, , ,

<<


 >>  ()
Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 12 |

THEORY AND ...

-- [ 5 ] --

r = 20 0 , , r r. , , , .

.

: [111], ;

(111)112;

(111)110;

(001) [110];

(112)110.

(111)uvw, (001)[110]. (112)110 .

1 , , .

08 2,2 3,6 30;

50 70% 200 : 0,8 Ra;

5,0 Ra;

0,3 Ra;

V 0,3 Ra, 8,0 Ra.

, ( ): 680, 12 .

(110), . -. .. , .. , .. , .. , .. .

.. , .. , , .

[72, 73].

.

, 30% (0,3 8,0 Ra), , . ( ) , , . , , 0,25h;

0,375h 0,5h. , . .

50% . . (112)110 , , , . , 30%, , . .

70% , , , .

, (0,3 8,0 Ra) 30 50%, , . , 5. . , 30 50%. , . , 70%, .

, , . {111} . , .

, , , .

, . : (, Ra = 0,3 ), (, Ra = 8 ). , , , . , , .

, , , .

, , . .

.. , .. . - , . .

, ( ) . , , , , , , . (112) 110 ;

(001) [110];

(111) 112, . , .

, , , . , , , ( ).

, () . , , , . 5. - . , .

, , , . .

, , , .

. , , , () , , , .

, (. . 1520115 1527291) () , 1700. .., . . . , . , . . , ~0,3%.

.. , .. , .. , .. , .. .. , .. 08 0,01-0,07%, . , , , . , , . Ra = 0,8-2 .

, () : , . . , . .

, , , , . , , , , , 2-2,5 , , , , . . .

5. 1, , , 1,1-1,2.

, , . -, , , , ( , .). -, () .

. , .

, , , , , ( , , ..) , .

, , .

, , . . .. , .. , .. , ..

.. , .. , , - .

5.5. , , , . .

, , , , , .

, . , , , . .. , .. . , . .

, , . , - .

. , , .

5. , 1 , . .

=, f =, R ;

R ;

.

.

, . . . . . , , . . .

. , , . , .

, . .. , . .. , .. , , . ( ) .

, ( ), , ( , ), , .. , .

. . ( ) . , , . .

, , . .

, , , , . - , .

, , , .

, , - 5. , , . . , .

, , , .

, ( , ) , 1.

, , , , . 5.23.

. 5.23. . - - R R R R 2 = =1 ;

;

S == 2 ;

S = ;

S S (5.92) h11 h 2 f h h1 21 = 1 2f .. .. .. , .. h1 ;

f ;

R ;

S ;

;

(). () () .

, , R h R h ;

h = = h, (5.93) ;

h = h;

= R R R R 1+ 1+ R R h h ;

h = h + h , h = h0 h1, h0 .

, , , l V l = V t ;

l = V t ;

=, (5.94) l V t ;

v v ;

l l , .

, l r l = r l = r ;

=, (5.95) l r r r , () ;

() , .

5. h1 h (5.96) r = r + r = r ;

, 2 r ( ).

(5.94), (5.95), (5.96), h r+ r V = = (5.97) h V r r ( ) , V = V 1 + S ;

V = V ( + S ), 1 (5.98) v v .

V = R ;

V = R (5.99) (5.97) (5.98) (5.99), h r+ 1 1+ S R 2, = i= (5.100) h i 1+ S R r (5.100) , 1 + S + i ( + S ) h 1 r= (5.101) 1 + S i( + S ) , , , , (5.92), (5.93) (5.101) . (5.101) S S (5.92)-(5.93), f . .. , .. f (5.92), (5.93), (5.101) , . , (5.92), (5.93), (5.101) f, , .

, (5.101) i = V / V.

(5.101) , . , r .

. , , , , . , . .

, ( ) , . .

, . , . . , (5.92) . , 5. . , [57-61]. , .

.. , .. l=2 =2, *= % C!% =.% % %L C!%*=2*, C% % = C! !/"/.

2==.

copoe eopa

6.1. Hepep poa ca () ec co apeao, pao ee cocoe oopoo xapaepyec oeco apaepo. apaep poecca poa ao oeo e caa aoca epe poa aey oocy. o ocoeco oecoo oxoa coa aeaeco oe poecca epepo poa, , , , .

Cpyyp eea ooeo aeaeco oe epep oo caa xooo poa ec oe oaa eopa (. 1), coyea pacea epocox, eaecx eoepecx apaepo poecca poa ao e caa;

oe ee e eaooo aopa;

oe pacea eepayp ooc;

aeca oe caa, aa ce ypaee e acc e epopoa (pc. 6.1).

. 6.1. 6. 6.1.1. B copeex aeaecx oex epepo xooo poa p oca eaa ya e oo e cee eopa, o eepaype copoce eopa.

Oo ey peca e cy caeco aeco cocax:

T = T + T . (6.1) c Caeca cocaa T ( ) ac o cyapo c ooceo eopa eaa eepayp. Ee opee ye caapx ca opao coo ca a pacee co copoc...

..

.

eopa y=, x,4 x1/c.z, z, y 10 y, x z oca peea eyec p oao eepaype (20) coye oyy pae acoc a:

T 20 = T + a b, (6.2) c e T pee eyec eaa epe xooo eopae;

a, b oca ypoe.

poee ca oo cceoa , xooo poa a epepo cae. oo eeex poeyax oce ocee e caa opa opa, oope aee oepa exaec ca a pacee. oyea a acoc T20 ( ) oyepoc (0,08% C) c peea a pc. 6.2. 08 ao ee oxo oe a = 43 b = 0,61.

Be eepayp a pee eyec eaa acaecx ycox coaco a pao [75, 76] oo yec c oo eepaypoo oea nt:

T = nt T 20, (6.3) c c e ntx pec oe, ac o x cocaa eaa.

.. , .. . 6.2. 08 .

800 :

20, / 1 2 ;

2 , .. [74] 20 = + 34 0, 6.

C T c 20 40 60 B acoee pe eco ecoo acoce opeee aeco cocae [77-80]. , aoee o opaa e ocox aopo a .

p ope opy pacea ya ceyee. Bo-ep x, copoee eopa eaeao oyepoco ca.

cyeceo ac o copoc eopa. Ta, o a pao [74, 80].

copoee eopa p copoc = 1000 1/c a 100 oee poeo e peea eyec ca p acaecx cax ( = 104 1/).

Be copoc eopa yeo opyax aopo [77-82].

Hapep, A.B. Tpeo p. [79] peaa pacca pee eyec o ceye acoc:

.

T = T [ ( 1)], (6.4) 1 c e oe, oope oyepoco ca pa cooeceo 1,12 0,00202.

.

Bo-opx, a xapaep acoc T ( ) aeoe e oaae cee peapeo eopa. o a B. Poepca [77] pae.

y T ( ) aeao oyepoco ca pepo 2,2 paa ee, e eaeao. Ec eeoppoao ca pee 6. .

eyec p copoc eopa = 10001/c opacae o a 100%, ca, peape 68,1%, copoee eopa opacae a 20% o cpae c p acaecx ycox ca. Tao xapaep cee eopa a a ecy cocay copoe eopa ya, apep, opy B. Poepca [77], B. apca M. yepa [78], B. a K. Bee pa [80].

B-pex, cceoa A.. pyea .. Caoa [82] ycaoeo, o a aecy cocay copoe eopa eepaypa eoppyeoo eaa.

Baoece pex oeex e aopo p oca aeco cocae copoe eopa aoee oo pacpae opya ocx cceoaee [81]:

. T 0,.

0, T = exp(6,15) 6, 5, (6.11) 0 ( ) . e 0 ( ) = 5 10 11 60,842 ;

;

=, 11 0 0 h0 h ;

ocoa oaa (0,8625. 104, /);

eepaypa, oK.

poep aeaoc (6.11) cpa pacee ae copoe eopa c cepea a pao [77, 82].

oo pacca ae eepaypo-copocoo oea copoe eopa:

T =.

T c Peya paceo coocae c cepea a pao [82] pee a pc. 6.3. oe coaee pacex cepeax ae p eepaypax eopa 200. Ta, p eepaype 200 pe paec coa. Pacxoee peyao aaec p eepaype 20. Cpaee pacex ae copoe eopa c cepea a pao [74] p o eepaype oaao oee oe coaee.

.. , .. . 6.3. = CT c .

;

.., .. [82]. .. , .

...

y,, x.,, x.,, z z, y..

.

.0 ., .y,.x, x.z z.x y x z.

..

y lg y z ..

0 y, x, x, z, z, y y z x Peya pacea ae copoe eopa o opye (6.11) coocae c cepea a [77] (pc. 6.4) oa a, o opya (6.11) ocaoo oo yae e pea peoo ypoe ca a aecy cocay peea eyec. Pacxoee peyao, a pao, e peae 10%. Ko eceoe pacxoee peyao pacea ax cepe [76] p acaeco apye aaoe eepayp 0-200 ecoo oe ocae 13%.

. 6.4. copoe eopa : , . [77].

, % 6. poeeoe oae ooe yepa, o aecy cocay copoe eopa p xooo poae aoee oo oo ocae opya (6.11). eee ee c pae (6.2), (6.3) ooe acoc copoe eopa :

. T..

0, ( ) 0,1 (6.12) + a b + exp(6,1 ) T = nt T 5, 6, 0 ( ) 6.1.2. copoe eopa pacea copoe eopa o cee oaa eopa (6.12) c peapea cee eopa, copoc eopa eaa o cee. ppaee eepayp eaa i-o cee oaa eopa pacca o ceye acoc [67]:

h T = k m ( p + ) ln l n. (6.13) h k epaep oe eooea ey poaaeo ooco ao;

m = 1/( A c ) ;

A ae eo;

1/ ( ea eoeoc eaa;

aa;

p ;

epeee yeoe aee acoc o oo, ao o oaa eopa pacc aec eepaypa.

opeee oeca ea, aaeoo ooc aa, [83, 84] coyec paep oe oaoo eooea . Ta, A.B. Tpeo p. [84] opeeeo, o cpe ea paa 4,1 102 a/2.C. ao p paceax eepayp eaa oae e opa yoee ooac epaep oe eooea k. B.Poepc [77] ae, o pao aa epeaec ooa ea, eeoc a ce pao c pe. B cyae k eec peeax 1,0-0,8. [81] pa, o k = 0,9. . ye K. Koa [85] o cepea a eeoo caa xooo poa .. , .. oy, o k = 0,875. ocoy ae oea k, peoeyee pax coax, paac eaeo, acoe paoe p eo pa 0,9.

acoc pacea cee oa, copoc eepayp io cee oaa eopa peca e, yoo cooa x cpeo oe oaa eopa ( 1):

h0 h = ;

h h i = ln l n ;

h. t g tg i (6.14) i = 2V cos ;

hi hi Ti = Ti 1 + k m(pi 1 + )l n ln hi, i = 1,, N + 1.

.

Beee opyy (6.13) yeoo ae p ycoe pace eepayp, .. opeee pi i-o cee oaa eopa ee c copoe eopa i, oop co oepe e opee, e a eepayp eaa o cee. pe c oo epaooo poecca aoo cee oaa eopa.

Ho aop cyeceo yea pe cea. ooy p pacee eepayp eaa i-o cee oaa eopa opy (6.14) cooa ae pi1. Ka oaa poepoe pace, p ocaoo oo ce pae oaa eopa, apep, N = 50, aoe oyee po opeoc, ee 1%.

oe oaa eopa ( 1) oo cceoa eee copoe eopa o eo e. oepoa poa ooeo aeao ca 08 oo 1 aax aepo 200 . Copoc poa p pao 5 /c. pe ee copoc eopa, eepayp copoe eopa eaa o e oaa eopa p poae ooeo ca c oa a poxo 50 10% . 6.5.

6. . 6.5. 08 1 5 / 200 .

) 50% ) 10% Peya aaox cceoa, oex aeao ca (peapeoe oae 30%), oaa a pc. 6.6.

Coaco a aoee pae peyao pacea copoe eopa c yeo e yea eepayp copoc eopa aaec p poae eaeaoo eaa. Hapep, p.

poae c oae 10% (pc. 6.5,) copoe eopa o xoo cee oaa eopa, pacca c yeo T, a 52% oe peea eyec, paccaoo e yea eepaypo-copocoo aopa.

e xooy cee oaa eopa o pae yeaec o 18%.

C yeee oa apa cyeceo eec. Ta, p poae c oae 50% (pc. 6.5,) ae caoc e e T20, c aa c cepe oaa eopa. oyee peya oo oc e, o epo cyae ( = 10%) peoaaee e a oaae .. , .. . 6.6. 08 ( 30%) .

, . 6. copoc eopa, ye oopo po pocy e copoe eopa. p poae c oae 50% aeo opaca eepaypa eaa (c 38 o 160 ) caeca cocaa copoe eopa (c 34 o 60 /2), oope e copocoo aopa. Ho, aa c cepe oaa eopa, eepayp aop ye peoaae a copoc (pc. 6.5,a).

p poae aeao ca (pc. 6.6) ea oa a poxo ye e oaae co cyeceoo a copoe eopa.

Xo, a cyae poa ooeo ca, p = 10% aee T20 o o ce e oaa eopa (pc. 6.6,), peee oe c a T20 cpee cocae 10%. p poae c o oae (50%) ee T20, aa c oo pe oaa eopa c (pc. 6.6,a). Cpeee peee a Tc0 o oay eopa cocae c 1-2 %.


6. Ta opao, peya cyapoo eepayp, cee copoc eopa p poae a copoe eopa eaea o ypoeo ca pae. o ocoeco eoxoo ya p oepoa poecca epepo xooo poa, o pe oopoo eepaypa ooc, cee copoc eopa, a ae cee peapeoo ypoe eaa ec pox peeax.

oe aeco cocae peea eyec a apaep epepo xooo poa pacca yc ex epepoo eeoo caa 1200 (pc. 6.7). oaao, o ea yc poa P, paccaoo c yeo eepayp, cee copoc eopa a copoe eopa, epo e caa . 6.7. 2,2/0,25730 1200 , () () oe yc poa Pc, paccaoo e yea eepaypo-copocoo aopa. o peya oo oc e, o epo e poaaec eaea ea, copoe eopa oopoo cyeceo ac o copoc eopa. Be oa epo e 25-30%. p ax oax aaec cpaeo eooe yeee eepayp eaa oae eopa (~70 ) ooy e copocoo aopa poc co.

B ceyx ex caa ecop a o, o copoc poa yeaec, copoco aop ye e oaae cyeceoo a ey copoe eopa, peyae P ee Pc.

, o ocex ex caa poaaec aea ea, copoe eopa oopoo cao ac o copoc .. , .. eopa. Moepoae poa ooc c pa copoc oaao, o o e caa pe P (V), Pc (V) ca, ae aex P Pc oycoeo, ocoo, e eepayp poaaeo ooc a copoe eopa.

Ta opao, c oo oepoa poecca epepo xooo poa ycaoeo, o, ec e ya eepayp copoc eopa a copoe eopa eaa, o pacee ae yc pyx epocox apaepo poa ocex ee (aa co opo) yy ae. aee yc poa, apep, o e caa 1200 p copoc poa 20 /c oe oca 23%.

6.1.3. p oocoo xooo poae e a epocoe apaep poecca oaae oe pe f. ocaoo caa, o eee oea pe c 0,04 o 0,06 e () 1700 po yee yc poa c 12 o 21,8 .

yaeae cceoa eeo pe p poae, ox ecx aooepoce apaepo xooo poa a oe pe oe A..pye eo copya , apep, paoe [86]. Oao oea pe p poae oye oce a ocoa aopaopx cepeo, poeex ycox, oaxc o yco poa ooc a poex caax. Bcece oo peee x poocex poecco .

f eo opaoo epecea oea pe po oe epe apaepa poecca poa. oye e a opao ae oea pe eoopo cee pa ce opeoc peeo oe, .e. o po opaooo oea ooy e oy cooa aaa c pe oae eopa. ococo eoa opaoo epecea coco o, o o ooe cyeceo yy coaee pacex cepeax ae epocox apaepo poa. eo ae ooo pooe peee p oepoa poecca xooo poa .

6. oe pe p xooo poae yepoco ca epepo eeo ca 1700 (apecppoae apaep poecca poa yx ooc oo 0,5 aece pepa pee a. 6.1).

6. () 2,5 0,55 1015 08 1700* , , , % , / 20,0 4 326 2,79 11, 21,0 4 334 2,70 11, 25,5 326 223 4,35 12, 36,5 334 240 4,25 9, 24,5 223 146 5,76 17, 27,5 240 146 5,80 15, 26,0 146 80 7,80 14, 23,5 146 103 7,60 15, 23,0 80 20 10,1 13, 21,5 103 20 9,7 15, * 1, 2.

p ooa eoo opaoo epecea a cey ey oea pe , xoe peey aeaecy oe poecca poa: eoepec, eaec, apaep, xapaepy exaece coca poaaeoo eaa cocoe pyec ap oocaao. ece eaecoo pep e copoc poa V e. a apaep, xapaepy exaece coca poaaeoo eaa, p pee eyec epe e.

.. , .. acoc oea pe o pax pepe oo cooecoa ceecy px, ocaex aoo aa-pacpeee, oopo aece eaco epeeo cyae ooceoe oae e:

f = a0 (a1 + a2h0 / R + a3 T + a4V ) exp(a5 ). (6.15) e a0 a5 opeee eoo oeceo . pae (6.15) pooappoa oy ey opy:

l f = ln a0 + (a1 + a2 h0 / R + a3 T + a4V )ln + a5.

n ln l n ln oy: a0 = 0,185;

a1 = 0,393;

a2 = 99,8;

a3 = 0,00007;

a4 = 0,0193;

a5 = 3,55. aa oa, o aoee eca c oe pe aaec apaepa h0/R .

Koe apo oppe ey lnf pae 0,75, ey lnf oe co, h0/R pae 0,92. Koe oeceo oppe co ce apa epa, (6.15), pae 0,94. Cpe oa pacea f o opye (6.15) e peaa 21%.

Be epoxoaoc oepxoc paox ao a oe pe ya c oo epaepoo oea K. p poae ooc oax aax c epoxoaoc oepxoc 0,5-1,2 R o paec pa ee. opeee ae K p poae aceex po aax (epoxoaoc oepxoc oce ace 4-5 R) poe ceaoe cceoae, o pe oopoo appoa epoxoaoc ao 5 e caa 1700. B acoc, oy ooy a ca 08 poaa a oy 0,55 oax aax 5- e (R = 0,85 ), pyy aceex (R = 3,0 ). Ta a acoc oea pe o epoxoaoc oepxoc ao R a eo [86], o paee K peca e K = 1 + 0,25 (R 0,85).

epoxoaoc oepxoc x ao poecce x cyaa yeaec acoc o oeca poaoo eaa G:

Rab = 0,85 + 3,6e 0, 0026G.

R 0, a 5 (6.16) C (6.16) oe K cya poa ooc aceex aax pa:

6. (6.17) K = 1 + 0,9e 0, 0026G, b G , .

Be a oe pe a exooeco ca, peeo p poae, ya c oo oea Kc. p poae c yc epax ace Kc = 1,0. Kc = 1,4. oe a0 pae (6.15) a0 = 0,185 K / K.

Pacee ae oea pe pax ee caa xooo poa pecae a pc. 6.8.

. 6.8. 2,5/0,551015 1700, () () .

: 1- ;

2- ;

- 3- ;

4- ;

5- cae ae f aa epo e caa. , epy e caa ocyae paea, epoacea ooca, a oepxoc oopo eec aeoe oeco ape (ao, oco, eaecx ac);

poaa eec aceex, pyoepoxoax aax R = 4,5 . B peyae oe pe o e aca. B epo e oceye eeeo poeye ape c oepxoc ooc cac yce. Bo opy e ocyae ooca ooceo co, o epoxoao (R = 2,0-2,5 ) oepxoc. [87], p poae epoxoao ooc ax oax aax (R = 0,5-1,2 ) oe pe cea pae .. , .. ae ee, e cyae ao oepxoc ooc epoxoax a. ooy poaa o opo e poxo p cpaeo x eax oea pe.


e, peee a pc. 6.8, oaa, o papoc ae o ea pe yeaec o epo e ocee. o ye ao oceye e e apaepo poa o, eepayp ooc, peea eyec, oa p. Cooca peya pacea f c yeo eepaypo-copoc x yco eopa a poaaeoo eaa e yea oo , oo oe, o epo e caa oe pe oyaec ae a 20-25 %, ec e pa o ae aa e. pyx ee peya cyeceo e oa. Be eepayp poa a oe pe poec, o-oy, e coo epe eaa, coo a ce oec ee a oc pye coca ca.

, , . ( ) . 5 16 /. acoc oea pe o copoc poa , .

6.1.4. opeee eaa o opye (6.12) eoxoo a eepaypy ooc epe xoo ay e caa.

p paceax ee eepayp ooc eeex poeyax oco aopo coy ypaee eoepea oo oco ac c oocopoe yxcopoe oae ea:

T Vc h V c d = n (T T )dx, x d x (6.18) dx X e V copoc e ooc;

c yea eoeoc eaa ooc;

6. ye ec eaa ooc;

h oa ooc;

T eepaypa ooc;

x paccoe oo yaca ooc o peye e;

n oe, ya cxey oxae (p yxcopoe oae ea n = 2, p oocopoe n = 1);

oe eooa;

T eepaypa oxaae yc.

oce eppoa ypae (6.18) c yeo eco eepayp ooc a xoe e Tx oy ceyy opyy:

n x T = T + (T T ) exp Vc K, (6.19) V c e K1 opao oe, xapaepy o ooc, a oopy oaae oc eeeo poeye.

ce eepayp ooc a xoe ceyy e (Tx) eoxoo opyy (6.19) oca eco paccoe ey e.

epo e eepaypa Tx paa eepaype oaa. ce eepayp ooc p aoe ceye opyy (6.19) ae oca paccoe o ocee e o oa.

Koe eooa, oop xo opyy (6.19), coo opee a pae, a a o ac o cxe oa oeca oxaae oc, ee ae, ya ae .. [85]. o a pao [75] p pyeo oae ooaco cec a oocy oe eooa eeoo caa 1200 ec peeax 2500-3200 a/2..C. Aop pao [85] aaooo caa c ooac oxaee peaa pa = 3000 a/2..C.

o a pao [75] cyae oxae ooc yce oe eooa eec peeax 1730 2340 a/2..C.

p papaoe eoo oe caa aece aox ae oea eooa p, o p oxae ooc ey e ooaco cec = 3000 a/2.., yce = 2000 a/2..C, p oyo oxae 150 a/2...

opao oe K1 opye (6.19) opeoo caa oo opee ye cpae cepeax pacex ax.

O ye o oe oye p epe eepayp ooc aae oe eeeoo poeya. Oao ae epe e oy .. , .. ocyece c eoxoo cee ooc. ooy ece cocoo ce K1 ec cpaee paceo aeco ooc p ee aoe p eco eepaype oaa.

Peya paceo eepayp ooc ca 08 1200 pee a pc. 6.9-6.11 .

ee eepayp ooc oae eopa ao e opee o eoe, ocao 6.1.1. Oxaee ooc eeex poeyax pacca o opye (6.19). Pace o ceyx yco poa: eepaypa oxaae oc T 35;

eepaypa oaa 45;

oa oaa 2,0, ;

opoc poa 20 /c. ee ae ooc 120 /2. Cyapoe ooceoe oae = 89%.

p pe oa, (%):

co cee oa ocee e caa (pe A), c paoep pacpeeee oa o e caa (pe ) c oee oo cex oa ocee e caa (pe B):

Ke 1 2 3 4 Pe A 37,0 46,0 36,0 29,0 26, Pe 28,8 35,8 36,5 37,8 37, Pe B 20,0 34,5 39,0 43,8 44, p pacpeee oa o pey A eepaypa ooc oce eepo o ee caa e, e yx pyx cyax (. 6.9).

o ocoeco eoxoo ya p ope pea oa, ..

coa pyo oee ope ooc oaae aopoe e a ocococ ooc [88]. eee eepayp oaa epe cao xooo poa paec e caaec a eepaype ooc, aaaeo a apaa oa (pc. 6.10). Be copoc poa a pacpeeee eepayp ooc a pax yacax caa a pc. 6.11. Ceye oe, o oee copoc poa c 10 o 20 /c p pox pax ycox po yee eepayp ooc p oe a 40 .

6. . 6.9. :

, , (. );

, , , . 6.10. .

, . 6. .6.11. V . , / .. , .. 6.2. 6.2.1.

Hepep ca xooo poa ec coo epoexa eco cceo, ae e oopo axoc ocoo ao ec. oa oe cce, yaa ce epoe ee, ce c ey ecye apy, eca coa, a aa aecx poecco ao ccee pecae aee pyoc. ooy cceye peca e aeo epeeco ooe cce paceo cxe, oopa opaae aoee ae aece coca. B co oepe pacey cxey, cocoy peex acc, oeo ep ypyx eecox ce ypoa.

cea paoe e pecaea e ooaccoo paceo cxe c ypyo c (pc. 6.12), a o ceao paoax [89, 90].

. 6.12.

ee ao cce oo oca cey ypaee:

m + Ck x = P (t ) sign( x) F (t ), x (6.20) e m peea acca aooo ya;

Ck ecoc e;

x epeeee aooo ya;

P(t) yce poa;

F(t) ca pe oye ao o ca e.

Ec oopay pa a cyy x = x0 + x, 6. e x0 ypya eopa e p ycaoec poecce poa;

x ppaee eopa e epexoo poecce, o oy epeaoe ypaee oea e ppaex:

mx + Ck x = P (t ) sign(x) F (t ). (6.21) Aa acox xapaepc ax ee o ocox epepx cao, a ae peya cepeax cceoa, oex paoax [89-91] oaa, o yxaccoa pacea cxea ao e (pc. 6.12) ocaoo paecx ee ooc opaae ecee epexoe poecc. ee peex acc ooceo paoecoo coco ocaec cceo epeax ypae:

...

11 = M 2n( 1 2 ) C12 ( 1 2 ), 1 (6.22) ..

2 2 = M + C1 ( 1 2 ), 12 (6.23) e , ppae pyeo oea a aax oea ae;

1, 2 peee ay ae oe ep aooo ya op ae;

C12 peea ecoc aopooa;

1, 2 y oopoa acc 1 2;

n oe ayxa.

ee epopoa ocaoo oo ocae ceyee ypae e [89]:

.

U = LI + Ra I + Ce 2, (6.24) e Ra, L aoe copoee yoc opo e ae;

U apee opo oo ae;

I ca oa e op ae.

aaa eeex ae p poae a epepo cae cooa epea ypaee ..Mopoo:

dT dT k, k +1 Ek Qk + ( k+1 Vk ),.

V = (6.25) d t l k, k + dt .. , .. Tk, k+1 aee ooc ey k-o k+1-o e epepoo caa;

Ek oy ypyoc ooc k-o poeye;

Qk oepeoe ceee ooc;

lk, k+1 paccoe ey e;

Vk+1 copoc xoa ooc k+1-y e;

Vk copoc eaa k-o e.

Copoc xoa ooc k-o e V caoapo pee opeeec opyo copoc paox ao Vk opeee eaa b k oae eopa S k : ( ).

Vk0 = Vkk 1 + S k0 (6.26) p ax-o ooex yco eopa eaoo aope opya copoc aa oyae ppaee Vkk, a opeee eaa oae eopa eec a ey S k. Toa copoc ooc a xoe e ye paa:

(6.27) Vk = (Vbkk + V k ) [1 + ( S k0 + S k )].

) ] bk ppaee opyo copoc aa opeeec epe eo yoy copoc ooceo paoecoo coco:

.

Vbkk = R1k, (6.28) oopa co oepe axoc pee cce ypae (6.21)(6.25).

Bea oepee a oe pee epexooo poecca paccaec eppoa epeaoo ypae poa.

Copoc xoa ooc oa eopa ko e opee yco epapoc eaa:

Vk = Vk (1 k ), (6.29) k = (h0k h1k )/ h0k.

B pecaeo e ccea ypae (6.21)(6.29) ee e opaae ooc e c acoc, oope oaa, a opao pocxo aoece ypyx cce poa, e ooc. oo eoxoo papaoa aop pacea yc pyeo oea p ooe yco poa o caoapoo pea. ce poa P py oe Mp c oya oec, oope o ccey ycaoeoc coco. 6. . .

6.2.2. ocpoee aeaeco oe poa capx o ycoec e, o ocooe epeaoe ypaee oax ape xo copoee eopa, oopoe paaec coo eec o pee o e oaa eopa .

pacea oax ape cooa cpe aao (1.11) (1.12) epeaoo ypae poa. Aop pacea oax ape oae eopa p poae a pecae e o cxe, opaeo a pc. 6.13.

. 6.13. - p aa cxox ax paec co pae oaa eop a, oopoe opeeec opeoc apoca ooo pee ypae peee paoco aa. , p ce pae oaa a 50 ace opeoc e peae 1,0%. pye apaep, acoc, oa ooc, pee eyec, ao eopaooo ypoe .. opeec coca poaaeoo eaa, peo poa xapaepco poaoo oopyoa (o 1).

.. , .. ( 2) oae ape p ycaoec poae ooc o yaca a. ooee a aaec oopaa eo pa. epee pae a pcaaec oopaa 0, oopaa ae pa a opeeec o capoo a eax ee oaa eopa:

l L = n + 0,5, l e L a a eax ee oaa eopa;

ea ac ca;

l a y oaa;

l a a;

n co ee oaa eopa.

Opeeee ae epeex, oope xo pae ac opy (1.11) (1.12), oec oe 3. Caeca cocaa copoe eopa cec o pec acoc, :

), (( ),), 22 j j 2k2ki = TTijji +ij aija1bi 1bi T + ij i= e Tji cxo pee eyec i-o cee oaa eopa, ec j ooaae oep cee capoo a epe poao (pc. 6.14);

aij, bi j oca ypoe ca;

i j cyapoe oae ooc iy cee oaa eopa.

. 6.14.

6. cceoa exaecx coc eaa paoe capoo ca oaa, o oca ee peea eyec a apae ooc o pe cycoay y a:

a a (6.30) T = T 1 + 1 + 1 sin( x ), 2 e T = 1 / 2( T1 + T2 ) ycpee pee eyec cyex ooc;

x = (2 j / L 1) oopaa o e a;

a1 oe pee peea eyec eaa a a peeo T T eyec eaa ooc: a1 = .

T pae yco e : 0 = ;

n = , e , epeee aee yee ae.

p poxoe epe oa eopa o oceoaeo aae pae ooe: o epe oao eopa, o axoc aco oae eopa ooc aoe eo, ec a a oe oaa eopa. B acoc o oo oo ooe a oe ec pae yco.

B oe 5 peayec peee paoco aa. B apae o xoa xoy oaa eopa o ypae (1.11) paccac pooe, a a e opae oae ape oe ocaa. o opya (1.12) paccac pooe opae ape oe oepee. Toa epecee oyex px opeee ooee epaoo cee oae eopa. Pace opax oax ape yoec c yeo ypyo eopa aa (o 6 7). B oe 8 oec pace pyeo oea a aax p ao ooe capoo a oae eopa. B oe 9 pooc epeeee capoo a o oay eopa. ee a oepyec eee oopa eo pa.

pepa a pc. 6.15 pe copoe eopa opax ape oae eopa p poae capoo a.

Toy ooc a yace a ao cyae p ocoo.

.. , .. . 6.15. 2 .

.

: h0 = 3,0 ;

= 320 /2;

= 10 ;

h1 = 1,8 ;

= 430 /2;

R = 250 ;

f = 0,08;

= = eee pyeo oea oaao a pc. 6.16.

. 6.16. .

, . 6. paoo pepa acy ocaec oa, oa o axoc ey 3 4 ooe, . 6.15.

Papaoa aop pacea yc P oea Mp capo o a ooe poec e oo aece aa xapaepa apye e caa, o a, coy ypae e, oecey oey aecx apyo p poae capoo a. Kpoe oo, oec oooc pe aay opa ax peo poa, oope oece acaoe cee 6. aecx apyo ooce p poae capx c ooc. [92].

6.2.3. pee cce epeax ypae e exaeco cce (6.21) (6.25) cooa oeo-pao c eo.

Bpe oyaeo oec a oa eopa pa a m pax poeyo t. peoo, o a ao opee pee (ti, ti+1) apaep epexooo poecca ocac ee. o oyee pee eaeo opeoc, ec a t pa ocaoo a.

, peeo opeo t cooecoa 1/10 epoa cocex oea e c yeo ypyo c co copo eoppyeoo eaa pepo 1/50 epoa cocex oea poa. Pace oaa, o aeee yeee opea pee t a paa po ee peyao e oee, e a 2%. Ceoaeo, pa a pee oeceae ocaoy ooc pee cce ypae (6.21) (6.25).



Pages:     | 1 |   ...   | 3 | 4 || 6 | 7 |   ...   | 12 |
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .