, , ,

<<


 >>  ()
Pages:     | 1 | 2 ||

- , ...

-- [ 3 ] --

(2.202), (2.213), D (, q ) (2.208), .. .

.. .

(2.213) , , , D1 ( ) = a n + a n1 + a n2 2 + a n3 3 + a n4 4 +L (2.231) D2 ( ) = a n + a n1 + a n2 2 + a n3 3 + a n4 4 +L (2.232) D3 ( ) = a n + a n1 + a n2 2 + a n3 3 + a n4 4 +L (2.233) D4 ( ) = a n + a n1 + a n2 2 + a n3 3 + a n4 4 +L (2.234) .. , x (t ) = [ F ] ( q ) x (t ) + Gg (t );

x (0);

y (t ) = Cx (t ) & (2.235) [ F ] (2.231)(2.234), (2.202), . (2.202) , . . (2.202) [ F ]. f ( N ) N. , ( n n ) - N { } { N } = ni ;

i = 1, n, f ( N ) { } { f ( N )} = f ( ni ) ;

i = 1, n.

f ( N ) N f ( N ) = I + N, (2.236) f ( ) = +. { f ( N )} f ( N ) = I + N { } { f ( N )} = f ( ni ) = + ni ;

i = 1, n. , .

2.25. (2.202) , , [ F ] + I det {( ) I [ F ]} = [ a0 ]( ) + [ a1 ]( ) + L n n. (2.237) + [ an1 ]( ) + [ an ] , (2.237) D ( ) = [ a0 ] n + [ a1 ] n1 + L + [ an1 ] + [ an ] % % % % % .. , (2.231)(2.234). (2.235), , , (2.202) .

, (2.237) .. (2.231)(2.234), , D1 (, ) = an + an1 ( ) + an2 ( ) + an3 ( ) + an4 ( ) +L, (2.238) 2 3 D2 (, ) = an + an1 ( ) + an2 ( ) + an3 ( ) + an4 ( ) +L, 2 3 (2.239) D3 (, ) = an + an1 ( ) + an2 ( ) + an3 ( ) + an4 ( ) +L, (2.240) 2 3 D4 (, ) = an + an1 ( ) + an2 ( ) + an3 ( ) + an4 ( ) +L.

2 3 (2.241) (2.238) (2.241) , , [] =, = 0 +,.

(2.57), A0 , .

, f ( N ) = N K, K . { f (N ) = N K} { } { f ( N )} = f ( Ni ) = K ;

i = 1, n. , Ni .

2.26. N { } { f ( N )} = Ni ;

i = 1, n , { } Ni ;

i = 1, n , N K , { } K = max arg Re ( K ) 0 Re ( K ) = 0;

i = 1, n, (2.242) Ni % Ni N tg =. (2.243) (2.202), (2.235) .

2.27. F K, K , , K , F K , (2.202), (2.235) , (2.243). D ( ) [ F ] . , [ F ] ( n n ), {( F )c } [ F ] 2nn, 2n, , . {( F )c } 2 p, p .

, , 2.3.4.

, (. 5) , , wid [ al ] [ al ]. [ al ] [ al ] [ al ] [ al ]. , (2.204) al ( q ) al ( q ) = 0 al ( q ) = 1, q = 0 q = 1. , [ al ] [ al ] = 0, [ al ] [ al ] = 1.

2.12. [ A] = A0 + [ A], , (2.57) , (2.202), (2.235) [ F ] = F0 + [ F ] = ( A0 BK ) + [ A].

(2.57) F0 n = 3 0 = 4c 1 , F0, , 0 F0 = 0 1.

64 32 F = [ A] 0 [ A] = A, A = 0 0, [ 25,25] [ 15,15] [ 10,10] 0 [F ] = 0 0 1.

[ 89, 39] [ 47, 17 ] [ 18, 2] [ F ] D ( ) = [ a0 ] 3 + [ a1 ] 2 + [ a2 ] + [ a3 ], [ a0 ] = [1,1];

[ a1 ] = [ 2,18];

[ a2 ] = [17, 47];

[ a3 ] = [39,89].

.. (2.231)(2.234) D1 ( ) = 39 + 17 + 18 2 + 3, D2 ( ) = 89 + 17 2 2 + 3, D3 ( ) = 89 + 47 2 2 + 3, D4 ( ) = 39 + 47 + 18 2 + 3.

, [D( )] .

(2.57) , n = 3 0 = 10c 1. [ F ] = F 0 + [ F ] = F0 + [ A] 0 F0 = 0 1.

1000 200 [ F ] = [ A], [ F ] 0 1 [F ] = 0 0 1.

[ 1025, 975] [ 215, 185] [ 30, 10] D ( ) = det ( I [ F ]) = [F ] = [ a0 ] 3 + [ a1 ] 2 + [ a2 ] + [ a3 ] [ a0 ] = [1,1];

[ a1] = [10, 30];

[ a2 ] = [185, 215];

[ a3 ] = [975,1025]. (2.231)(2.234) D1 ( ) = 975 + 185 + 30 2 + 3, D2 ( ) = 1025 + 185 + 10 2 + 3, D3 ( ) = 1025 + 215 + 10 2 + 3, D4 ( ) = 975 + 215 + 30 2 + 3.

.. , , D ( ). .



Pages:     | 1 | 2 ||
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .