, , ,

<<


 >>  ()
Pages:     | 1 |   ...   | 2 | 3 || 5 |

...

-- [ 4 ] --

, , ( 2.8.3 7 ) (h ( t ) ), z = 5 0 ( = 0,7 9 ), z 0 = 10 , 2 = 2 / Q i = 6,4 102 , z = , = 0,2 / Q i = 2,2 102 , z = 2 0 , = / Q i = 2 5 0 .

( 2.8.4 ) , 2 (2.8.4 1 ) h (t)- o o :

, = Z + Zj = - ] ( 2.8.4 9 ) 'z = 5 0 , z 0 = 10 , z = 5 0 , E z = 2 / Q = 1,8 7 1 0 3 , = 2 0 Q i = 8, 2 3 1 0 2 .

7 , (2.8.4 ) = 50 , ( 2.8.3 1 ), ( 2.8.3 7 ), (2.8.3 8 ), (2.8.4 1 ), (2.8.4 3 ).. , , z = 50 ( E z = 2 / ). .7, , = 50 , E z ~ 1 /t. E z - ( ~ 1 0 '3- 1 0 '2 ).

, - , ( G u r e v ic h,e t a l., 1 9 9 2 ). , , :

4 -22 In mV Z If mV m, V - , N m - , Z = 1 4,5. 2 = m V = 2,2 1 0 5 , z 7 5 , N m ( z = 7 5 ) = 5, 4 1 0 15 ' 3, E ZKp = 0, 0 6 / . 3,3 , , , , .. .

, - , ( S e n t m a n n e t a l., 1 9 9 5 ) E z , , ( 80 ) (~ 1 ). 20 200 ( M a r s h a ll e t a l., 1 9 9 6 ).

- , ( W i n c k l e r e t a l., 1 9 9 5 ).

50 , .7, , ( W in c k le r a l., 1995;

W in c k le r et a l., 1 9 9 6 ). , , , - , , . . , (G u r e v ic h e ta l., 1 9 9 2 ;

E a c k e ta l., 1996).

(ro t = 0 ).

, : E z ~ ', ( z ), x i ( z ) = ( 4 ( z ) ) " 1, : E z ~ 1/t.

, (ro t 0 ). .

, - .

, , .

, - . .

- .

7. E z (t,z = 5 0 ( 0,z = 5 0 k m ), E z (0,z = 5 0 ) = 2 /, k m )/ E z () , ( ) , ( ) = 5 0 z = 5 0 , 0 = 6 0 0 , = 0, 2 ' 1, z 0 = 1 0 E z/ E z ( 0 ) E z/ E z ( 0 ) E z/ E z ( 0 ) t () h (t) ( ) (a ) () ( ) 1 0 1 1 10 1,0 4 1,0 9 6 6,5 1,1 0,0 0 1 9 1,0 3 1,3 0,0 0.0 2 5 1,5 1,1 0 0,8 7 1,1 0,0 3 4 9,5 1,0 2 0.7 4 0,5 0,0 4 4 8,1 0,9 4 0,6 5 0,4 0,0 6 47 0,8 1 0,5 2 0,3 2.9. , .

, , , , , . , , ( B r o w n in g e t a l., 1 9 8 7 ;

H o ls e r, S a x o n, 1 9 5 2 ).

( H o ls e r, Saxon, 1952;

K a s e m ir,1 9 5 9 ). , , , . (Illin g w o r th, 1972;

M ann, 1970;

M ic h n o w s k i, 1 9 7 3 ) , (M a n n, 1970) , ( M ic h n o w s k i, 1973) , , (Illin g w o r th, 1972) .

(B r o w n in g et a l., 1 9 8 7 ;

H a g e r e t a l., 1 9 8 9 ), . , , :

( 2.9.1 ) ^- , ^- , , X , ( B r o w n in g e t a l., 1 9 8 7 ):

( 2.9.2 ) X = X 0 e ~ az (2.9.1 ) ( , 1 9 6 5 ), :

- -.

, , t = 0 (2.9.1 ).

, , - .

, , (2.9.2 ) , . , = 1, = 1 (s - , - ), ( , 1 9 6 5 ):

1 8 1 ro tE = ro tH = \j+ ja "-- * dt (2.9.3 ) dt d i v E = 4 Tip, d iv H = 0, = , j - , , j, j cm. , - .

:

-Y7 ------ 1 8 V = - V (p - - .( 2. 9. 4 ) = ro tA, dt (, , ), z , ( = 0 ), j cm = ( 0, 0, j cmz) = ( 0, 0, A z), r o tH, ( 2.9.4 ), :

1 at r d 2A An 1 dA z f d t ' -1 + Jc, dr r dr dz dt (2.9.5 ) 1 & 1 d 2A z d td z dt d 2A z _ 1 2 ( (2.9.6 ) drdz d rdt (2.9.6 ) 1 / d 2A z 4% ^ + ----- + - - = C \ z, t ) ( 2.9.7 ) dz dt (z,t ) = 0, , , 0.

j cmz t = 0. (2.9.5 ), (2.9.7 ) :

+Z | )= ( ( ^ 4 |z R = ~ jx 2 + =0= - = 0, = 0 ~ - U =0- - ( 2.9.8 ) - z -0 u dz dz - ( , ,1 9 7 4 ):

f(x,z,p)= j e ~ p d t j f ( r, z, t ) J 0 ( x r ) r d r, 0 0 ( 2.9.9 ) | +' oo / ( r z 0 = I ePtdp \ f { x z P ) J o ( x r ^ x d x cr_joo , ( A z :

' 12 4 ' dp 2 + 4 + + 2\ dz2 dz 2 4 J (/ + 4 ) " 2 V J 16-2 2 zJci 4~ d fc m + dz / 2, 4 2 + ( + 4 ) 2 4 d 2 \,= 2 ^ 2 |= V , dz + 4 + 4 ( 2.9.1 0 ) d 2A. 4 ;

' 4./ i + , = 72 1 Ô t/z2 /? + 41 dz ( 2.9.1 1 ) 4 [ \,= (/ + 4 ) - - .

( 2.9.1 0 ), ( 2.9.1 1 ) :

^ 2= = 4 = 0, 2= = = 0 - ( 2.9.1 2 ) OZ Az , , (2.9.9 ). ( 2.9.1 0 ), (2.9.1 1 ) ~ 2 :

-4^ (2.9.1 3 ) i L *L -S A, ( / ? + 4 ,) dz + 4 dz ( 2.9.1 4 ) (2.9.1 ), .

. (H a g e r et a l., 1 9 8 9 ;

V o lla n d, 1 9 8 4 ):

/ ( 2.9.1 5 ) V , ri], qi - v j , - , , S , .

, , :

0 (* *0 - )[e(z - 0(z = - z )- )] ( 2.9.1 6 ) jlm zp fw )- , ( )- ( , 1 9 6 5 ).

, , jcm :

( 2.9.1 7 ) z , :

)[5(Z - Z n ) - s ( z - Z p )] = J c n M X - 0 ~ z ( 2.9.1 8 ) az ^ = ^ [ b { z - z n ) - b ( z - z p )] dz (2.9.1 8 ) ( H o ls e r, S a x o n, 1952;

K a s e m ir, 1 9 5 9 ). S, z ( B r o w n i n g e t a l., 1 9 8 7 ).

(2.9.1 4 ) (2.9.1 2 ) ( 2.9.1 8 ) ( , 1 9 7 1 ). 1 :

'f/M = ,1 + 2^ 2 - 1 j - ^ - j y i d z ' + 2 \ - ^ ' \ *2,\, = *0 / V 1 fz F - + - + ^ - - , ----- J ( ) f ( z ) - -----1 8 ( z - z l ) + --------- [ a ^ I 0 J 0 ( x r ) r d r, V V p + AnX * M + 4 J / = 1,2.

A ( z ) = y ly 2 - y [ y 2, y t = dz (2.9.1 9 ) /, ( ) = = ( 4 ^ 4 4 1 + 4/1 + 1-4 1+ : _ _ X X - + C fj , 2 \ = 1 + F (a,J 3,y,w ) - .

1 , _ _ _ zr / ( z ' ) ( = + c 2j 2 - j/, I = f ^ - d z y 2 + 2 I = ~ , A(Z) A \Z ) \ = ( - ^ ' F ( & ~ ^ \ ~ 1F {& ~ + ! + + 1, 2 - , -0~ \ 2 = (~ = - * (2.9.2 0 ) 4 4 4/ I + I+ 1 + 4/1 + _ = = 4 4/I + I+ = + 1 4x, -1 + /1 +, \ 2 \ 2 ~ .

(2.9.1 9 ), 1. \\ 1 ' | | t. , Q. , , .

X ( 2.9.2 ) z = z*, 4 I V * = 1 (2.9.1 9 ) , 1. (1 9 ) ' iV ---- e az 1 ( . ,1 9 7 3 ), ) ;

(2.9.1 2 ), , - 1, 1, z h ( p ) - ln p x 0, t 2 + - / % sh x z s h x ( h ( p ) - z A ^ ) J ' {p)T dpl J(xr)dx zz" 2 tT r - / + cr s h x z, s h x ( h ( p ) - z ) c zz" " ( ) = ~ : | ^ ^ e 4 ~ tir)]J a(xr)xik, zk(p).

f ^ i( p ) 2m a*L q sh x h y P J P ( 2.9.2 1 ) f= 0 2, ( 2.9.2 1 ) / ( ) . / 1 /] ( ) =, 0 , t p {l + p r) / 1() = / 0 1 - ( 2.9.1 8 ):

'/.

r s h x z s h x ( h ( r ) - z, \.

- 2 /,^ 1 - ' j f f j ------ ^ ------ J ( x r ) d x, zz '/ ^ % sh x z,,s /z x (/z (f)- z ) =2/(1" ' ( ) ' zz" ( 2.9.2 2 ) = ^ ~ [ l - \if [ S^ Z' -e~ lX a^ T ^J0(xr)xdx, a }{ J lshxh(f) % V ;

z h ( t ) = I n .

a t | =0 = - 4 % Q b ( r - F j) / = 0 pi :

z z i (2 -9 '2 3 ) (2.9.2 3 ), z = 0. :

( 2.9.2 4 ) J\z I z = sh x h {t) r (t) , ( 2.9.2 4 ), h E lz |z=0 :

\ r 4n Q. 7 t ( h ( t ) - z x) nr sin J\z Z= *(/) h2 (t) h (t) ( 2.9.2 5 ) nr \/ h (t) 4k O. n z, a -sm h2 (t) h (t) 2r K 0 (x ) - ( , , 1971) h (t) 2Q zx ( 2 / i ( ) - z, ) ( r 2 + z,2 ) z=0 (2.9.2 6 ) (r2 + z ^ 2 W)-zA I I2+ h (t) : h (t) , , , .

h ( t) :

4 tiV a W = 1 ( 2.9.2 7 ) (2.9.2 7 ) h (t), :

h {t) = - l n - (2.9.2 8 ) h (t). = 0, 2 _1, 0 = 10 t = 10 h ( t) = 2 0, 5 , t = h (;

t) = 2 8, 5 ;

0 = 4 t = 2 h ( t) = 2 1 , .. h (;

t) .

, , Q, t = 0 = - 4 k Q 8 \), ( (/ 0 ), z = 0 = 0:

X l.shx(h(f)-z,).

V.

S h x h ( i) (2.9.2 9 ) ^ s h x ih it)- z,) -2 \ 7 (7 )~ () (t) h (2.9.2 5 ), (2.9.2 9 ) .

,1 V a h x (h (T )- z A,es.

. -2I0 at (xr)xA.

.

0 0 w ( 2.9.3 0 ) h (t) e h{T] ^(Ov h 2(t) r : 0 t t t.

( 2.9.3 0 ) , / 0 , t . ( 2.9.2 9 ) .

h (t), ( 2.9.2 6 ).

1 ( 2.9.2 0 ) | (=0 = 0 z z \ z z :

H^-l) _ ~e-aa'zF ( a, f 3, y - p T 0 ) x Jj F [a,p,y ~ p r Q) X F ( !, , yx, - p t ae~ - e aa'zF [ , , /, - ) F ( a,, , yx, - 0)] x az) J 0 (xr^xdx zzv 4x 1+,, a 4x r.- p r.,- ) _ j_ - r 2 iM T ;

f(s, \e~aa'z' F { a, f i, y - p r 0)x x F (a,p,y,-p T a) 2 ?' *L a x F ( a,, , p',, - p r 0e ' ) - '' F { a, p, y - 0~' ) F ( a x, , f t, p t a)] x / ( xr)xdx z z.

4z '1+ ( 2.9.3 1 ) 4x 1+, 1 4x a - x x ax a = a j+ , p = a x ----, / = l+ M + V or a a 4x 1 - J1 + a l - J1+ ^ T j = != !+ , = !- , 7= a or \ a 0 ( 2. 9. 3 1 ) , - ( H o ls e r,S a x o n,1 9 5 2 ). ( 2.9.3 1 ) L z 0. /, ( ) = ({ + :

, 4 ~ Z 1 1 -- | +2 Oj J 2I0Tx^J0(xr)e ^ ' x d x --- ;

E z (,t } = a e ptd p x _.

2ni n f \ { c c, / 3,y, ~ ^ z) f 1 1 1 I^ 1 1 F ( a, ] 3, y - p T 0) + p+ p+ ' l T T (2.9.3 2 ) az[ 1 ( 2.9.3 2 ) _ t W z, +r -z, × E A ),t) = - I r,e 1 er 0 e 4 e T cT* ( V y az.

1+ ( r + z l) a (r2+ zf) ( 2.9.3 3 ) z i 1 E z (0,/ ) :

' - ^ + 0! + ( 2.9.3 4 ) ( 2.9.3 4 ) , a z \ 1 ( 2.9.3 4 ) 2/ 2 1. ( , (3, , - 0) F ( , 1 9 7 1 ):

F (l,l,2,- p x 0) = ( 2.9.3 5 ) * 0 ( 2.9.3 4 ) (2.9.3 5 ) 7 ( 0,t ) :

( 2.9.3 6 ) ( 2.9.3 3 ) ( 2.9.3 6 ) , 0

Ti 0. \ / 1 ), F ( , (3, , ) / 1 ( , 1 9 7 1 ):

E z (,? ):

(l(zi)fTo),, ( 2.9.3 8 ) / ( ) - .

z zi a z /2 1 :

( 2.9.3 9 ) t E z (z,t ) 0, (z ), ( z i). , , , . : ^ 0 / 0, 0 - . , 0, . t = 0 , - - Q, ( 2.9.2 5 ) , z = , , ( Illin g w o r t h, 1 9 7 2 ).

/ 0, ( 2.9.2 9 ) ( 2.9.3 0 ), 10 ~ 10 t ~ 10 0 - 1 0 0 , . - / 0, . t 0 , , 0, (z ) ( z i ).

2.1 0. ( , , z ) ;

1 2 2 \ 2 . ( 2.1 0.2 ) 0 ( r, p,z ) = R (r)Q ( p )Z (z ) :

d 2Z Z= - dz ^ - Q + v 2Q = d tp )r = (2.0.3 ) f A + yL dr r dr r :

Z ( z ) = e kz ( 2.1 0.4 ) M = r,v r , . v z . .

x = k r. :

(2.1 0.5 ) ^ + - + ( l - ^ T )R = dx dx , - V. :

R (x ) = ' ^ ] ] ( 2.1 0.6 ) j= , = --- - a J j= 0, l,.2..,....( 2.10.7).

cc= iv, a 47 0 +a) xJ .

:

a2 = ) + 1) (2.1 0.8 ) 2J 2 2 ' ! 0 ' + + 1) 0 = [ 2 ( + 1)]-1. :

(*)=( (-) ./! + ^ + 1 V ) ---- ^ -----( - ) 21' (2.1 0.9 ) J ( ) = ( - ;

! - + 1 ' 2;

V ) v -v. v , J v ( ) J-v ( ) :

(2.1 0.1 0 ) J ? ( x ) = C 1J v ( x ) + C 2J _ v ( x ) v , .. v = m, :

( 2.1 0.1 1 ) J m ( x ) = ( - l ) mJ m ( x ) v , Jv ( ). v Jv ( ) J_v ( ) , Jv ( ) Y v ( ), Y v ( ) - ( ), :

= (2 0 1 2 ) s in v n v. Yv ( x ) J v( ). , , v Yv ( x ) J v ( :).

J v ( ) Yv ( x ) :

= + , (2.10.13) H ? ( x ) = J (x )- i Y A x ) J v ( ) Yv ( x ), .

{ J V, Y V, H ( l ), (2) v :

,_,( ) + , ( 1 ) = ) (2.10.14) X Q K_ 1( x ) - Q v+1( x ) = 2 ^ ^ ( 2.1 0.1 5 ) : Q v ( ) - v.

, ( 2.1 0.9 ).

( 1 ) , :

v .

(2.1 0.1 8 ) . (2.1 0.1 6 ) ( 2.1 0.1 7 ), , , v.

(2.1 0.1 8 ) , .

J v (x ) :

J v( x J = 0. = 1,2,3, ( 2.1 0.1 9 ) n - J v( ). v:

v = 0 0 = 2, 4 0 5, 5, 5 2 0, 8, 6 5 4.

v = l x i n= 3, 8 3 2, 7, 0 1 6, 1 0, 1 7 v = 2 x 2n= 5, 1 3 6, 8, 4 1 7, 1 1, 5 2 0..........................

( ) . 1 ) ~ 71 + { 2 , ( 2.1 0.3 ) - 2, R ( ) :

! +1 ^. - ( * +4 ) = 0 (2.10.20) dr dr k r = x ^ +1 ^ - (1 +^ ) =0 ( 2.1 0.2 1 ) dx dx . . / ) K v(x ), :

( 2.1 0.2 2 ) I v ( x ) = r vJ v ( i x ) ( 2.1 0.2 3 ) ( ) = ^ 1 ? ( 1 ) . ( v 0 ):

/ ( * ) - ---------( 2. 1 0. 2 4 ) 1 + 1) K v ( x ) = - ( 1 | + 0, 5 7 7 2...... ) V = K v ( x ) - ( ( 2.1 0.2 5 ) 2 1, v / v( * ) - - J = e '[ l + 0 ( !) ] /2 0 (\)] )^ ~1{ + (2 0 '2 6 ) 2. 11. .

:

( - 1 ) + [ ( + /3 + 1 ) - ] ' + (5 = 0 ( 2.1 1.1 ) 0 1 :

F ( a,j3,y,x ) = 1+ X + !)- (/ ? + * ~ 1 ) ^ a (^ V - ( a + k - k=i k \y ( y + l)....(y + k - l ) c nk o ck - 1+ 2^ x TTk *=i ( 2.1 1.2 ) . || 1. :

x F ( l, l, 2, - x ) = 1(1 + ) F ( - n, f 3, f i, - x ) = (1 + ) F (- n,\- n, ) = ( 2.1 1.3 ) k = (1 9 7 1 ).

(2.1 1.2 ) (2.1 1.4 ) F ' ( a, f i, y, x ) = F ( a + l,/3 + l, y + l, x ) - , (2.1 1.1 ) :

( ) = C }F ( a, , ) + C 2x l~r F ( a - + 1, J 3 - + 1, 2 - , ) (2.1 1.5 ) , - , ( , 1972) .

.., .., .. . .:

, 1977, 3 1 9 .

. . . .:

. 1 9 7 4,4 2 0 . . . .: , 1 9 6 9, . 6 8 - 1 0 5.

H o p p e l W.A., F r ic k G. M. Io n - a e r o s o l a t t a c h m e n t c o e f f ic ie n t s a n d th e s te a d y s ta te c h a r g e d is t r ib u t i o n o n a e r o s o ls i n a b ip o la r e n v ir o n m e n t // A e r o s o l S c i. a n d T e c h., 1 9 8 6, V.5, N O 1,P. 1-21.

. ( , ). .: , 1 9 9 1, 5 0 6 .

.. . .:

, 1 9 7 4, 2 5 6 .

.., . - .

.: , 1 9 7 4,3 8 4 .

.. . . . , 28-31 . // .., .., .., .., .., .. . III . .: , 1 9 8 8, .4 -50.

Is r a e l . A tm o s p h e r ic e le c tr ic ity./ / Ie r y s a le m, 1 9 7 3,V. 2, 7 9 6 P.

I s r a e ls o n S., K n u d s e n E. E ffe c t o f r a d io a c tiv e fa llo u t f r o m n u c le a r p o w e r p la n t a c c id e n t o n e le c tr ic a l p a r a m e te r s // J.

G e o p h y s. R e s., 1 9 8 6, V. 9 1, N O D 11, p. 1 1 9 0 9 - 1 1 9 1 0.

. ., .. . , 1987, 7, . 5 9 - C h a lm e r s J.A. T h e th e o r y o f th e e le c tr o d e e ffe c t I I I // J.

A t m. T e r r.P h y s., 1966, V.2 8,P. 1029-1033.

H o p p e l W. A. T h e o r y o f th e e le c tr o d e e f f e c t // J. A t m.

T e rr. P h y s., 1 9 6 7, V. 2 9, N 0 H o p p e l W. A., G a th a m S.G. D e t e r m in a t io n o f th e e d d y d iffu s iv e c o e f f ic ie n ts fro m a t m o s p h e r ic e le c tr ic a l m e a su re m e n ts. // J. G e o p h y s. R e s., 19 7 1, Y.7 6, N O 6, P.1 4 6 7 - 1 4 7 7.

I o r d a n o v D. O n th e s t a t io n a r y e le c tr ic f i e l d i n th e s u r fa c e a ir la y e r./ / P u r e a n d A p p l G e o p h y s., 1 9 7 0, V. 7 9, N O 1 p.

85-91.

L a th a m D. G., P o o r H.W. A t im e - d e p e n d e n t m o d e l o f th e e le c tr o d e e ffe c t // J.G e o p h y s. R e s., 1 9 7 2, V.7 7, N O 15, P.2 6 6 9 - 2 6 7 6.

T u o m i T.J. T h e a t m o s p h e r ic e le c tr o d e e ffe c t o v e r s n o w.

// J. A t m. a n d T e rr. P h y s., 19 8 2, V. 4 4, P. 737- 7 4 5.

. . . , 1980, . 4 9 1, . 136-140.

.., ... . , 1 9 6 2, . 4, 593- 6 4 2.

. ., . . . . 2 . : , 19 84, .39-41.

X. .. . . . , 1 9 7 7, . 4 4 3, .4 8 - 5 1.

.., .., .. . .


, , 1 9 7 3, .9, 4, . 386-398.

.. . .: , 1 9 8 7, 1 5 9 .

H o p p e l W.A. Io n - a e r o s o l a tta c h m e n t c o e ffic ie n ts and d if f u s io n a l c h a r g in g o f a e r o s o ls E le c t r ic a l P r o c e s s in A tm o s p h e r e. V e r la g, D a r m s ta d t, 1 9 7 7, p. 6 0 - 6 9.

.., . . . .: , 1 9 8 2,2 0 7 .

.. .

, 1 9 8 4, . 4 7 4, . 67- 7 5.

.., ..

. . . . 1 9 8 6, 1, . 5 4 - 6 .. . - . 1959, . II, 12, .57-63.

.., .., . . . . . . 1 2 2 .

.., .. . , 1989, . 77, .

15-21.

W ille t J.C. An a n a ly s is o f th e e le c tr o d e e ffe c t in th e l i m it o f s tr o n g t u r b u le n t m i x in g // J. G e o p h y s. R e s., 1 9 7 8, V.

83, P. 402- 4 0 8.

. . .: , 1 9 7 1, 57 6 .

. . .: , 1 9 7 6, 4 5 6 ., .. ..: , 1 9 6 7, 2 6 0 .. . .: . 1 9 7 0. 2 9 0 .

.., .. . , 1 9 5 4, 2 4 ( 1 5 1 ),.1 6 3 - 1 8 7.

.. . , 19 86, . 4 9 8, . 106-118.

.., .. ( ) . . - , 2003, ( 1 2 1 ),.4 3 - 4 6.

.. . - . . . .8,1 9 8 1.

... . - . - , 1996.

.. . , 1 9 8 1, 3,.4 - 1 .. . , 1 9 9 2,3 1 1 .. ­ . .: , 1 9 8 7, 3 1 6 .

M a k in o ., O g a w a T.Q u a n t ita t iv e E s t im a t io n o f G l o b a l C ir c u it. J. G e o p h y s. R e s. 1 9 8 5,v.9 0, N O D 4, p. 5 9 6 1 - 5 9 6 M a k in o ., O g a w a T. R e s p o n s e s o f a tm o s p h e r ic e le c t r i c f i e l d a n d a ir- e a r t h c u r r e n t t o v a r i a t i o n o f c o n d u c t i v i t y p r o file s. J. A t m o s.T e r r. P h y s., 1 9 8 4, v. 4 6, N O 5, p.4 3 1 - 4 3 O gaw a T. F a ir - w e a th e r e le c tr ic ity. J. G eophys.

R e s., 1 9 8 5, v.9 0, N O D 4, p.5 9 5 1 - 5 9 6 0.

R o b le R.G. On m o d e lin g c o m p o n e n t p ro ce sses in th e E a rth s g lo b a l e le c tr ic / c ir c u it. J. A tm o s. T e rr. P h y s., 1991, v.5 3, N O 9, p. 831- 8 4 H ays P.B., R o b le R.G.Q u a s i- s ta tic m odel o f g lo b a l a tm o s p h e r ic e le c tr ic ity I T he L o w e r a tm o s p h e re. J. G eophys.

R e s., 1 9 7 9, v.8 4, N O A 7, p.3 2 9 1 - 3 3 0 5.

S a r k o ta B. K., V a r s h n e y a P. O n th e g lo b a l a tm o s p h e r ic e le c t r ic a l c ir c u it. J.A t m o s. T e rr. P h y s., 1 9 9 0, v.5 2, N 0 1, p. 1- B o e c k W.I. M e te o r o lo g ic a l c o n s e q u e n c e s o f a tm o s p h e r ic k r y p to n - 8 5. S c ie n c e, 1 9 7 6, N 0 4 2 4 9, p. 195- 1 9 8.

.. . . 2 0 0 - . . II .

J L : , 1 9 8 4, .7 7 - 9 1.

. . III . .: , 1 9 8 8, .2 7 2 - 2 8 5.

.., . ., .. . VI .

. , 2 0 0 7 .2 6 7 - 2 6 8.

.., .. - 85 . , , 1988, 139 .

.. . . .

, 1 9 8 4, .2 0, 4, . 341-348.

.., .. .

.1, .: . 1 9 6 5.

. . . .:

, 1965, 70 2.

H.V o lla n d. G lo b a l, Q u a s i- S ta tic E le c tr ic F ie ld s in th e E a r t h s E n v ir o n m e n t. E le c tr ic a l P ro c e s s e s in A tm o s p h e r e s. H.

D o le z a le k,R. R e it e r ( E d ito r s ). P r o c e e d in g o f th e F i f t h In te r n a t io n a l C o n f e r e n c e o n A t m o s p h e r ic E le c t r ic it y h e ld a t G a r m is c h P a r t e n k ir c h e n ( G e r m a n y ), 2 - 7 S e p t e m b e r 1 9 7 4, p.5 0 9 5 2 8, V e r la g, D a r m s ta d t, 1 9 7 7.

G u r e v ic h A.V., K r y lo v A. L., T s e d ilin a E.E. E le c tr ic f ie ld s i n th e E a r t h s m a g n e t o s p h e r e a n d io n o s p h e r e. S p a c e S c i.

R e v. V. 1 9, N 0 1. P.5 9 - 1 6 0.1 9 7 6.

.. , O.A. . , . ,2 0 0 8, .4 8, 6, .7 5 9 - 7 6 9.

- . .

.: , 19 65.

.., .. ..: , 1 9 6 6.

F r a n k - K a m e n e ts k y A. V., T r o s h ic h e v . A., P a p it a s h v i l i V. O., B u m s G. B. V a r i a t i o n s o f a t m o s p h e r ic e le c tr ic f i e l d i n th e near p o le r e g io n r e la te d to in t e r p la n e t a r y m a g n e t ic fie ld.

J. G e o p h y s. R e s. V. 1 0 6, N O A l, P.1 7 9 - 1 9 0, 2 0 0 1.

B.H. 2 0 0 6. , . ( ) .7 ( 5 5 5 ), . 5 1-67.


.., .., .., .., ..2 0 0 3. - .- , , 1 2, .7 1 - 7 7.

.., .., .., .. 2 0 0 5. . - , , 8, .33-39.

.. , // ( ), 2 0 0 2, . (5 5 2 ). .33-43.

.. // , 2 0 0 5, .4 5, 2. .2 6 8 - 2 7 8.

.., .. .

0. 1 9 6 0. . 5. .3 7 - 4 2.

.. . 0. 1 9 6 4. . 1 5 7. .2 0 24.

.. . . : , ., 1 9 6 9, 6 7 2 .

Illin g w o r th A.J. E le c tr ic a l f ie ld r e c o v e r y a fte r lig h t n in g as th e r e s p o n s e o f t h e c o n d u c t i n g a t m o s p h e r e to f i e l d c h a n g e // Q u a r t.J.R o y. M e te o r. S o c., 1 9 7 2, v.9 8,- N o 4 1 7. P. 6 0 4 - 6 1 6.

. . . , 1983- .., .. , , . . . 1971.

.., .. . // . .3 3 7.

4. .4 6 7 - 4 6 9. 1 9 9 4.

.., .. // . .4 0. 2. .7 1 - 7 7. 2 0 0 0.

.., .. . .: . 19 74.

.. // . 3. . 5-17.

1981.

.. . . , .8. . . 1-56. 1 9 8 1.

.., .. - . // , .5 1 4.

.60-74. 1988.

.. - . // .

.4 2. 1. . 1 2 1 - 1 2 9. 2 0 0 2.

.. - . // . I I . JL : . .1 7 - 1 9. 1 9 8 4.

B la k e s le e R.J., C h r is t ia n H.J., V onnegut . E le c tr ic a l M e a s u r e m e n ts o v e r T h u n d e r s to r m s. // J.G e o p h y s.R e s. V.9 4. N o D l l. P.1 3 1 3 5 - 1 3 1 4 0. 1 9 8 9.

D r is c o ll K.T., B la k e s le e R.J., B a g in s k i M.E. A M o d e l in g S tu d y o f th e T im e - A v e r a g e d E le c t r ic C u r r e n ts in th e V ic i n i t y o f Is o la te d T h u n d e r s to r m s // J.G e o p h y s.R e s. V.9 7. N o D l l.

P.1 1 5 3 5 - 1 1 5 5 1. 1 9 9 2.

H i l l R. D. S p h e r ic a l c a p a c it o r h y p o th e s is o f th e E a r t h s e l e c t r i c f i e l d / / P u r e a n d A p p l i e d G e o p h y s. V. 8 4. N o 1. P.6 7 - 7 5.

1971.

H o l z e r R. E., S a x o n D. S. D i s t r ib u t io n o f e le c tr ic a l c o n d u c tio n c u rre n t in th e v ic in it y of th u n d e rs to rm s // J.G e o p h y s. R e s. V. 5 7. N o 2. P.2 0 7 - 2 1 6. 1 9 5 2.

L a t h a m J., D y e J.E. C a lc u la t io n s o n th e E le c t r ic D e v e l o p m e n t o f a S m a ll T h u n d e rs to r m // J.G e o p h y s.R e s. V.9 4. N o D l l. P.1 3 1 4 1 - 1 3 1 4 4. 1 9 8 9.

M i i h l e i s e n R. T h e G l o b a l C i r c u i t a n d it s P a r a m e t e r s - in :

E le c tr ic a l P ro cesses in A tm o s p h e re, S te in k o p ff, D a rm s ta d e, W e s t G e r m a n y. P.4 6 7 - 4 8 0. 1 9 7 7.

R o b le R.G., H a y s P.B. Q u a s i- S ta tic M o d e l o f G lo b a l A tm o s p h e r ic E le c t r ic ity. II E le c tr ic a l C o u p lin g B e tw e e n th e U pper and Low er A tm o s p h e re // J. G e o p h y s. R e s. V.8 4. N o A 1 2. P.7 2 4 7 - 7 2 5 6. 1 9 7 9.

R u t le d g e S.A., L u C., M a c G o r m a n D. P o s it iv e C lo u d to - G r o u n d L ig h tn in g in M esoscal le C o n v e c t iv e S y s te m // J.A t m o s. S c ie n c e. V. 4 7. N o 1 7. P.2 0 8 5 - 2 1 0 0. 1 9 9 0.

W i l s o n C. T. R. I n v e s t i g a t io n s o n l i g h t n i n g d is c h a r g e s a n d o n e le c t r ic f i e l d o f t h u n d e r s t o r m s / / P h i l. T r a n s. R o y. S o c., L o n d o n, S e r A. V.2 2 1. N o l. P. 7 3 - 1 1 5. 1 9 2 5.

F ra n z R.C., R J. N e m z e k, a n d J.R.W in c k le r. T e le v is io n im a g e o f la r g e e le c t t r ic a l d is c h a r g e s a b o v e t h u n d e r s t o r m s y s te m // S c ie n c e. 1 9 9 0. V.2 4 9. N o 4 9 6 4. P.4 8.

W i n c k l e r J.R. F u r t h e r o b s r e v a t io n s o f c lo u d - io n o s p h e r e e le c tr ic a l d is c h a r g e a b o v e t h u n d e r s t o r m / / J.G e o p h y s.R e s. 1 9 9 5.

V.1 0 0. N o D 7. P.1 4 3 3 5.

W in c k le r J.R., W.A.L y o n s, T.E.N e ls o n, R J.N e m z e k.

N e w - h ig h - r e s o lu tio n g ro u n d - b ase d s tu d ie s of s p r it e s // J.G e o p h y s.R e s. 1 9 9 6. V.1 0 1. N o D 3. P.6 9 9 7.

V aughan O.H., J r.R.B la k e s le e, W.L.B o e c k, B.V o n n e g u t, M.B r o o k, and J.M c.K u b e Jr. A c lo u d - t o - s p a c e lig h t m i n g as r e c o r d e d b y th e s p a c e s h u ttle p a y lo a d b y T V c a m e ra s / / M o n. W e a t h e r. R e v. 1 9 9 2, V. 1 2 0. N o 7. P.1 4 5 9.

S e n tm a n n D.D., E.M.W e s c o tt, D.L.O s b o m e, D.L.H a m p t o n a n d M.J.H e a v n e r. P r e l i m i n a r y r e s u lts f r o m th e S p r it e s 9 4 a ir c r a f t c a m p a ig n : I.R e d s p r it e s / / G e o p h y s. R e s. L e t t. 1 9 9 5, V. 2 2. N o 1 0. P.1 2 0 5.

W e s c o tt E.M., D.D.S e n t m a n n, D.O s b o m e, D.H a m p t o n a n d M. H e a v n e r. P r e l i m i n a r y r e s u l t s f r o m t h e s p r it e s 9 4 a i r c r a f t c a m p a ig n : 2.B lu e je t s // G e o p h y s.R e s.L e t t. 1 9 9 5, V.2 2. N o 10.

P. 1209.

P a s k o V.D., U.S. U n a n a n d T.F.B e ll. B lu e je ts p r o d u c e d by q u a s i- e le c t r o s t a t ic p r e - d is c h a r g e t h u n d e r c lo u d s f ie ld s // G e o p h y s. R e s. L e t t. 1 9 9 6. V. 2 3. N o 3. P.3 0 1.

Pasko V.D., U.S.U n a n, Y.N.T a r a n e n k o, and T.F.B e ll.

H e a t in g, io n iz a t io n, a n d u p w a r d d is c h a r g e s i n th e m e s o s p h e r e due to in t e n s e q u a s is t a t ic t h u n d e r c lo u d f ie ld s // G eophys.

R e s.L e t t. 1 9 9 5. V. 2 2. N o 4. P.3 6 5.

G u r e v ic h A.V., M i lik h G.M., R a u s e ll- D u p r e. R u n a w a y e le c tr o n m e c h a n i s m o f a ir b r e a k d o w n a n d p r e c o n d it io n in g d u r in g a t t h u n d e r s t o r m // P h y s.L e t t.A. 1 9 9 2. V.1 6 5. N o 5-6. P.4 6 3.

T ara n e n k o Y.N., U.S.U n a n, T.F.B e ll. In te r a c tio n w it h lo w e r io n o s p h e r e of e le c tr o m a g n e tic p u ls e s fro m lig h t n in g :

h e a t in g, a tt a c h m e n t a n d io n iz a t io n // G e o p h y s. R e s. L e tt. 1 9 9 3.

V. 2 0, N o 1 5. P.1 5 3 9.

T aran e n ko Y.N., U.S.U n a n, T.F.B e ll. T he in t e r a c t io n w i t h lo w e r io n o s p h e r e o f e le c tr o m a g n e tic p u ls e f r o m lig h t n in g :

e x c it a t io n o f o p t ic a l e m is s io n // G e o p h y s. R e s.L e t t. 1 9 9 3. V.2 0, N o 2 3, P.2 6 7 5.

M a r s h a ll T.S., M.S t o lz e n b u r g, W.D.R u s t. E le c t r ic f ie ld m e a s u re m e n ts above m e s o s c a le c o n v e c tiv e s y s tm s // J.G e o p h y s. R e s. 1 9 9 6, V. 1 0 1, N o D 3, P.6 9 7 9.

., . . , . . : . 1 9 7 3. .1. 2 9 4 .

.., ~ . , .. . . .:

. 1989. 2 6 3 .

E a c k .., W.A.B e a s le y, W.D.R u s t, T.C.M a r s h a ll, a n d M.S t o lz e n b u r. X - r a y p u ls e s o b se rv e d a b o v e a m e s o s c a le c o n v e c tiv e s y s te m // G eophys. R e s.L e t t. 1996. V.2 3. No 21.

P.2 9 1 5.

U m a n M. A. T h e L i g h t n i n g D is c h a r g e. In t e r n a t io n a l G e o p h y s i c s S e r ie s. V. 3 9. A c a d e m c P r e s s. N e w - Y o r k. 1987. p H a le L.C. M id d le A tm o s p h e re E le c tr ic a l S tru c tu r e, D y n a m ic s a n d C o u p lin g / / A d v. S p a c e R e s. 1 9 8 4. V.4. N o 4. P. 1 7 3.

B r o w n in g G.L., T z u r I., R o b le R.G. A g lo b a l tim e dependent m odel o f th u n d e rs to rm s e le c tr ic ity. P a r t I: M a th e m a t ic a l p r o p e r tie s of th e p h y s ic a l and n u m e r ic a l m o d e ls // J.A t m.S c i., 1 9 8 7, v.4 4, 1 5, p.2 1 6 6 - 2 1 7 7.

H ager W. W., N isb e t J.S., K a s h a J.R., W e i-C h a n g S h a n n. S im u t a t io n s o f E le c t r ic F ie ld w i t h i n a T h u n d e r s to r m s // J.A t m.S c i., 1 9 8 9, v.4 6, 2 3, p.3 5 4 2 - 3 5 5 8.

I llin g w o r t h A.J. E le c tr ic f ie ld r e c o v e r g a fte r lig h t n in g as th e v e s p o n s e o f t h e c o n d u c t i n g a t m o s p h e r e to a f i e l d c h a n g e // Q u a r t.J.R o y.M e t e o r.S o c., 1 9 7 2, v.9 8, 4 1 7, p.6 0 4 - 6 1 6.

K a s e m ir H.W. D as G e w it t e r g e n e r a t o r im lu fle l e k tr is c h e n S tr o m k r e is I // Z e it s c h r if t f u r G e o p h y s ik, 1 9 5 9, J.2 5, H. l, p.3 3 - 6 4.

M ann J.J. In te r a c tio n o f th u n d e r s t o r m w ith c o n d u c tin g a tm o s p h e r e // J.G e o p h y s.R e s., 1 9 7 0, v.7 5, 9, p. 1 6 9 7 - 1 6 9 8.

M ic h n o w s k i S. E le c tr ic fie ld v a r ia tio n s in a m e d iu m w it h v a r ia b le c o n d u c t iv it y, p r o d u c e d b y a p o in t c h a r g e a b o v e a c o n d u c t iv e p la n e // A c t a g e o p h y s ic a P o lo n ic a, 1 9 7 3, v.2 1, 4, p.305-329.

V o lla n d H. A tm o s p h e r ic E le c tr o d y n a m ic s // B e r lin, S p r in g e r, 1 9 8 4, 2 0 5 p.

H.C. , . .: , 1 9 6 4, 4 0 2 .

.. . , 1 9 6 7, . 1 7 6, 6, . 4 8 - 5 0.

.. , , 1968, . 2 2 4, . 77-86.

.. .. , . , 1 9 7 1, .2 3. . 8 2 - 9 0.

.. - ., 1 9 9 8, . 1 3 7- . . . ., - , 2 0 1 0 ., . 6 8 - 7 2.

.., .., .., ., .. // , 2 0 0 4, . 1 7 4, 5, . 4 9 5 - 5 4 4.

P u t. i, & B ts - .

08 .

eQ leT *Q . . 3*.:0 .

* * * , { /) .

.0, F ik.3 - ( .

, / | ( , j ( oeoSciniftir Juhjw;

1 Bcjiuim 0.! ? ;

Z ". . . & , . II

..

. J n , .

1 * N = 10* \ = !\. = 7 : (), 2 - = 10' ", = zfl i = 16 D. ();

, s atea ҫ* f ! " / rs I- * , fr.

* 2 * mini 13) (.1 | 9 N 3 - ^* , .

^ ,J n I 1 - D, = 0,2 2 = 1 0 ' * 2 - [, = 0,2 safe, N = 0;

3 - D * 0 1 ,, N =0.

, .?

.

I - , ^ N ll.)'*.w ' [ 1998 \ iqm N 0..

2.J - . i . I 1 .

1-,^ N = !0, *. 23 - , ( .,1 W8 ] NH) * * 0 1-2 3 4 . 9 i..

: '& ( 1) 1 ( 2) 4 B cm i(N - 10 ' ", D, = 0,2 Mfe);

3 oifiyi D, = 0,2 .' N1r2iFi1J210Stjoa''M .I W = 10 * , = -1 " 1 # '!

I (n,j | {&* : () * i, . Bjml / . /, 2(

* , , ( 1 2 ( 3) Ԯ ' * , , .^ & - * | , (2.",-15), = 9.4 ;

,V j _ _ 3 3 j f :;

n=l = = ,(!, ' Jk . 7 ntntplrrvpam 1 (2,7,34! n=l,2 ;

- * J- * ft,}- (2).

, ' 1=0 N fj? ) "= J S Q M jA g ^ = 3 S & ;



Pages:     | 1 |   ...   | 2 | 3 || 5 |
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .