье евреев-эмигрантов из России. Затем семья переехала в Хелборн, штат Нью-Йорк.

Фредерик Райнес получил докторскую степень по физике в Нью-Йоркском университете (1944). Затем работал в Лос Аламосской национальной лаборатории в Нью-Мексико, где проводились атомные исследования (1951). В 1951 Райнес становится профессором физики и деканом кафедры физики Технологического института в Питтсбурге. В 1966-88 — профессор Калифорнийского университета в Ирвине. Работая в творческом тандеме с Клайдом Коуэном, Ф. Райнес занимался исследованием теории нейтрино. Райнес и Коуэн доказали существование нейтрино, предсказанного в 1930 Вольфгангом Паули. В они предлагали использовать для своего эксперимента атомную бомбу, но этот план был заменен экспериментами на ядерном реакторе в Южной Каролине (1955). Во время этих экспериментов было подтверждено существование нейтрино.

Нейтрино — стабильные нейтральные лептоны с полуцелым спином, участвующие только в слабом и гравитационном взаимодействиях.

Чрезвычайно слабо взаимодействуют с веществом: нейтрино с энергией 1 МэВ имеют в свинце длину свободного пробега ~ 1020 см (~ 100 св. лет). Также известно, что без видимых последствий каждую секунду через тело каждого человека на Земле проходит ~ 1014 нейтрино, испущенных Солнцем.

Свойства нейтрино: Каждому заряженному лептону соответствует своя пара нейтрино/антинейтрино: электронное нейтрино/антинейтрино;

мюонное нейтрино/антинейтрино;

тау-нейтрино/антинейтрино Масса электронного нейтрино крайне мала. Верхняя экспериментальная оценка составляет всего 2 эВ (получена для антинейтрино). Верхние пределы для масс мюонного и тау-нейтрино на настоящий момент (2006 г.) оцениваются в 190 кэВ и 18,2 МэВ соответственно.

Масса нейтрино важна для объяснения феномена скрытой массы в космологии, так как, несмотря на её малость, концентрация нейтрино во Вселенной достаточно высока, чтобы существенно повлиять на среднюю плотность. Если нейтрино имеют ненулевую массу, то различные виды нейтрино могут преобразовываться друг в друга. Это так называемые нейтринные осцилляции, в пользу которых свидетельствуют наблюдения солнечных нейтрино, угловой анизотропии атмосферных нейтрино, а также проведённые в начале этого века эксперименты с реакторными и ускорительными нейтрино. Кроме того, существование нейтринных осцилляций напрямую подтверждено опытами в Садбери. Подтверждение нейтринных осцилляций потребует внесения изменений в Стандартную Модель.

Непрерывность спектра электронов math\beta/math-распада ставила под сомнение закон сохранения энергии. Вопрос стоял настолько остро, что в 1931 г. знаменитый датский физик Н. Бор на Римской конференции выступил с идеей о несохранении энергии! Однако было и другое объяснение — потерянную энергию уносит какая-то неизвестная и незаметная частица.

Гипотезу о существовании чрезвычайно слабо взаимодействующей с веществом частицы, выдвинул в 4 декабря 1930 г. Паули — не в статье, а в неформальном письме участникам физической конференции в Тюбингене:

…имея в виду … непрерывный math\beta/math-спектр, я предпринял отчаянную попытку спасти «обменную статистику» и закон сохранения энергии. Именно имеется возможность того, что в ядрах существуют электрически нейтральные частицы, которые я буду называть «нейтронами» и которые обладают спином 1/2… Масса «нейтрона» по порядку величины должна быть сравнимой с массой электрона и во всяком случае не более 0, массы протона. Непрерывный math\beta/math-спектр тогда стал бы понятным, если предположить, что при math\beta/math-распаде вместе с электроном испускается ещё и «нейтрон» таким образом, что сумма энергий «нейтрона» и электрона остаётся постоянной. Я признаю, что такой выход может показаться на первый взгляд маловероятным… Однако не рискнув, не выиграешь;

серьёзность положения с непрерывным math\beta/math спектром хорошо проиллюстрировал мой уважаемый предшественник г-н Дебай, который недавно заявил мне в Брюсселе: «О… об этом лучше не думать вовсе, как о новых налогах».

(«Открытое письмо группе радиоактивных, собравшихся в Тюбингене», цит. по М. П. Рекало, Нейтрино.) Впоследствии нейтроном была названа, как оказалось, другая элементарная частица.

На Сольвеевском Конгрессе 1933 г. в Брюсселе Паули выступил с рефератом о механизме math\beta/math-распада с участием лёгкой нейтральной частицы со спином 1/2, в котором, со ссылкой на предложение Ферми, назвал гипотетическую частицу «нейтрино», что можно перевести с итальянского как «нейтрончик». Это выступление было фактически первой официальной публикацией, посвящённой нейтрино.

45 Жорес Иванович Алфёров (1930) Родился в белорусско-еврейской семье Ивана Карповича Алфёрова и Анны Владимировны Розенблюм. В году окончил факультет электронной техники Ленинградского электротехнического института имени В.

И. Ульянова (ЛЭТИ).

На третьем курсе А. пошел работать в вакуумную лабораторию профессора Б.П. Козырева. Там он начал экспериментальную работу под руководством Наталии Николаевны Созиной. Так, в 1950 году полупроводники стали главным делом его жизни.

В 1953 году, после окончания ЛЭТИ, А. был принят на работу в Физико технический институт им. А.Ф. Иоффе в лабораторию В.М. Тучкевича. В первой половине 50-х годов перед институтом была поставлена задача: создать отечественные полупроводниковые приборы для внедрения в отечественную промышленность. Перед лабораторией стояла задача: получение монокристаллов чистого германия и создание на его основе плоскостных диодов и триодов. При участии Ж.И. Алфёрова были разработаны первые отечественные транзисторы и силовые германиевые приборы. В те годы была высказана идея использования в полупроводниковой технике гетеропереходов.

Создание совершенных структур на их основе могло привести к качественному скачку в физике и технике.

В то время во многих журнальных публикациях и на различных научных конференциях неоднократно говорилось о бесперспективности проведения работ в этом направлении, т.к. многочисленные попытки реализовать приборы на гетеропереходах не приходили к практическим результатам. Причина неудач крылась в трудности создания близкого к идеальному перехода, выявлении и получении необходимых гетеропар.

Но это не остановило Жореса Ивановича. В основу технологических исследований им были положены эпитаксиальные методы, позволяющие управлять такими фундаментальными параметрами полупроводника, как ширина запрещенной зоны, величина электронного сродства, эффективная масса носителей тока, показатель преломления и т.д. внутри единого монокристалла.

Для идеального гетероперехода подходили GaAs и AlAs, но последний почти мгновенно на воздухе окислялся. Значит, следовало подобрать другого партнера. И он нашелся тут же, в институте, в лаборатории, возглавляемой Н.А.

Горюновой. Им оказалось тройное соединение AIGaAs. Так определилась широко известная теперь в мире микроэлектроники гетеропара GaAs/AIGaAs.

Ж.И. Алфёров с сотрудниками не только создали в системе AlAs – GaAs гетероструктуры, близкие по своим свойствам к идеальной модели, но и первый в мире полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре.

Открытие Ж.И. Алфёровым идеальных гетеропереходов и новых физических явлений – «суперинжекции», электронного и оптического ограничения в гетероструктурах – позволило также кардинально улучшить параметры большинства известных полупроводниковых приборов и создать принципиально новые, особенно перспективные для применения в оптической и квантовой электронике. Новый этап исследований гетеропереходов в полупроводниках Жорес Иванович обобщил в докторской диссертации, которую успешно защитил 1970 году.

Работы Ж.И. Алфёрова были по заслугам оценены международной и отечественной наукой. В 1971 году Франклиновский институт (США) присуждает ему престижную медаль Баллантайна, называемую «малой Нобелевской премией» и учрежденную для награждения за лучшие работы в области физики. Затем следует самая высокая награда СССР – Ленинская премия (1972 год).

С использованием разработанной Ж.И. Алфёровым в 70-х годах технологии высокоэффективных, радиационностойких солнечных элементов на основе AIGaAs/GaAs гетероструктур в России (впервые в мире) было организовано крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них, установленная в 1986 году на космической станции «Мир», проработала на орбите весь срок эксплуатации без существенного снижения мощности.

На основе предложенных в 1970 году Ж.И. Алфёровым и его сотрудниками идеальных переходов в многокомпонентных соединениях InGaAsP созданы полупроводниковые лазеры, работающие в существенно более широкой спектральной области, чем лазеры в системе AIGaAs. Они нашли широкое применение в качестве источников излучения в волоконно оптических линиях связи повышенной дальности.

В начале 90-х годов одним из основных направлений работ, проводимых под руководством Ж.И. Алфёрова, становится получение и исследование свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

В 2008 году принял участие в подготовке издания второй книги из серии «Автограф века». Был главным редактором журнала «Физика и техника полупроводников», членом редакционной коллегии журнала «Поверхность:

Физика, химия, механика», членом редакционной коллегии журнала «Наука и жизнь». 5 апреля 2010 года объявлено о том, что Алфёров назначен научным руководителем инновационного центра в Сколково. Автор более пятисот научных работ, трёх монографий и пятидесяти изобретений.



Pages:     | 1 | 2 ||
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.