, , ,

<<


 >>  ()
Pages:     | 1 |   ...   | 15 | 16 ||

C ...

-- [ 17 ] --

136. .. . .: , 1973. 204 .

137. .. . .: , 1996. 237 .

138. ., . . .: , 1990.

139. .. . .: , 1977. 650 .

140. .., .. . .: , 1973. 414 .

141. .. . .: , 1997. 534 .

142. .. : . .: , 1985. 296 .

143. A.C. .

.: , 1986. 256 .

144. .. : . .: - . .. , 1985.

50 .

145. .. . .: , 1989.

146. .., .. . .: , 1974.

147. .. . .: , , 2000.

148. .. . .: , 2000. 287 .

149. Ball J.A., Helton J.W., Walker M.L. H-infinity Control for Nonlinear Systems with Output Feedback // IEEE Trans. Automat. Contr., vol. 38, 4, 1993.

150. Baar T., Bernhard P. H-infinity Optimal Control and Related Minimax Design Problems, Dynamic Game Approach, Systems and Control: Foundations and Applications. Birhauser, 1991.

151. Chang S.S.L., Peng T.K.C. Adaptive Guaranteed Cost Control of Systems with Uncertain Parameters // IEEE Trans. on AC. August, 1972.

152. Dorato P. U-Parameter design example: Robust Flight Control for Wind-Shear Protection // Proceeding of the 29-nd Conf. on Dec. and Control. 1990. Vol. 1.

153. Doyle J.C., Glover K., Khargonekar P.P., Francis B.A. State-space solutions to standard H 2 and H control problems // IEEE Transactions on Automatic Control, AC-34, 8, 1989.

154. Doyle J.C. Lecture notes in advances in multivariable control. ONR/Honeywell, Workshop, Minneapolis, MN, 1984.

155. Doyle J., Chu C. Robust cintrol of multivariable and large scale systems. Final Technical report, Honeywell Systems and Research Centre.

156. Doyle J.C., Stein G. Multivariable Feedback Design: Concepts for a Classical / Modern Synthesis //IEEE Trans. Auto. Control. 1981. Vol. AC-26. N1.

157. Essays on Control: Perspectives in the Theory and its Applications. Progress in System and Control Theory, vol. 14, Editors H.L. Trentelman, J.C. Willems.

Birkhauser, 1993.

158. Francis B.A. A Course in H -Control Theory. Lecture Notes in Control and Information Sciences, vol. 88, Springer-Verlag, Berlin etc., 1987.

159. Glover K. All optimal Hankel-norm approximations of linear multivariable systems and their L error bounds. // Int. J. Control, v. 39, 1984.

606 160. Green M., Limebeer D. Linear Robust Control. Prentice Hall, 1998.

161. Glover K., MacFarline D. Robust Controller Design Using Normalised Coprime Factor Plant Descriptions // LNCIS. Vol. 138. NY: Springer-Verlag, 1990.

162. Gu D.-W., Tsai M.C., OYoung S.D., Postlethwaite I. State-space formulae for discrete-time H optimization // International Journal of Control, v. 49, 5, 1989.

163. Hyde R.A., Glover K. Taking H -control into Flight //Proc. of the 32-nd Conf. on Dec. and Control. Vol. 2.1993.

164. Iglesias P.A., Glover K. State-space approach to discrete-time H control // International Journal of Control, v. 54, 5, 1991.

165. Ivan. M. A Ring-Vortex Downburst Model for Flight Simulations // J. Aircraft. V. 23.

3. March 1986.

166. Kalman R.E., Busy R.S. New Results in Linear Filtering and Prediction Theory // Trans. ASME, J. Basic Engineering, 1961.

167. Kang W., De P.K., Isidori A. Flight Control in a Windshear via Nonlinear H Methods // Proceeding of the 31-st Conf. on Dec. and Control. Vol. 1, 1992.

168. Kurdjukov A., Pavlov B., Timin V. Longitude flight control in a windshear via H Methods // AIAA Conference, July 1520, San-Diego, USA, 1996.

169. Kurdjukov A., Pavlov B., Timin V. Robust flight control in a windshear // European Control Conference (ECC 95), September 58, Roma, Italy, 1995.

170. Kwakernaak H.A. Polynomial Approach to Minimax Frequency Domain of Multivariable Feedback Systems // Int. J. Contr. 1986, 1.

171. Limebeer D.J., Halikias G.D. A controller degree bound for H -optimal control problems of the second kind // SIAM J. Contr. and Opt. Vol. 26, 1988.

172. Limebeer P.J.N., Anderson B.J.O., Khargonekar P.P., Green M.A. A game theoretic approach to H -control for time varying systems // SIAM J. Contr. and Opt. Vol. 30.

2. 1992.

173. Mariton M., Bertrand P. A homotopy algorithm for solving coupled Riccati equations // Optimal Control Applications \& Methods, v. 6, 1985.

174. Mehrmann V.L. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution. Lecture Notes in Control and Information Sciences, v. 163, Springer-Verlag, Berlin etc. 1994.

175. Miele A., Wang T., Melvin W.W. Optimization and acceleration guidance of flight trajectories in a windshear // J. Guid. Contr. and Dyn., v. 10, 4, 1987.

176. Miele A., Wang T., Melvin W.W. Gamma guidance scheme for flight in a windshear // J. Guid. Contr. and Dyn., v. 11, 4. 1988.

177. Miele A., Wang T., Melvin W.W. Guidance Strategies for Near-Optimum Take-off Performance in a Windshear // Journal of Optimization Theory and Applications, v. 50, 1, July, 1986.

178. Miele A.,Wang T., Melvin W.W. Optimal Flight Take-off Trajectories in the Presense of Windshear // Journal of Optimization Theory and Applications, v. 49, 1, April, 1986.

179. Miele A., Wang T., Melvin W.W., Bowles R.L. Maximum Survival Capability of an Aircraft in a Severe Windshear // Journal of Optimization Theory and Applications, v. 53, 12, May, 1987.

180. Miele A.,Wang T., Tzeng C.Y., Melvin W.W. Optimization and Guidance of Abort Landing Trajectories in an Windshear // Paper AIAA-87-2341, AIAA Guidance, Navigation, and Control Conference, August 1719, Monterey, California, 1987.

181. Mustafa D., Glover K. Minimum Entropy H -Control. Lecture Notes in Control and Information Sciences, SpringerVerlag, Berlin etc., 1991.

182. Ohno M., Takahami M., Kimura T., Tokuda E. H Control Design Method Combined with Exact Model Matching Design of Longitudinal Robust Flight Control System // Proceeding of the 32-rd Conf. on Dec. and Control. V. 1, 1993.

183. Petersen I.A. A stabilisation algorithm for a class of uncertain linear systems // Sys.

and Cont. Letters, 8, 1987, pp.351357.

184. Ran A.C.M., Rodman L. On parameter dependence of solutions of algebraic Riccati equations // Mathematics of Control Signals & Systems, v. 1, 1988.

185. Ravi R., Nagpal K.M., Khargonekar P.P. H -Control of linear time varing systems:

a state-space approach // SIAM J. Contr. and Opt. Vol. 29, 6, 1991.

186. Recent Advances in Robust Control. Edited by P. Dorato, Rama K. Yedavalli. IEEE PRESS, 1990.

187. Robust Control. Edited by P. Dorato. IEEE PRESS, 1987.

188. Semyonov A.V., Vladimirov I.G., Kurdjukov A.P. Stochastic approach to H optimization // Proceedings of the 33rd Conference on Decision and Control, Florida, USA, December 1416, 1994, v. 3, 1994.

189. Tahk M., Speyer J. Modelling of parameter variations and asymptotic LQG synthesis // IEEE Trans. on Auto. Cont., AC-32, 1987, pp.793801.

190. Van der Schaft A.J. Nonlinear State Space H -control Theory, in Essay an Control:

Perspectives in the Theory and Applications. Birhauser, 1993.

191. Vidyasagar M. Control System Synthesis: A Coprime Factorization Approach. MIT Press, MA, 1985.

192. Vidyasagar M. Normalized coprime factorization for non strictly proper systems // IEEE Transactions on Automatic Control, AC-33, pp.300301, 1988.

193. Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. On computing the anisotropic norm of linear discrete-time-invariant systems // Proceedings of the 13th IFAC World Congress, San-Francisco, California, USA, June 30July 5, 1996, v. G, Paper IFAC 2d-01.6, 1996.

194. Vladimirov I.G., Kurdjukov A.P., Semyonov A.V. State-space solution to anisotropy based stochastic H-infinity optimization problem // Proceedings of the 13th IFAC World Congress, San-Francisco, California, USA, June 30July 5, 1996, v. H, Paper IFAC-3d-01.6, 1996.

195. Wonham W.M. Optimal Stationary Control of System with State-Dependent Noise // SIAM Journal on Control. August 1967.

196. Young N.J. The Nevanlinna-Pick Problem for Matrixvalued Functions // J. of Operator Theory. 1986. Vol. 15.

197. Zames G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses // IEEE Trans. Auto. Control.

1981. Vol. AC-26. 2.

198. Zames G. On input-output stability of time-varying nonlinear state-space models // IEEE Trans. Automat. Contr., vol.11, 2, pp.228236, 1966.

199. Zhao Y. A Simplified RingVortex Downburst Model // AIAA Paper. 580, 1990, pp.111.

200. Zhow K., Doyle J.C., Glover K. Robust and optimal control. Prentice Hall, 1996.

608 .............................................................................. 3- .................................................................................................. .................................................................. ................................................................. 1. ................................................. 1.1. .................................................................................................... 1.1.1. , ......... 1.1.2. .......................................................... 1.1.3. ............................................................................ 1.2. ............................................. 1.2.1. , ............................................................................ 1.2.1.1. .......................................................................................... 1.2.1.2. .......... 1.2.1.3. .................................................................... 1.2.1.4. ............................................................................ 1.2.2. .................................. 1.2.2.1. ....................................................................... 1.2.2.2. ............................. 1.2.2.3. [117].

[117]...................... 1.3. [117, 124]............................................................................ 1.4. ר .................................................................................................. 1.5. ........................................................................................................... 1.5.1. ......................................................... 1.5.2. ................................ 1.5.3. ........................................................................ 1.6. .............................................................. 1.7. .................................................................................................. 1.8. ............... 1.9. ......................................................................................... 1.9.1. .............................................................................. 1.9.2. .

......... 1.10. .............................................................. 1.11. ........................................................ 1.12. ........ 1.13. ............................ 1.13.1. () ......................... 1.13.2. ................................................... 1.13.3. .................................................................................. 1.13.4. .......................................................... 1.13.5. [117, 124].............................................................................................. 1.13.6. - ( .. ).......................................................... 1.14. ................................................................ 1.14.1. .............................................. 1.14.2. ...................................... 1.14.3. ....................................................................... 1.14.4. .................... 1.14.5. ......................... 1.14.6. ...................................... 2. .......................................... 2.1. [37, 39, 75, 76, 111, 124]............................................................ 2.2. ............................................................................... 2.3. ........................................................ 2.4. , .......... 3. ........................................................................... 3.1. ........................................................ 3.2. ............................................................... 3.3. .............................................. 610 3.4. - , ..................................................................................... 3.5. : ................................... 3.5.1. ..... 3.5.2. ( .. ).................................................................... 3.5.3. : -................................................ 4. ( ).................................... 4.1. .................................................................................................. 4.2. ................................................................................. 4.3. ( ). ...... 4.4. .............................................................................................. 4.5. ............................................................................... 4.5.1. .............................................................................. 4.5.2. . .............................................. 4.5.2.1. ....................................................................... 4.5.2.2. ........................................................................ 4.5.3. .............. 4.5.4. ........................................................................................... 4.5.5. .......................... 5. .................................................................. 5.1. .......................................................................... 5.1.1. ................................................................................... 5.1.2. ...................................................................................... 5.1.3. - ............................................................. 5.1.4. 2- -P ................................ 5.1.5. ............................................................ 5.1.5.1. .......................................................................... 5.1.5.2. ............................................................................ 5.2. ..................................................................................... 5.2.1. ............................................. 5.2.2. .................................................................... 5.2.3. ............................................................................................... 5.3. ............................................................. 5.3.1. ................................................................ 5.3.1.1. ....................................................... 5.3.1.2. ............................................................................. 5.3.2. ..................................................................... 5.3.2.1. ..................................................... 5.3.3. ............................................................................. 5.4. .............................................................................................. 5.4.1. ......................................................... 5.4.1.1. ................... 5.4.2. .......................................... 5.4.3. ............................................................. 5.4.4. ........................................... 5.5. .................................................................................... 5.5.1. ................................................................ 5.5.2. ............................................................. 5.5.3. ........................................................................ 5.5.4. ................................................. 5.5.4.1. ................................ 5.5.5. H -................................................................................. 5.6. .......... 5.6.1. H -................................................ 5.6.2. ...........................................

............. 5.6.3. ..................... 5.6.4. ............................... 5.6.5. ...................................... 5.6.5.1. ............................... 5.6.5.2. ........................................ 5.6.6. ......................................................... 5.6.7. ................................................... 5.6.8. 2- .................... 5.7. ............................................... 5.7.1. ......................................................... 5.7.1.1. ...................................... 5.7.1.2. ....................................... 5.7.1.3. ................ 5.7.2. .......................................................... 5.7.2.1. ....................................................................... 5.7.2.2. ............ 5.8. ...................................................................................... 5.8.1. ....................................... 5.8.1.1. ............. 5.8.1.2. ............................................................ 5.8.2. ............................................................... 5.8.2.1. ............................... 5.8.2.2. ............................... 5.8.2.3. ................................................. 5.8.2.4. .............................................. 5.8.2.5. ....... 5.8.2.6. ........................................... 6. , , ....................................................... 6.1. [21, 41, 57, 70, 121]...................................................................................... 6.2. [23, 34, 83, 121, 132,137]............................................................................. 6.3. , [4, 41, 52, 57, 70, 85, 136, 141]................. 6.3.1. ................................................. 612 6.3.2. .................................. 6.4. [17, 35, 52, 55, 70, 85, 86, 141].................... 6.5. [130].................................................................................. 6.5.1. ............................................................... 6.5.2. ............................................... 6.5.3. ................................................ 6.5.4. ........................................ 6.5.5. ...................... 6.5.6. -......................................... 6.5.7. -........................... 6.5.8. -......... 6.5.9. .......................... .

......................................................................................... ........................................................................................... .................................................................................................................... TEXTBOOK ANNOTATION The textbook Methods of Classic and Modern Control Theory includes five volumes:


Volume I Description and Analysis of Automatic Control Systems Volume II Stochastic Dynamics of Automatic Control Systems Volume III Controllers Design Volume IV Automatic Control Systems Optimization Theory Volume V Methods of Modern Control Theory I. Characteristic features of the textbook 1. This textbook is addressed to the wide range of readers:

a) The beginning control theory students. It should be mentioned that this subject may be both an obligatory one evaluating the level of engineers proficiency and an optional one.

b) Students and specialists resuming studies in the field of control theory because of expanding range of problems concerned with automation processes.

c) Students and specialists who want to refresh their knowledge by studying a part of the text book that has not been included into engineering specialities curriculum.

The readers are to choose the material according to a particular tasks a), b), c) and to general cur riculum opportunities. Taking into consideration the purpose of the textbook it should be noted that it presents sufficient material to make a proper choice.

2. Material introduction methods The textbook attempts to provide readers with knowledge of control theory methods from funda mental concepts of control theory (control aims and concepts, control systems analysis, systems clas sification, analysis and synthesis of the main tasks and others) to its state-of-the-art issues. Getting a deep insight into the problems of control theory is impossible within the framework of current sylla bus, thats why the subject matter of some trends has not been included into this textbook.

3. The level of readers mathematical background The authors have tried to set out the material in a simple and readily available form.

A scope of knowledge of higher mathematics necessary for understanding the contents corre sponds to the syllabus for earlier stages of tuition at higher technical educational institutions.

The textbook implements concepts of functional analysis. The necessary information is given in corresponding section of the textbook. Owing to language application and the results of functional analysis bring about the more thorough discussion of the essence of each method, the opportunity of obtaining in-depth theoretical information as well as correlation of methods that seem entirely differ ent at first sight.

4. Technical trend of the textbook The subject matter of the textbook is given from the engineering point of view. The author stresses the main ideas of forming basis of methods but does not always adduce strict methodologi cal proofs. The textbook is supposed to find simpler methods for solving practical tasks. Besides, the presentation of the materials is intended to help students realize the practicality of described methods.

In most cases the methods are reduced to computing algorithms. Tables and other additional ma terials are available to facilitate their application.

The main merit of the textbook is the outline of the use of particular control systems in the atomic industry for thermotechnical processes control:

The textbook presents principal, functional and structural circuits of the system.

It illustrates the calculations using particular algorithms.

It gives the analysis of the results, etc.

It is impossible to study control theory without mastering the engineering aspect. That is why the engineering aspect of formulating and solving practical tasks is emphasized throughout the course.

5. Computing colouring of the material The contents of the book is characterized by a certain computing colouring because present-day computers make it possible to reduce greatly automatic control systems designing time, stressing thus the significance of numerical methods in automatic control theory.

The author of the textbook has tried to take into account that the computer-aided control system design depends on many factors:

The adequacy degree of system mathematical model.

The efficiency degree of numerical methods used in algorithmic support.

The availability of high-quality software.

The extent of using the creative ability of the researcher-designer.

II. The contents 1. Mathematical models of automatic control systems The problems of mathematical description of singular and nonsingular linear and nonlinear con trol systems, systems with distributed constants, continuous discrete systems are considered in the textbook in detail. Much attention is paid to the state space method in linear systems which gives basically new possibilities of the system analysis and control laws synthesis. The description by Vol terra series is described in nonlinear system class.

2. Deterministic analysis of automatic control systems The system theory methods has been studied to solve the following problems:

a). The investigation of the steady-state singular, nonstationary and nonlinear systems:

the criteria of stability are considered in detail;

much attention is paid to nonlinear system class;

(The original material concerning the problems of stability is given in the corresponding chapter.) b). The analysis of system performance in unstable mode and creation of output processes.

c). The investigation of performance accuracy in stable mode.

3. Statistic analysis of automatic control systems The textbook deals with technical methods of the broad class ACS statistic research, including nonlinear and stochastically disturbed systems.

4. Filtration and control systems statistical synthesis This chapter includes the following methods:

a). Optimal filter synthesis on basis of KolmogorovWienners theory as well as R. Calman and R. Busy.

b). Synthesis of optimal observers.

c). Synthesis of optimal analytical and nonlinear filters, described by Volterra series, etc.

5. Numerical methods of complex control system analysis under deterministic and stochastic inputs Matrix operator method forms the basis for computer-aided control system investigation useful for algorithmization and programming.

6. Control objects identification Formulation of identification problem for linear and nonlinear objects classes, its main aspects and engineering approach to its solution are outlined in this textbook.

7. Control system synthesis based on quality (controller synthesis) Alongside with traditional methods of controller synthesis (frequency, modal control, dynamic compensation methods etc.), great attention is devoted to the application of mathematical program ming due to the fact, that it determines general approach to optimization problems solution and is computer-aided.

8. Synthesis of optimal automatic control systems The following problems were analysed:

a). Basis principles of calculus of variations;

b). Pontryagins maximal principle including the problem of state variables;

c). Dynamic programming;

d). Linear-quadratic problems;

e). Method of moments;

f). Mathematical programming as applied to optimal program controls development.

9. Methods of up-to-date CAD theory Methods include rough control systems synthesis, H-control theory and robust methods as well as the problems of multi-object and multi-criteria systems optimization as well as application of effec tive compromises, calculation tasks and design of adaptive and intellectual control systems, differen tial geometry methods application for control theory, etc.

C.. , .. .. , .. .. , .. . . 020523 25.04.97. 11.03.2004.

70100 1/16. . . 38,5. . . . 50.

. . 2500 . . .. 107005, , 2- , - - . .. .

-

248640, . , . , ʖ00593, 2;

953000 , I SBN 5 - 7 0 3 8 - 2 1 9 1 - 9 785703

Pages:     | 1 |   ...   | 15 | 16 ||
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .