авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 5 | 6 || 8 |

«Н.П. МАСЮК, Ю.И. ПОСУДИН, Г.Г. ЛИЛИЦКАЯ ФОТОДВИЖЕНИЕ КЛЕТОК Dunaliella Teod. (Dunaliellales, Chlorophyceae, ...»

-- [ Страница 7 ] --

Масюк, 2006], с последующим использованием полученных данных для целей эволюционнной биологии, филогенетики, таксономии и систематики, экологии и географии водорослей.

Особого внимания заслуживают представители царства зеленых растений (Viridiplantae) – ближайшие родственники высших растений, представляющие наибольший научный и практический (хозяйственный) интерес для человека. Это, в первую очередь, представители совершенно неизученых в этом плане классов Pedinophyceae, Prasinophyceae (Chlorophyta) и Mesostigmatophyceae (Streptophyta), а также слабо изученных Chlorodendrophyceae и Chlorophyceae (Chlorophyta). При наличии больших гетерогенных, подвергающихся ревизии с позиций молекулярной филогенетики родов (например, Chlamydomonas Ehrenb., Chloromonas Gobi), не следует ограничиваться единственным модельным объектом (таковым для первого из них - 166 является Chlamydomonas reinghardtii P.A.Dang.). Подбор модельных объектов в этом случае следует производить с учетом новейших данных, полученных на молекулярном уровне.

Кроме зеленых фитомонад, большой интерес представляют другие жгутиконосцы с пластинчатыми митохондриальными кристами из отделов Glaucocystophyta и Cryptophyta, занимающие неопределенное систематическое положение в филеме органического мира трубчатокристные Haptophyta, а также другие жгутиконосцы с трубчатыми митохондриальными кристами, в первую очередь, лишенные глазков Raphidophyta, совершенно не изученные Dictyochophyta и Xanthophyta, слабо изученные Chrysophyta, обладающие разнотипными, в т.ч. исключительно сложно построенными фоторецепторными системами Dinophyta. Группа эукариот с дисковидными митохондриальными кристами хорошо представлена в фотобиологических исследованиях такими модельными объектами как Euglena gracilis Klebs и Astasia longa Pringsh.

Заслуживают также продолжения работы по изучению фотодвижения монадных репродуктивных клеток водорослей (гамет, зооспор) из разных систематических групп.

Небезынтересны наблюдения над фотодвижением водорослей в условиях природных водоемов.

Наряду с природными объектами большой интерес представляют также полученные в лабораторных условиях мутанты, дефицитные на определеные пигменты и органеллы.

2. Увеличение числа изучаемых параметров фотодвижения (например, угловой скорости движения индивидов, ритмичности движения клеток, формы и частоты биения жгутиков, концентрации и пространственного распределения индивидов в популяции, траектории движения индивидов и популяций и др.) и параметров светового стимула (например, градиента интенсивности света в пространстве и времени, направления, ритмичности светового потока и др.) в стационарном и переменном режимах. В последнем случае особое внимание следует уделить изучению кинетических, векторных и фотофобических реакций.

3. Расширение числа испытуемых абиотических и биотических экзогенных фактров, предположительно оказывающих воздействие на процессы фотодвижения (например, изучение влияния сил гравитации, магнитного и электрического полей, концентрации биогенных и осмотически действующих элементов в окружающей среде, вязкости последней, плотности клеток в суспензии, наличия посторонних организмов и продуктов их жизнедеятельности и т.д.). Следует расширить диапазон значений испытуемых факторов для определения граничных и оптимальных для разных параметров фотодвижения концентраций и доз. Большой интерес представляет также изучение влияния эндогенных факторов, влияющих на процессы фотодвижения, в частности физиологического состояния клетки на разных этапах онтогенетического цикла и в зависимости от условий окружающей среды. Одной из первоочередных задач является изучение влияния процессов биосинтеза каротина, глицерина и их содержания в клетках Dunaliella salina на фотоповедение и фотобиологические реакции этой водоросли.

Полученные данные, несомненно, будут представлять существенный интерес не только для фотобиологической науки, но также для экологии (в первую очередь, аутэкологии) водорослей и прикладной альгологии.

4. Дальнейшее изучение особенностей структуры фоторецепторных систем, состава фоторецепторных пигментов, механизмов фоторецепции и передачи светового сигнала на двигательный аппарат водорослей у представителей разных таксонов на базе расширения комплекса современных экспериментальных методов: электрофизиологических (измерение мембранных потенциалов с помощью микроэлектродов и пэтчклемп метода), спектроскопических (флуоресцентная спектроскопия, допплеровская спектроскопия), лазерной техники, ядерного магнитного резонанса, электронной и флуорeсцентной микроскопии, техники цифровой высокоскоростной кинофотосъемки для регистрации частоты и формы биения жгутиков и траектории движения клеток, а также применения новых препаратов, специфически действующих на разные этапы фотодвижениея. Исключительно интересны с точки зрения механизмов и эффективности фоторецепции водоросли, лишенные глазков или, наоборот, обладающие двумя-тремя глазками. Неотложной задачей является установление точного местоположения фоторецептора у зеленых водорослей.

5. Совершенствование методов тестирования состояния и эффективности охраны окружающей среды, биотехнологии наиболее перспективных объектов с использованием результатов изучения фотодвижения водорослей в природоохранной, хозяйственной и производственной деятельности человека.

- 167 6. Совершенствование и унификация понятийного аппарата, касающегося фотодвижения свободно подвижных микроорганизмов на базе координации усилий фото-биологов мира.

PHOTOMOVEMENT OF DUNALIELLA TEOD.

Summary The senior author of the present work started her studies of the genus Dunaliella Teod. at the N.G. Kholodny Institute of Botany of the National Academy of Science of Ukraine in the late 1950s in the context of projects on surveying algae for perspective sources of b-carotene (provitamin A). In the 1960s-1970s the species composition and ecology of this genus in watersheds of the Ukraine, the Trans-Caucasian region, Central Asia, and the Far East was investigated in detail, issues of phylogeny and taxonomy of the genus were discussed, the collection of Dunaliella strains was created, peculiarities of their morphology, physiology and biochemistry were investigated, and methods of their laboratory and their semi-industrial commercial cultivation [Масюк, 1973] were developed. In the 1980s the species of Dunaliella as possible model organisms for studying photomovement had attracted attention of a biophysicist who applied a complex of optical, spectroscopic, laser methods [Posudin et al., 1992]. The experimental laboratory equipped with original instrumentation for studying the photomovement of cells of Dunaliella was created at the Department of Biophysics of the National Agricultural University in Kiev.

The main objective of the present work is to summarize our research of photomovement of Dunaliella and to compare our results with data of other authors who have investigated other organisms, revealing both common and specific peculiarities of photomovement in representatives of various taxa, depending on their phylogenetic relations.

Experimental studies were preceded by analysis of previous results of the photobiological community on studying photomovement of flagellates. During that survey we paid attention to the existing discrepancies concerning the terms designating various aspects of photomovement of microorganisms.

Problems of terminology Critical considerations on terminology and classification of different types of light-induced behavior of freely motile organisms have shown that the available diverse classification systems represent a terminological confusion. We have developed a parametrical classification of light-dependent behavour of either individual motile cells (individual effect or microeffect, Table 2.1) or their aggregations (group effect or macroeffect, Table 2.2).

We retained the original meaning of the term phototaxis: any light-induced movement of freely motile organisms in space. We mean light-dependent reactions of motile organisms (photoresponse, photoreaction) as any immediate motion responses of these organisms to any changes of the light stimulus.

Motility of biological objects is a special case of the general physical phenomenon of movement (mobility).

Therefore, motility of organisms can be described by such well known parameters as speed or velocity (V), direction (r) and trajectory (l) of movement. The light stimulus, in turn, is characterized by such parameters as intensity (I), direction (s), spectral composition (l), and polarization (P) of light;

duration, frequency, and the shape of light pulses.

Considering parametrical characteristics of both factors (light and movement), we believe that any classification of dependence of movement (phototaxis) of microorganisms on light should be based on a parametrical principle (Tables 2.1, 2.2). We propose to call photokinesis any dependence of speed of individual organisms or their groups on any parameters of light stimulus;

we call phototopotaxis any dependence of the direction of movement of individual organisms or their groups on any parameters of light.

The proposed classification can be further developed into details by accounting for additional parameters of movement and light (for example, the rhythm of a light flux), their possible interactions (for example, wavelength and intensity of light, velocity and direction of movement), or specific features of some parameters (for example, the velocity of movement can be linear or angular, the light intensity can be characterized by its absolute value (I) or its gradient in - 168 space (dI/dx) and time (dI/dt)). The suggested principles not only promote some improvement of the existing terminology but also enable us to plan further research.

Phenomenology of photomovement Species of Dunaliella, as well as other flagellate algae, demonstrate their ability to move freely in the aquatic environment under the influence of light or their photomovement (phototaxis).

Photomovement of Dunaliella is performed as translational movement of a cell accompanied by rotation of the cell around its longitudinal axis and by sidewise turns from the main direction, and also as oscillatory movements ("staying in one place"). Sometimes the cell is attached by the distal ends of flagella to the substratum convulsively twitching around the attachment site;

consequently the cell becomes detached from the substratum and continues its free "navigation".

In contrast to the pattern observed in Chlamydomonas reinhardtii and Euglena gracilis, only the ciliary type of movement of flagella was observed in species of Dunaliella during their photomovement. Only in unusual cases, when mechanical obstacles are present and/or when the cell of Dunaliella salina becomes constrained in a very thin preparation between the cover glass and the slide, we observed its switching to a more ancient relict undulating type of movement of flagella.

The trajectory of locomotion of a cell resembles a sine wave;

its plane projection looks like a non-uniform zigzag. It is supposed that, similar to Chlamydomonas, Dunaliella performs rotary movements of its cell around its longitudinal axis due to beating of its flagella in the three-dimensional space. The sinusoid movement is a result of almost synchronous but unequal numbers of beatings of two flagella of the same cell. In contrast to the pattern observed in Chlamydomonas, when change occurs in the movement direction, one flagellum of the Dunaliella cell ceases its beating, and the second flagellum continues the beatings;

therefore, the cell turns. After that, the first flagellum renews its beating and the cell continues to move in a new direction.

Photoreactions Species of Dunaliella are capable of photokinetic and photovector reactions, while photokinetic reactions in Chlamydomonas were challenged in the literature. As to photophobic reactions, we failed to observe them in species of Dunaliella (in contrast to Chlamydomonas and Euglena), though the literary data indicate some possibility of such reactions in Dunaliella also.

Photokinesis The locomotion velocity of Dunaliella cells (photokinesis) depends on the intensity of a light stimulus and environmental conditions, such as temperature, strength of electric and electromagnetic fields, dozes of ionizing radiation, concentration of blockers of calcium channels, isoptin and cinnarizine, sodium aside, surfactants, salts of heavy metals, and pesticides, and also depends on a combination of several factors. However, the locomotion velocity of separate cells of Dunaliella, under conditions of our experiences, did not depend on the wavelength of falling light, the doze of preliminary UV-irradiation, concentration of cobalt and calcium ions, introduction in the medium of ionophore raising the permeability of the cellular membrane for calcium ions, and also ionotropic preparations stimulating Na +-K+-ATPase.

An average velocity of translational movement of cells of hyperhalobic species of Dunaliella was ± 2 mm/s (D. viridis) and 48 ± 2 mm/s (D. salina). Average velocity of movement of two closely related species, D.

salina and D. viridis, in different experiments varied over a wide range, thus erasing distinctions between the mentioned species by the given parameter. The modal value of an average velocity of movement of the marine species D.

bioculata was 105 ± 5 mm/s. These values exceed by 1-3 orders of magnitude those in microorganisms not possessing the flagellar apparatus and are within the limits known for others flagellates, both prokaryotic and eukaryotic.

- 169 However, average locomotion velocity of hyperhalobic species of Dunaliella is lower (sometimes by the order of magnitude) than those in marine D. bioculata and freshwater species (Chlamydomonas reinhardtii, Euglena gracilis). It is caused, most likely, by different viscosity values of the medium.

Average velocity values of rotary movement of cells in hyperhalobic species of Dunaliella were nearly identical: 0.52±0.04 rotations (revolutions) per second in D. salina and 0.54±0.04 rotations per second in D. viridis. At the same time, these values were lower than in freshwater Chlamydomonas reinhardtii. The maximal values of average velocity of forward and rotary photomovement of cells of Dunaliella were observed within the limits of white-light intensity of 10-20 W/m 2, illumination of 150-550 lx, temperatures of 20-30 °C, and pH 8.

The rhythmic activity of Haematococcus pluvialis regulating its cell movement is operated by rhythmic pulses presumably connected to the functioning of contractile vacuoles. However, in hyperhalobic species of Dunaliella the contractile (pulsating) vacuoles are absent, and the beating rhythm of flagella is apparently related to other oscillators. The flagellar beating frequency in hyperhalobic species of Dunaliella is 25-50 Hz while in freshwater Chlamydomonas reinhardtii is about up to 64 Hz.

Phototopotaxis The direction of movement of cells of Dunaliella in relation to a light source (phototopotaxis) depends on parameters of a light signal (light intensity, its spectral composition, gradients of intensity in space and time, polarization of light) and environmental conditions, such as temperature, intensity of electric fields, doses of ionizing and UV radiation, concentrations of Ca 2+, Co2+, cinnarizine, isoptin, sodium aside, surfactants, salts of heavy metals and pesticides, and also with a combination of some of these factors. However, phototopotaxis of Dunaliella species does not depend on the addition of ionotropic preparations stimulating Na +-K+-ATPase.

Phototopotaxis of both hyperhalobic species of Dunaliella in laboratory cultures was observed at an illuminance of 500 lx (positive) and 40,000 lx (negative). Transition from positive to negative phototopotaxis was observed at 1,500 lx. These parameters are within the limits known for other algae. However, sensitivity thresholds to weak and strong illuminance, transitions from positive to negative phototopotaxis differ substantially in different species of algae. They allow judging of shade-tolerance, sun-tolerance, and resistance to high-level light exposure of these species.

Dunaliella viridis is more sensitive to weak light (30 lx) than D. salina, which corresponds to behavioral peculiarities of these two species in nature. Both species in laboratory culture are more sensitive to high illuminance than Chlamydomonas reinhardtii;

in the latter the transition to negative phototopotaxis was registered at 100,000 lx.

Transition of Dunaliella species from positive to negative phototopotaxis occurs in a way different from that in chlamydomonads. In contrast to chlamydomonads, the change of the flagellar beating from ciliary to undulate mode was not observed in species of Dunaliella;

the beating of one flagellum only was observed, and it caused a turn of the cell and its movement in the direction opposed to the light source.

Under conditions of Crimean hyperhaline watersheds with high illuminance values (above 100,000 lx) the natural populations of Dunaliella salina, represented by the so-called "red form", show the complete absence of negative phototopotaxis. Thus, hyperhalobic species D. salina and D. viridis differ by the degree of their sensitivity to both high- and low-light intensity, which is caused by peculiarities of ecological niches occupied by these species in nature.

The maximal values of positive and negative phototopotaxis were registered at temperatures of 20- °C. Maximal value of positive phototopotaxis was at pH 7.35.

Electric fields suppressed phototopotaxis in Dunaliella as well as in other algae, which indicates some participation of bioelectric potentials in this process. A rise of temperature from 18 °C up to 30 °C removes the inhibitory influence of the electric field density and stimulates phototopotaxis of both hyperhalobic species of Dunaliella.

Ionizing and UV irradiations inhibit the phototopotaxis in D. salina and D. viridis. The inhibiting effect depends on a dose of irradiation, while in the case of UV-irradiation it depends on a wavelength too. For the first time - 170 in species of Dunaliella, we discovered the transformation of positive phototopotaxis into the negative one under the influence of UV-irradiation, with subsequent inhibition of phototopotaxis down to zero values.

The maximal values of phototopotaxis of hyperhalobic species of Dunaliella are observed at presence of CaCl26H2O in the medium in concentrations (10-5-10-3) M. The raising of the calcium chloride concentration up to 10-2 M suppressed phototopotaxis by 10-20 %. Adding to the medium of A23187 ionophore that raises permeability of the cellular membrane for calcium ions caused complete inhibition of phototopotaxis both in D. salina and D. viridis.

Adding of CoCl2 blocking membrane calcium channels in concentrations of (10-6-10-3) M suppresses phototopotaxis in species of Dunaliella. Other blockers of calcium channels, such as cinnarizine, isoptin, and sodium aside demonstrate a similar action upon phototopotaxis of Dunaliella. Ouabain that stimulates Na+-K+-ATPase does not influence phototopotaxis in Dunaliella.

The spectrum of phototopotaxis action of two hyperhalobic species of Dunaliella is identical;

it is within the limits of 400-520 nanometers (nm) and has two maxima: at 410-415 nm and 465-475 nm. The spectrum of phototopotaxis of Dunaliella somewhat differs from those in Chlamydomonas reinhardtii and Haematococcus pluvialis, showing a wide band in the range of 400-600 nm, with the maximum at 500 nm. In contrast to the situation observed in representatives of the class Chlorophyceae, Tetraselmis viridis (Chlorodendrophyceae) shows its ability to phototopotaxis also in the UV-area of the spectrum. Euglena gracilis (Euglenophyta) shows phototopotaxis in the range of 300-550 nm with two basic maxima at 385 nm and 460 nm and two smaller maxima at 410 nm and nm. Thus, representatives of different genera, classes and divisions essentially differ in their ranges of phototopotaxis spectrum action, which indicates some differences in their photoreceptor systems and composition of photoreceptor pigments.

Motility One of parameters of photomovement, motility of cells or a relative number of motile cells (Nm/N0), where Nm number of motile cells, and N0 - the total number of motile and non-motile cells, in populations of Dunaliella varies from 0 up to 100% and shows the same dependence on characteristics of the light stimulus and environmental conditions as phototopotaxis, essentially differing by the presence/absence and a degree of such dependence on some factors (wavelength of light, a dose of preliminary ionizing and UV irradiation, concentration of compounds opening or blocking calcium channels, etc.) from the third parameter of photomovement, the velocity of individual cells (photokinesis).

Photoreceptor system The photoreceptor system of species of Dunaliella, as well as that of other green algae, consist of a photoreceptor presumably located in plasmalemma and membranes of the chloroplast (in the area near the stigma), and of the stigma consisting in different species of one-two layers of lipid globules located in the peripheral zones of plastid. It has been shown that, in contrast to some other algae, such as Euglena gracilis species of Dunaliella do not possess the dichroic structure of the photoreceptor.

Mechanisms of photoreception Photoreception in Dunaliella, probably as well as in some other motile microorganisms with flagella, is based on the interaction of several mechanisms: modulation, diffiraction and interference ones. The modulation mechanism is realized as a result of rotary movement of a cell around of its longitudinal axis during which the stigma modulates the light signal affecting the photoreceptor. At the presence of more than one layer of pigmented globules in the stigma, the interference mechanism of photoreception is possible (similar to that in chlamydomonads). The diffraction mechanism of photoreception that we suggested in our opinion, is universal for all flagellates having the globular structure of the stigma. Thus, in photoreception of some flagellates, including Dunaliella, the cooperative effect of - 171 simultaneous functioning of several mechanisms for increasing the efficiency level of the light signal is observed.

The data we obtained provide evidence that the composition of photoreceptor pigments of Dunaliella prevail neither flavins (as in Euglena gracilis) nor rhodopsin (as in Euglena gracilis, Chlamydomonas reinhardtii and Haematococcus pluvialis), but another carotenoids and carotenoproteins, though some authors [Wayne et al., 1991] suppose probable participation of rhodopsin in photoreception of Dunaliella salina.

As to photoreception mechanisms, the authors accept Nultsch's hypothesis (1983) according to which absorption of the quantum of light by a photoreceptor molecule is accompanied by its excitation and conformational changes of photoreceptor proteins. We proposed a model of photoregulation of movement of flagellate algae as further development of this hypothesis that is based on conformational changes of protein molecules as components of either the photoreceptor system or the flagellar apparatus. According to this model, the absorption of light by photoreceptor molecules is accompanied by the excitation of exciton or soliton conditions in a-spiral sites of membrane proteins, which is related to some reorganization of their configuration with formation of ion channels, through which ions of calcium freely diffuse inside the cell thus stimulating the locomotory activity of an alga. The discovery of the contractile protein centrin in fibrous structures of the flagellar apparatus of Dunaliella indicates its possible participation in photo-orientation of basal bodies of these algae, as it occurs in other flagellates.

Our experiments with imposing electric fields provide evidence that in the processes of photoreception in species of Dunaliella, as well as in other green algae, a certain role is played by light-induced changes of membrane potentials.

Sensory transduction of a light signal As it has been shown in experiments with ions of calcium, cobalt, and substances blocking or stimulating ion channels, sensory transduction of the absorbed quantum of light into the locomotory reaction in species of Dunaliella, as well as in other green algae, is most likely of ionic nature, thus confirming the paramount role of Ca2+ in these processes. At the same time, participation of Na+-K+-ATPase in photoregulation of locomotion of Dunaliella cells should be excluded. Ouabain has no effect on the parameters of photomovement of Dunaliella;

it is assumed that the intake of calcium ions into the cells of these algae is controlled not by the Na+-K+ pump, as it is the case in Euglena gracilis, but probably directly, through the lightinduced membrane channels, as it occurs in Chlamydomonas.

In contrast to Chlamydomonas reinhardtii, in many cases, reacting non-specifically (autotomy of flagella) to the introduction of substances stimulating or blocking ionic channels into the medium, cells of Dunaliella under these conditions never lose flagella;

therefore, their locomotory reactions can be regarded as the specific response to blocking/stimulation of ionic processes.

We showed for the first time that different parameters of photomovement of Dunaliella (phototopotaxis and a relative number of motile cells, on the one hand, and photokinesis, on the other hand) are controlled by different mechanisms. It is confirmed by the presence/absence or different degrees of dependence of these parameters on such environmental factors as the wavelength of incident light, dose of preliminary ionizing and UV irradiation, concentration of ions of calcium, cobalt, compounds stimulating, or blocking calcium channels, etc.

Importance of data on photomovement of algae for related fields of science Results of studies of photomovement processes in microorganisms are of interest not only for photobiology but also for related fields of science, such as evolutionary biology, phylogenetics, systematics, ecology, and applied aspects of biology.

Comparative studies of photomovement of two closely related species of one genus, Dunaliella salina and D.

viridis, have shown that these species mostly do not differ from each other in key parameters of this process. They also give evidence in support of the identity of the structure of their photoreceptor systems and photoregulation mechanisms of locomotion of their cells, which developed as a result of a long process of their joint evolution. At the same time, these species differ in their sensitivity to white light of weak and high intensity and also to the threshold of transition - 172 from positive to negative phototopotaxis. These two species also react differently to the interaction of some factors correlated with light (temperature, electric field, and intensity of light). In contrast to Dunaliella viridis, D. salina under conditions of natural hyperhaline watersheds does not show negative phototopotaxis at an illuminance above 100,000 lx due to the protective function of b-carotene accumulated in its cells. Different sensitivity of the two species of Dunaliella to light is a result of their adaptation to the ecological niches differing by the light factor. Such adaptation provides an opportunity of coexistence of these species in the same reservoirs but in different niches: on the brightly illuminated surface of the salt solution (D. salina) and in more shaded benthic layers (D. viridis).

Sensitivity of D. salina and D. viridis to ionizing radiation is also different, which is most likely caused by different sizes of their photoreceptor systems as targets responsible for effects upon locomotory reactions. Thus, differences at the intrageneric level do not affect structural features of photoreceptor systems and mechanisms of photoreception and sensory transformation of a light signal into locomotory reactions. These differences are results of ecological adaptations or are caused by dimensional characteristics of cells and their organelles. The important role is played also by the ability of one species to accumulate large quantities of b-carotene performing protective functions.

More essential are differences in photobehaviour of representatives of various genera belonging to different orders of green algae of the class Chlorophyceae: species of Dunaliella (Dunaliellales) on the one hand, and Chlamydomonas reinhardtii and Haematococcus pluvialis (Chlamydomonadales), on the other hand.

Thus, differences in the action spectra and maxima of phototopotaxis leads to the assumption of the presence of different sets of photoreceptor pigments: carotenoids and carotenoproteins in Dunaliella and rhodopsin as the basic photoreceptor pigment in Chlamydomonas reinhardtii and Haematococcus pluvialis.

Taking into account the differences in the stigma structure in the species of Dunaliella and in Ch. reinhardtii, we may assume that in photoreception of Dunaliella, in addition to the modulation mechanism, the essential role is played by light diffraction, and in Ch. reinhardtii the essential mechanism is connected to interference of the light flux.

Introduction to the medium of chemical compounds stimulating or blocking membrane ionic channels causes in species of Dunaliella specific locomotory reactions, while in Ch. reinhardtii these reactions are nonspecific (autotomy of flagella).

In species of Dunaliella the characteristic for Chlamydomonas photophobic reactions have not been observed, while the presence of photokinetic reactions, so well expressed in Dunaliella, is questionable in Chlamydomonas.

Chlamydomonas and Dunaliella, in the process of photomovement, differ by the mode of beats of flagella.

Progressive movement of a cell of Chlamydomonas is performed through ciliary beating of flagella, and backward movement of cells is observed by undulate beating of flagella. Since cells of Dunaliella are not capable of photophobic reactions, the undulate mode of flagella beating has not been observed in that genus. Turns of Chlamydomonas cells occur due to unequal frequencies of beating of cis- and trans-flagella;

cells of Dunaliella temporary cease of beating of one flagellum.

Thus, species of Dunaliella differ from Chlamydomonas reinhardtii in a complex of fundamental features concerning the composition of their photoreceptor pigments, mechanisms ot photoreception, some details of sensory transduction of the light signal into the locomotory reaction, presence/absence of photophobic and photokinetic reactions, functioning of the flagellar apparatus, etc. The results obtained correlate with data of molecular cladistics. The data of molecular phylogeny demonstrate that Ch. reinhardtii, as a representative of the heterogeneous genus Chlamydomonas, belongs to the group of chlamydomonads (which is closely related to colonial Volvocales) that is very distant from another group that is closer to Dunaliella (for example, Chlamydomonas applanata Pringsh.). The evolutionary distance between these two groups is comparable with the distance between a soybean plant and cycads.

Interesting data are available on photomovement of Tetraselmis viridis (Roukhiyajnen) Norris et al., a representative of a separate class of green algae, Chlorodendrophyceae [Maсюк, 2006]. Photomovement in the ultraviolet area of the spectrum and presence of phototopotaxis maxima in that area is evidence of a possible presence of flavins and/or pterins in the composition of photoreceptor pigments of this species. Thus, evolution of photoreceptor systems, in particular, sets of photoreceptor pigments may probably occur in different ways in various branches (clades) of the phylogenetic tree of green plants.

Even deeper differences in the structure of the photoreceptor were found between Dunaliella spp. and - 173 Euglena gracilis Klebs, a representative of the division Euglenophyta. According to some authors, Euglena and Dunaliella belong to different kingdoms: Euglenozoa Cavalier-Smith, 1981, or Euglenobionta Kussakin et Drozdov, and Plantae Leedale, 1974, or Viridiplantae Cavalier-Smith, 1981, respectively. Other authors place them in different superkingdoms of the organic world: Discicristata (Mirabdullaev) Leontiev et Akulov (2002) ex Zmitrovich, 2003 and Lamellicristata (Taylor) Starobogatov (1986) emend. Zmitrovich (2003).

Dunaliella differs from Euglena not only in a low speed of cell movement, in higher sensitivity to low and high intensity of light, lower threshold of transition from positive to negative phototopotaxis, which is probably partly explained by ecological peculiarities at the species level. Until now the transition from positive to negative phototopotaxis with the subsequent complete suppression of phototopotaxis under the influence of preliminary UV irradiation was observed only in species of Dunaliella. Differences in spectra of phototopotaxis action assumes the non identity of sets of photoreceptor pigments. At the same time, distinctions were revealed also in the structure of the photoreceptor: crystal and dichroic in Euglena and non-crystal and non-dichroic in Dunaliella.

Taking into account the peculiarities of the photoreceptor system of euglenoid algae, in particular, their stigma structure, it is possible to believe that they possess only the most ancient, primary modulation mechanism of photoreception inherited from prokaryotes or common ancestors of these groups, while in green algae three mechanisms (modulation, diffraction and interference) can function simultaneously, thus raising the level of the light signal absorbed by a photoreceptor. Though processes of sensory transduction of the light signal into a locomotory reaction are most likely of an ion nature in all flagellate algae, in Euglena gracilis, in contrast to green algae, theNa+-K+-pump participates in control of these processes. Euglena differs from species of Dunaliella and Chlamydomonas reinhardtii also in an original functioning of its flagellar apparatus: during beating the flagellum of E. gracilis looks like a "broken (interrupted) spiral": spiral parts of the flagellum are interrupted by its straight parts;

neither typical ciliary type nor undulate type of beating of the flagellum are observed in euglenids.

Thus, the greater the phylogenetic distance between taxa, the greater and deeper are distinctions and differences in their photobehaviour, structure and mechanisms of functioning photoreceptor systems, sensory transduction of a light signal into locomotory reactions of different types, and functioning of the flagellar apparatus.

These data make it possible to use the peculiarities of photomovement of algae as additional diagnostic criteria in evolutionary biology, phylogenetics, systematics, and taxonomy of algae.

Along with the mentioned differences in photomovement processes and its photoregulation, representatives of different taxa of flagellates have common features: the structure of the photoreceptor system (which, with a few exceptions, consists of the photoreceptor and stigma), primarily modulation mechanism of photoreception (which in representatives of different taxa, depending on the stigma structure, can be associated with additional mechanisms, such as diffraction and interference ones), the ionic nature of photoreception and sensory transduction of the light signal into a locomotory reaction at the predominant role of calcium ions in these processes, possible participation in these processes of light-induced changes in electric potentials of membranes, conformational changes of protein molecules, as the basis of photoreception and sensory transduction, participation of centrin in photoorientation of basal bodies.

At the same time, we have to admit that experimental data on photomovement of algae (representatives of different taxa) are still too incomplete;

they cover only a small number of model organisms. Unfortunately, these studies are not carried out according to a coherent plan at the required methodical level. Therefore, the results obtained in studies of different model organisms, by representatives of different photobiology schools in various countries, are not always comparable, and the conclusions made by us here are only preliminary. It is only a necessary preliminary stage of summing up some intermediate results of ongoing studies, and these studies can add to, change, or even disagree with our conclusions.

Studies of peculiarities of photomovement in algae are definitely of interest for ecology and geography of algae, in particular, for autecology, because these studies allow specifying characteristics of some species concerning their reactions to parameters of light, determining optimum, maximum and minimum values of these parameters for different species, promoting their subdivision into groups of shade-preferring, shade-resistant and photophilous and light-resistant organisms, and also enhancing our deeper understanding of laws of their distri - 174 bution on the planet Earth.

Applied importance of data on photomovement of algae The applied importance of results of studying photomovement parameters in species of Dunaliella is determined mainly by the position of that genus in the great kingdom of green plants (Viridiplantae) dominating our planet and playing the main role in fulfilling the everyday needs of mankind. Hyperhalobic species of Dunaliella are classical models for studying the mechanisms of salt tolerance, osmotic regulation, permeability of membranes, and processes of biosynthesis of carotene in plants, and photomovement. Due to their ability to hypersynthesis of the b carotene, osmotically active compounds of strategic importance and high contents of other physiologically active substances, species of Dunaliella are valuable organisms for biotechnology. Their high sensitivity to environmental factors provides an opportunity of their use as tests objects in biomonitoring. The great advantages of these organisms are their microscopic sizes, high rates of reproduction, active motility, photokinetic and photovector reactions.

In our experiments we studied the sensitivity of various parameters of photomovement in Dunaliella salina and D. viridis to the presence of surface-active substances in the environment (surfactants: cation-active catamin, anion-active sodium dodecylsulfonate, non-ionactive hydropol, a natural polysaccharide compound isolated from blue green algae, agents "water bloom" in the Dnieper reservoirs, and also their combinations in the concentration range from mg/L to 40 mg/L), salts of heavy metals (CuSO45H2O, CdCl2 et Pb(NO3)2 in the concentration range (10-7-10-2) M and pesticides (Acetal 55 %, Acetazine 50 %, Alachlor 45 %, Arilon 75 %, Basta 20 %, Dual 96 %, Harmony 75 %, Tecto 45 % in concentrations from 10-7 to 10-2 M). The obtained data reveals the possibility of using the velocity of forward and rotary movement of cells, frequencies of their flagella beating, and phototopotaxis values in species of Dunaliella as tests parameters in biological monitoring of the aquatic environment. The use of several simultaneously registered parameters of photomovement of algae that allows increasing the sensitivity of the biotesting method is proposed. The vector method of biotesting is proposed for assessment of action of the concentration gradient of various toxicants in the aquatic environment upon some (two and more) simultaneously registered parameters of movement. This method facilitates processing of data of large-scale measurements, opens an opportunity to approach the task of quantitative estimation of toxicant concentration, and also their qualitative identification.

Species o Dunaliella as producents of b-carotene, ascorbic and dehydroascorbic acids, glycerin and other valuable organic compounds are perspective organisms for biotechnology.

Mass cultures of strains of that genus are performed in many countries for industrial production of b-carotene preparations used in food and pharmaceutical industries and in medicine for the prevention and treatment of tumor, cardiovascular, ophthalmic diseases, avitaminoses, arthrosis, and other pathologies. Studying photomovement regularities and peculiarities of Dunaliella species can help in solving some technological problems of carotene production from these algae.

The main tendencies and perspectives of further investigations in photomovement of flagellates are discussed.

- 175 ЛИТЕРАТУРА Арнольди В.М. Введение в изучение низших организмов. – Харьков, 1908.

Артари А. К вопросу о влиянии среды на форму и развитие водорослей. – М., 1903. - 93 с.

Балаян А.Э., Стом Д.И. Метод биотестирования по обездвижению клеток водоросли Dunaliella // Методы биотестирования вод. - Черноголовка, 1988. - С. 21-23.

Балнокин Ю.В., Медведев А.В., Боднар И.В. Системы транспорта калия в клетках галофильных водорослей Dunaliella // Физиология раст. – 1983. – 30, № 5. – С. 955-963.

Баренбойм Г.М. Маленков А.Г. Биологически активные вещества. Новые принципы поиска. - М.: Наука, 1986. - 363 с.

Бегма А.А., Власенко В.В., Мацкивский В.И., Пеньков Ф.М., Посудин Ю.И., Фролов Г.В. Способ оценки токсического действия химических веществ, содержащихся в водной среде // А. с. 1482887 СССР. МКИ3 А61К31/52, № 4260249/30-13;

Заяв. 10.06.87;

Опубл. 30.05.89, Бюл. № 31. - 10 с.

Борн М., Вольф Э. Основы оптики. - М., 1973. – 789 c.

Брагинский Л.П. Некоторые закономерности и механизмы реагирования пресноводной экосистемы на воздействие пестицидов и поверхностно-активных веществ // Эксперим. вод. токсикология. - 1986. - № 2. - С. 12-18.

Бриттон Г. Биохимия природных пигментов. - М.: Мир, 1986. - 422 с.

Булгаков М.А. Дьяволиада. - М.: Недра, 1925.

Вахмистров Д.Б., Богоров Л.В. Выделение поверхностно-активных веществ растительными клетками // Докл. АН СССР.

- 1987. - 297, № 5. - С. 1273-1275.

Владимирова М.Г. Ультраструктурная организация клетки Dunaliella salina Teod. и ее функциональные изменения в зависимости от интенсивности света и температуры // Физиол. раст. – 1978. – 25, № 3. – С. 571-583.

Воскресенский К.А. Артемия – ценный корм в промышленном рыборазведении. – М.: Изд-во МГУ, 1960. – 7 c.

Гелескул Ю.Ф. Производство каротина из водоросли дюналиелла соленоводная и получение из него препаратов для животноводства // Использование гидробиологических ресурсов Черного моря на корм сельскохозяйственных животных. - Одесса, 1968. - С. 57-58.

Громов Б.В. Строение бактерий. - Л.: Изд-во ЛГУ, 1985. - 191 с.

Давыдов А.С., Супрун А.Д. Конфигурационные изменения и оптические свойства a-спиральных белковых молекул // Укр. физ. журнал. - 1974. - 19. - С. 44-50.

Дмитриев Ю.В., Климова Е.В., Бойко В.В. Использование Dunaliella viridis Teod. в качестве тест-системы при оценке патологических состояний организма // Актуальные проблемы современной альгологии: Матлы ІІІ Междунар.

конф., Харьков, 20-23 апреля 2005 г. – Харьков, 2005. – С.47-48.

Дрокова І.Г. Дослідження водоростей на вміст b-каротину // Укр. ботан. журн. - 1960. - 17, № 2. - С 39-42.

Дрокова І.Г. Водорість Dunaliella salina Teod. як джерело одержання b-каротину // Укр. ботан. журн. - 1961. - 18, № 4. С. 110- Евтодиенко Ю.В. Проблемы биоэнергетики. - М.: Знание, 1985. - С. 3.

Еленкин А.А. Биология низших растений. – Л.:, 1925. - 220 с.

Зельниченко А.Т., Ковальчук В.С., Посудин Ю.И. Влияние электромагнитных полей на движение микроорганизмов // Биофизика. - 1988. - 33, № 5. - С. 841-844.

Злочевская И.В., Абсалямов С.Я., Галимова Л.М. и др. К изучению механизма фунгицидного действия четвертичных аммониевых соединений // Науч. докл. высш. шк. Биол. науки. - 1981. - № 3. - С. 82-87.

Змитрович И.В. Ревизия филогенетического древа эукариот: вариант эвгленозойного предка // Альгология. - 2003. - 13, № 3. - С. 227-268.

Калиниченко Н.Ф., Старобинец З.Г., Бирюкова С.В. и др. Антибактериальная активность ПАВ // Микробиологическая эпидемиология и клиника инфекционных болезней. - Харьков, 1986. - С. 99-103.

Калугина-Гутник О.А., Беляєв Б.М. Розвиток інтенсивної аквакультури водоростей-макрофітів на Чорному морі // Вісн.

АН УРСР. - 1987. - № 1. - С. 48-54.

Квитко К.В., Матвеев В.В., Чунаев А.С. Двигательная и поведенческая формы активности хламидомонады и их изменения, вызванные мутациями // Движение и поведение одноклеточных животных. - 1978. - Вып. 2. - С.

130-158.

Коломбетти Дж., Гетти Ф., Ленчи Ф., Полакко Е., Посудин Ю.И., Кампани Э. Лазерная микроспектрофлуориметрия фотопигментов in vivo // Квант. электроника. – 1981. - 8, № 12 (114). - С. 2680-2683.

Конев С.В., Волотовский И.Д. Фотобиология. - Минск: Изд-во Белорус. ун-та, 1979. - 383 с.

Коршіков О.А. Volvocineae / Визначник прісноводних водоростей УРСР, 4. – К.:: Вид-во АН УРСР, 1938. - 184 с.

Костюк П.Г., Гродзинский Д.М., Зима В.Л., Магура И.С., Сидорик Е.П., Шуба М.Ф. Биофизика / Под общ. ред. П.Г.

Костюка. – Киев: Высш. шк., 1988. - 504 с.

- 176 Крайнюкова А.Н. Биотестирование в охране вод от загрязнения // Методы биотестирования вод. - Черноголовка, 1988. С. 4-14.

Красновский А.А. Механизм образования и роль синглетного кислорода в фотобиологических реакциях // Молекулярные механизмы биологического действия оптического излучения. - М.: Наука, 1988. - С. 23-41.

Крицкий М.С. Фоторегуляция метаболизма и онтогенеза у гетеротрофных микроорганизмов // Усп. микробиологии. 1982. - 17. - С. 41-61.

Кусакин О.Г., Дроздов Ф.Л. Филема органического мира. Ч. 2. Прокариоты и низшие эукариоты. - С.-Петербург: Наука, 1998. - 478 с.

Лакин Г.Ф. Биометрия. - М.: Высш. шк., 1973. - 343 с.

Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. - М.: Изд-во АН СССР, 1959. – 263 с.

Леонтьев Д.В., Акулов А.Ю. Революция в мегатаксономии: предпосылки и результаты // Журн. общ. биол. - 2002. - 63.

- С. 158-176.

Лєнова Л.Й., Борисова О.В., Лукінов Д.І., Вассер С.П. Вивчення динаміки розподілу клітин за розмірами для характеристики стану популяції мікроводоростей // Доп. АН УРСР. Сер. Б. - 1989. - № 5. - С. 67-69.

Мартыненко А.И., Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г. Влияние внешних факторов на фотодвижение водорослей рода Dunaliella Teod. // Альгология. - 1996. - 6, № 2. - С. 150-156.

Масюк Н.П. Исследование Dunaliella salina в природе и в условиях лабороторной культуры // Всесоюз. совещ. по культ.

одноклет. водорослей (6-11 марта 1961 г.): Тез. докл. - Л., 1961 а. - С. 70-71.

Масюк Н.П. Каротиноносна водорість Dunaliella salina Teod. у солоних водоймах Кримської обл. // Укр. ботан. журн. 1961 б. - 18, № 4. - С. 100-109.

Масюк Н.П. Пути обогащения естественных запасов дюналиеллы как источника получения каротина в промышленных масштабах // Вопр. гидробиологии. І Съезд Всесоюз. гидробиол. о-ва, Москва, 1-6 февраля 1965 г.: Тез. докл. М.: Наука, 1965а. - С. 282-283.

Масюк Н.П. Вплив йонів Na, Mg, Cl та SO4 на ріст, розмноження та каротиноутворення водорості Dunaliella salina Teod.

// Укр. ботан. журн. - 1965 б. - 22, №5. - С. 3-11.

Масюк Н.П. Карбонати та бікарбонати як стимулятори росту і нагромадження каротину в культурі Dunaliella salina Teod. // Укр. ботан. журн. - 1965 в. - 22, № 6. - С. 18-22.

Масюк Н.П. Масова культyра каротиноносної водорості Dunaliella salina Teod. // Укр. ботан. журн. - 1966. - 23,№ 2. С. 12-19.

Масюк Н.П. Оцінка придатності ропи сакських водойм для вирощування каротиноносних водоростей // Укр. ботан.

журн. - 1967. - 24, № 4. - С. 37-43.

Масюк Н.П. Морфология, систематика, экология, географическое распространение рода Dunaliella Teod. - К.: Наук.

думка, 1973. - 242 с.

Масюк Н.П. Эволюционные аспекты морфологии эукариотических водорослей. - Киев: Наук. думка, 1993. - 256 с.

Масюк Н.П. Chlorodendrophyceae class. nov. (Chlorophyta, Viridiplantae) у флорі України. I. Обсяг, філогенетичні зв`язки, систематичне положнення // Укр. ботан. журн. – 2006. – 63, № 5. – C. 662-675.

Масюк Н.П., Абдула Є.Г. Перший досвід вирощування каротиноносних водоростей в напівпромислових умовах // Укр.

ботан. журн. - 1969. - 26, № 3. - С. 21-27.

Масюк Н.П., Абдула Є.Г. О результатах и перспектитвах искусственного выращивания каротиноносных водорослей в полупромышленных условиях // Матлы I конф. по изучению споровых растений Украины. - Киев: Наук.

думка, 1971. - С. 82-83.

Масюк Н.П., Абдула Є.Г., Радченко М.Й. Вплив деяких сторонніх організмів на культуру Dunaliella salina Teod. в напівпромислових умовах // Укр. ботан. журн. - 1970. - 27, № 4. - С. 456-461.

Масюк Н.П., Костіков І.Ю. Водорості в системі органічного світу. - К.: Академперіодика, 2002. - 178 с.

Масюк Н.П., Посудин Ю.И. Логические основы классификации поведения подвижных микроорганизмов. - Киев: Изд во УСХА, 1991а. - 36 с.

Масюк Н.П., Посудин Ю.И. Фоторецепторные системы монадных водорослей. - Киев: Изд-во УСХА, 1991б. - 61 с.

Масюк Н.П., Посудин Ю.И. Влияние рН среды на параметры фотодвижения Dunaliella salina Teod. (Chlorophyta) // Альгология. - 2007. - 17, № 1. – С. 14-20.


Масюк Н.П., Посудін Ю.И., Радченко М.Й., Шейко О.М. Логічні основи класифікації світозалежної поведінки рухливих організмів // Укр. ботан. журн. - 1988. - 45, № 5. - С. 1-7.

Масюк Н.П., Терещук О.А. Коллекция культур водорослей Института ботаники им. Н.Г. Холодного АН УССР // Культивирование коллекционных штаммов водорослей. - Л.: 1983. - С. 104-114.

Масюк Н.П., Юрченко В.В. Вплив концентрації водневих іонів на водорість Dunaliella salina Teod. // Укр. ботан. журн. 1962. - 19, № 4. - С. 91-95.

- 177 Мельников С.В., Алешкин В.Р., Рощин П.М. Планирование эксперимента в исследованиях сельскохозяйственных процессов. - Л.: Колос, 1972. - 199 с.

Методическое руководство по биотестированию воды РД 118-02-90. – М., 1991. – 70 с.

Милько Е.С. Влияние освещенности и температуры на пигментообразование Dunaliella salina // Микробиология. - 1963.

- 32, № 4. - С. 307.

Миронюк В.І., Масюк Н.П., Акопянц Н.С. Вплив рН і деяких інгібіторів на активність каталази оліго- та гіпергалобних водоростей // Укр. ботан. журн. - 1980. - 39, № 3. - С. 60-62.

Нобел П. Физиология растительной клетки (физико-химический подход). - М.: Мир, 1973. - 287 с.

Паршикова Т.В. Влияние поверхностно-активных веществ различной химической природы на выживаемость природных популяций водорослей. Ред. Гидробиол. журн. - Киев, 1988. - 13 с. Деп. в ВИНИТИ 26.04.88, № 3216-В88.

Паршикова Т.В., Липницька Г.П., Лілицька Г.Г., Посудін Ю.І. Вплив ПАР на фоторух та флуоресценцію хлорофілу двох видів Dunaliella Teod. // Укр. ботан. журн. - 1990. – 47, № 5. - С. 60-63.

Паршикова Т.В., Пахомова М.Н. Чувствительность различных видов водорослей к действию поверхностно-активных веществ. Ред. Гидробиол. журн. - Киев, 1988. - 13 с. Деп. в ВИНИТИ 26.04.88, № 3215-В88.

Перфильев Б.В. О движении синезеленых водорослей Synechoсоccus // Журн. микробиологии. - 1915. - 2. - С. 283-293.

Посудин Ю.И. Фотоповедение Euglena gracilis // Усп. соврем. биологии. – 1982. – 93, вып. 2. – С. 230-235.

Посудин Ю.И. Лазерная микрофлуориметрия биологических объектов. – Киев: Вища шк., 1985. – 110 с.

Посудин Ю.И. Лазерная фотобиология. – Киев: Вища шк., 1989. – 248 с.

Посудин Ю.И. Оптические методы исследования фотобиологических реакций высших и низших растений. Дисс. докт.

биол. наук. - СПб., 1992а. - 433 с.

Посудин Ю.И. Способ биотестирования наличия химических соединений в водной среде // А.с. 173992288, № 4737382, Заяв. 13.9.1989. Опубл. 5.2. Посудин Ю.И. Биофизик Сергей Чахотин. - Киев: Изд-во НАУ, 1995. - 92 с.

Посудін Ю.І. Вимірювання гравітаксиса водоростей як засіб біомоніторингу водних середовищ // Наук. вісн. НАНУ. 1998. - № 3. - С. 15-21.

Посудин Ю.И., Конончук В.Р., Масюк Н.П., Лилицкая Г.Г. К изучению механизмов фоторецепции Dunalilla salina Teod.

// Альгология. - 1991. - 1, № 3. - С. 24-34.

Посудин Ю.И., Масюк Н.П. Фотодвижение Dunaliella Teod. // Биол. науки. - 1993. - № 2. - С. 28-32.

Посудин Ю.И., Масюк Н.П. Диффракционный механизм фоторецепции одноклеточных зеленых жгутиковых водорослей // Альгология. – 1996. - 6, № 4. - С. 368-376.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г. Влияние ионов кальция на фотодвижение двух видов рода Dunaliella Teod. // Альгология. - 1993. - 3, № 3. - С. 16-23.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г. Векторный метод биотестирования водных сред // Альгология. – 1996. - 1, № 1. - С. 15-25.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г. Влияние ультрафиолетового излучения на фотодвижение двух видов Dunaliella Teod. // Альгология. - 2004. - 14, № 2. - С. 113-126.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г., Голубкова М.Г. Воздействие ионизирующего излучения на фотодвижение водорослей // Радиобиология. - 1992. - 32, вып. 2. - С. 292-298.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г., Радченко М.И. Фототопотаксис двух видов Dunaliella Teod. в ультрафиолетовой области спектра // Биофизика. - 1990. - 35, вып. 6. - С. 968-971.

Посудін Ю.І., Масюк Н.П., Ліліцька Г.Г., Радченко М.Й. Фототопотаксис двух видів Dunalialla Teod. // Укр. ботан.

журн. - 1991. - 48, № 4. - С. 48-53.

Посудин Ю.И., Масюк Н.П., Лилицкая Г.Г., Шевченко А.И. Влияние азида натрия на фотодвижение двух видов Dunaliella Teod. // Физиол. раст. - 1995. - 42, № 3. - С. 432-434.

Посудин Ю.И., Масюк Н.П., Радченко М.И., Лилицкая Г.Г. Фотокинетические реакции двух видов Dunalialla Teod. // Микробиология. - 1988. - 57, вып. 6. - С. 1001-1006.

Посудин Ю.И., Супрун А.Д. К вопросу о механизме фоторегуляции движения жгутиковых водорослей // Биол. науки. 1992. - № 11-12. - С. 27-33.

Рокицкий П.Ф. Биологическая статистика. - Минск: Вышейш. шк., 1973. - 320 с.

Седова Т.В. Основы цитологии водорослей. - Л.: Наука, 1977. - 172 с.

Семененко В.Е., Абдуллаев А.А. Параметрическое управление биосинтезом b-каротина в клетках Dunaliella salina // Физиол. раст. - 1980. - 27. - С. 22.

Синещеков О.А., Литвин Ф.Ф. Фоторегуляция движения микроорганизмов // Усп. микробиологии. - 1982. - 17. - С. 62 87.

Синещеков О.А., Литвин Ф.Ф. Механизмы фототаксиса микроорганизмов // Молекулярные механизмы биологи-ческого действия оптического излучения. - М.: Наука, 1988. - С. 212-227.

- 178 Синещеков О.А., Синещеков В.А., Литвин Ф.Ф. Фотоиндуцированные биоэлектрические реакции при фототаксисе одноклеточной жгутиковой водоросли // ДАН СССР. - 1978. - 239. - С. 471-474.

Сиренко Л.А., Козицкая В.Н. Биологически активные вещества водорослей и качество воды. - Киев: Наук. думка, 1988.

- 254 с.

Ставская С.С. Биологическое разрушение анионных ПАВ. - Киев: Наук. думка, 1981. - 114 с.

Старобогатов Я.И. К вопросу о числе царств эукариотных организмов // Тр. Зоол. Ин-та. - 1986. - 144. - С. 4-25.

Таранова Л.А. Біологічне руйнування катіонних поверхневоактивних речовин // Вісн. АН УССР. - 1987. - № 8. - С. 40 50.

Топачевский А.В., Масюк Н.П. Пресноводные водоросли Украинской ССР. – Киев: Вища шк., 1984. - 334 с.

Фаминцын А.С. Действие света на водоросли и некоторые другие близкие к ним организмы. - С.-Петербург, 1866. - с.

Фаминцын А.С. Действие света и темноты на расположение зерен хлорофилла в листьях Mnium // Натуралист. - 1887а.

- № 13-20. - С. 194-197.

Фаминцын А.С. Учебник физиологии растений. - С.-Петербург, 1887б. - 304 с.

Филенко О.Ф. Водная токсикология. - Черноголовка: Изд-во Моск. ун-та, 1988. - 156 с.

Цвылев О. П., Ткаченко В. Н. Использование одноклеточных водорослей для биологического анализа. - М.: Легкая и пищ. пром-сть, 1981. - 108 с.

Юрина Е.В. Опыт культивирования галобионтных водорослей Asteromonas gracilis Artari и Dunaliella salina Teod. // Вест. МГУ, сер. 4 (Биол. почв.). - 1966. - № 6. - С. 76-83.

Юркова Г.Н. Вплив температурного фактора на Dunaliella salina Teod. // Укр. ботан. журн. - 1965. - 22, № 6. - С. 51-57.

Aansen A.J., Eimhjellen K.E., Liaaen-Jensen S. An extreme source of b-carotene // Acta Chem. Scand. - 1969. - 23. - P. 2544.

Ahmed A.M., Zidan M.A., Adam M.S. Effects of high boron levels on growth and some metabolic activities of the halotolerant Dunaliella tertiolecta // Biol. Plantarum (Praha) - 1988. - 30, N 5. - P. 357-361.

Arnott H.J., Brown R.M. Jr. Ultrastructure of the eyespot and its possible significance in phototaxis of Tetracystis excentrica // J.

Protozool. - 1967. - 14. - P. 529-539.

Ascoli C. New techniques in photomotion methodology // Biophysics of Photoreceptors and Photobehaviour of Microorganisms / G. Colombetti (ed.). - Pisa: Lito Felici, 1975. - P. 109-120.

Ascoli C., Barbi M., Frediani C., Mure A. Measurement of Euglena motion parameters by laser light scattering // Biophys. J. 1978. - 24. - P. 585-599.

Ascoli C., Frediani C. Quasi-elastic light scattering in the measurement of the motion of flagellated algae // Light scattering in liquids and macromolecular solutions / V. Degiorgij, Corti M., Giglio M. (eds.). – Plenum Press Corporation, 1980. P. 183-198.

Ascoli C., Petracchi D. Light scattering techniques in studying photoresponses // Biophysics of Photoreceptors and Photomovement in Microorganisms / F. Lenci, F. Ghetti, G. Colombetti, D.-P. Hder, Song P.-S. (eds.). - New York:

Plenum Press, 1991. - P. 111-123.

Baas-Becking L.G.M. Observations on Dunaliella viridis Teod. // Contr. to Mar. Biol.: Stanford Univ. Press, 1930. – P. 102-114.

Barghigiani C., Colombetti G., Lenci F., Banchetti R., Bizzaro M.P. Photosensory transduction in Euglena gracilis: Effect of some metabolic drugs on the photophobic response // Arch. Microbiol. - 1979. - 120. - P. 239-245.

Barghigiani C., Ferrara R., Ravera O., Serritti A. Biological effects under laboratory conditions // NATO-ASI workshop on trace element specification in surface waters and its ecological implications. Genova, 2-4 May, 1981. - P. 44.

Barghigiani C., Maserti E., Serritti A., Ferrara R. Accumulation and release of Cu and Pb by Dunaliella salina // Proc. Intern.

Conf. «Heavy Metals in Environment», Heidelberg, 1983. - P. 634-637.

Barlow S.B., Cattolico R.A. Fine structure of the scalecovered green flagellate Mantoniella squamata (Manton and Parcke) Desikachary // Br. Phycol. J. - 1980. - 15. - P. 321-333.

Barltrop J., Martin B.B., Martin D.F. Ptychodiscus brevis as a model system for photodynamic action // Microbios. - 1983. - 37.

- P. 95-103.

Barsanti L., Passarelli V., Lenci F., Gualtieri P. Elimination of photoreceptor (paraflagellar swelling) and photoreception in Euglena gracilis by means of the carotenoid biosynthesis inhibitor nicotine // J. Photochem. Photobiol. - 1992. - 13. P. 135-144.


Barsanti L., Pasarelli V., Lenci F., Walne P.L., Dunlap J.R., Gualtieri P. Effects of hydroxylamine, digitonin and triton X-100 on photoreceptor (paraflagellar swelling) and photoreception in Euglena gracilis // Vision Res. - 1993. - 33. - P. 2043 2050.

Barsanti L., Pasarelli V., Walne P.L., Gualtieri P. In vivo photocycle of the Euglena gracilis photoreceptor // Biophys. J. - 1997.

- 72. - P. 545-553.

Batschelet E. Circular Statistics in Biology. - New York etc.: Acad. Press, 1981. - 371 p.

- 179 Bauernfeind J.C. Carotenoids. Colorants and Vitamin A Precursors, Technological and Nutritional Applications. - New York:

Acad. Press, 1981.

Beardall I., Entwisle L. Internal pH of the obligate acidophile Cyanidium caldarium Geitler (Rhodophyta) // Phycologia. – 1984.

- 23, N 3. - P. 397-399.

Beardall I., Heraud Ph., Roberts S., Shelly K., Stojkovic S. Effects of UV-B radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae) // Phycologia. - 2002. - 41, N 3. - P. 268-272.

Beckmann M., Hegemann P. In vitro identification of rhodopsin in the green alga Chlamydomonas // Biochemistry. - 1991. - 30.

- P. 3692-3697.

Ben-Amotz A., Avron M. The potential use of Dunaliella for the production of glycerol, b-carotene and high protein feed // Biosaline Research: A Look to the Future / San-Pietro (ed.). - New York: Plenum Publ. Corp., 1982. - P. 207-214.

Ben-Amotz A., Avron M. The biotechnology of mass culturing Dunaliella for products of commercial interest // Algal and Cyanobacterial Biotechnology / R.C. Cresswell, T.A. Rees, N. Shah (eds.). - London: Longman Sci. Tech. Press, 1989.

Chapter 4.

Ben-Amotz A., Avron M. The biotechnology of cultivating the halotolerant alga Dunaliella // Trends in Biotechnol. - 1990. - 8.

- P. 121.

Ben-Amotz A., Gressel J., Avron M. Massive accumulation of phytoene induced by norflurazon in Dunaliella bardawil (Chlorophyceae) prevents recovery from photoinhibition // J. Phycol. – 1987. - 23. - P. 176.

Ben-Amotz A., Gressel J., Avron M. Stereoisomers of b-carotene and phytoene in the alga Dunaliella bardawil // Plant Physiol.

- 1988. - 86. - P. 1286.

Ben-Amotz A., Katz A., Avron M. Accumulation of b-carotene in halotolerant algae: purification and characterisation of b carotene-rich globules from Dunaliella bardawil (Chlorophyceae) // J. Phycol. - 1982 a. - 18. - P. 529.

Ben-Amotz A., Sussman I., Avron M. Glycerol production by Dunaliella // Experientia. - 1982 b. - 38, N 1. - P. 49-52.

Bendix S.W. Phototaxis // The Botanical Review. - 1960. - 26. - P. 145-208.

Benedetti P.A., Checcucci A. Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis // Plant Sci. Lett. - 1975. - 26. - P. 315-318.

Benedetti P.A., Lenci F. «In vivo» microspectrofluorometry of photoreceptor pigments in Euglena gracilis // Photochem.

Photobiol. - 1977. - 26. - P. 315-318.

Bensasson R.V. Spectroscopic and biological properties of carotenoids // Biophysics of Photoreceptors and Photobehaviour of Microorganisms. Proc. of the Intern. School of the CNR of Italy. Badia Fiesolana (Firenze), 1-5 September, 1975. - P.

146-163.

Berg H.C. Physics of bacterial chemotaxis. // Sensory Perception and Transduction in Aneural Organisms / Colombetti G., Lenci F., Song P.-S. (eds.). - New York: Plenum Press, 1985. - P. 19-30.

Bhattacharya D., Steinkotter J., Melkonian M. Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants // Plant Mol. Biol. - 1993. - 23, N 6. - P. 1243-1254.

Biochemistry and Physiology of Protozoa / M.Levandowsky, S.H. Hutner,eds. – New York etc.: Acad. Press, 1981. – 4. – P. 6 64.

Birkbeck T.E., Stewart K.D., Mattox K.R. The cytology and classification of Schizomeris leibleinii (Chlorophyceae). II. The structure of quadriflagellate zoospores // Phycologia. - 1974. - 13. - P. 71-79.

Borowitzka L.J. Status of the Australian Algal Biotechnology Industry in 1990 // Austr. J. Biotechnol. - 1990. - 4, N 4. - P.

239-240, 250.

Borowitzka L.J., Borowitzka M.A. Commercial production of b-carotene by Dunaliella salina in open ponds // Bull. Mar. Sci. 1990. - 47, N 1. – P. 244-252.

Borowitzka L.J., Borowitzka M.A., Moulton T.P. The mass culture of Dunaliella salina for fine chemicals: from laboratory to pilot plant // Hydrobiologia. – 1984. - 116/117. - P. 115-134.

Borowitzka L.J., Moulton T.P., Borowitzka M.A. Salinity and the commercial productivity of beta-carotene from Dunaliella salina // Nova Hedw. - 1986. - 83. - P. 224-229.

Borowitzka M.A. Caltivation of microalgal from village level to industrial scale // Phycologia. - 2005. - 44, N 4. - P. 11-12.

Borowitzka M.A., Borowitzka L.J. Dunaliella // Microalgal biotechnology / Borowitzka M.A., Borowitzka L.J. eds. Cambridge, 1988. - P. 27-58.

Bound K.E., Tollin G. Phototactic response of Euglena gracilis // Nature. - 1967. - 216. - P. 111-114.

Bovee E.C. Movement and locomotion of Euglena // The Biology of Euglena. Vol. III. Physiology / D.E. Buetow (ed.). - New York: Acad. Press, 1968. - P. 143-168.

Braun F.-J., Hegemann P. Direct measurement of cytosolic calcium and pH in living Chlamydomonas reinhardtii cells // Eur. J.

Cell Biol. – 1999. – 78. – P. 199-208.

Branton D., Bullivant S., Gilula N.B., Karnovsky M.J., Mhlethaler K., Northcote D.H., Packer L., Satir B., Satir P., Speth V., Staeheilin L.A. Steere R.L., Weinstein R.S. Freeze-etching nomenculature // Science. - 1975. - 190. - P. 54-56.

- 180 Bray D.F., Nakamura K., Costerton J.W., Naganaar E.B. Ultrastructure of Chlamydomonas eugametos as revealed by freeze etching: cell wall plasmalemma and chloroplast membrane // J. Ultrastr. Res. - 1974. - 47. - P. 125-141.

Britton G. Biosynthesis of carotenoids // Plant Pigments / T.W. Goodwin (ed.). - New York: Acad. Press, 1988. Chapter 3. – P.

133-180.

Buchheim M.A., Buchheim J.A., Chapman R.L. Phylogeny of Chloromonas (Chlorophyceae): a study of 18S ribosomal RNA gene sequences // J. Phycol. - 1997. - 33. - P. 286-293.

Buchheim M.A., Turmel M., Zimmer E.A., Chapman R.L. Phylogeny of Chlamydomonas (Chlorophyta) based on cladistic analysis of nuclear 18S rRNA sequence data // J. Phycol. - 1990. - 26. - P. 689-696.

Buder J. Zur Kenntnis der phototaktischen Richtungsbewegungen // Jhb. Wiss. Bot. - 1917. - 58. - P. 105-220.

Burkholder P.R. Movement in the Cyanophyceae: effect of pH upon movement of Oscillatoria // J. Gen. Physiol. - 1933. - 16. P. 875-881.

Burr A.H. Photomovement behaviour in simple invertebrates // Photorecept. and Vision Invertebr. – Proc. Nato Adv. Study Inst., Lennoville – New York, London, 1984. - P. 179-215.

Cavalier-Smith T. Eukaryote Kingdoms: seven or nine? // BioSystems. - 1981. - 14. - P. 461-481.

Chamberlain A.H.L. Algal settlement and secretion of adhesive materials // Proc. 3rd Intern. Biodegrad. Symp. Kingston, 1975. London, 1976. - P. 424-426.

Chardard R. L’infrastructure du plasmalemme de Dunaliella bioculata (Algue verte). Mise en vidence dun cell-coat;

essai de localisation des charges ngatives // Crypt. Algol. - 1987. - 8, N 3. - P. 173-189.

Chardard R. Nouvelles observations sur la structure et la composition du cell-coat de Dunaliella bioculata (Algae verte) // Cryptogam. Algol. - 1990. - 11, N 2. - P. 137-152.

Checucci A., Colombetti G., Ferrara R., Lenci F. Action spectra for photoaccumulation of green and colorless Euglena: Evidence for identification of receptor pigments // Photochem. Photobiol. - 1976. - 23. - P. 51-54.

Clayton R.K. Phototaxis in microorganisms // Photophysiology / A.C. Giese (ed.). - New York, London: Acad. Press, 1964. - 2.

- P. 51-77.

Clegg M.R. Behavioural responses of phytoplanktonic flagellates to the quantity and quality of light and their ecological implications // Phycologia. - 2005. - 44, N 4. Suppl. - P. 22.

Cohn F. Ueber die Gesetze der Bewegung Mikroskopischer Tiere und Pflanzen unter Einfluss des Lichtes // Jber. Schles. Ges.

Vaterl. Kult. - 1865. - 42. - P. 35.

Colombetti G., Ghetti F., Lenci F., Polacco E., Posudin Yu., Campani E. Microspettrometria laser di fotopigmenti «in vivo» // II Congr. Naz. «Elettronica quantistica e plasmi», 20-22 Maggio 1980. - Palermo, 1980. - P. 223-227.

Colombetti G., Hder D.-P., Lenci F., Quaglia M. Phototaxis in Euglena gracilis: effect of sodium azide and triphenyl-methyl phosphonium ions on the photosensory transduction chain // Curr. Microbiol. - 1982. - 7. - P. 281-284.

Colombetti G., Lenci F. Identification and spectroscopic characterisation of photoreceptor pigments // Photoreception and Sensory Transduction in Aneural Organisms / F. Lenci and G. Colombetti (eds.). - 1980. - P. 173-188.

Colombetti G., Lenci F. Photoreception and sensory responses in microorganisms // Medicine, Biologie, Environment. - 1982. 10. - P. 319-325.

Colombetti G., Lenci F., Diehn B. Responses to photic, chemical and mechanical stimuli // The Biology of Euglena / Buetow (ed.). - New York: Acad. Press, 1982. – Vol. 3. - P. 169-195.

Colombetti G., Marangoni R. Mechanisms and strategies of photomovement in Flagellates // Biophysics of Photoreceptors and Photomovement in Microorganisms / F. Lenci, F. Ghetti, G. Colombetti, D.-P. Hder, Song P.-S. (eds.) - New York:

Plenum Press, 1991. - P. 53-71.

Colombetti G., Petracchi D. Photoresponse mechanisms in flagellated algae// Crit. Rev. Plant. Sci. - 1989. - 8. - P. 309-355.

Cooper D.G., Zajic J.E. Surfaceactive compounds from microorganisms // Adv. Appl. Microbiol. - 1980. - N 26. - P. 240-244.

Cosens D.J., Nultsch W. Phototaxis and photokinesis // Primitive Sensory and Communication Systems: The Taxes and Tropisms of Microorganisms and Cells / M.J. Carlile (ed.). - New York, San Francisco: Acad. Press, 1975. - P. 29-90.

Crawley J.C.W. Some observations on the fine structure of the gametes and zygotes of Acetabularia // Planta. - 1966. - 69. - P.

365-376.

Crawley J.C.W. The fine structure of the gametes and zygotes of Acetabularia // Biology of Acetabularia / J. Brachet and S.

Bonotto (eds.). - New York: Acad. Press, 1970. - P. 73-83.

Creutz C., Diehn B. Motor responses to polarized light and gravity sensing in Euglena gracilis // J. Protozool. - 1976. - 23. - P.

552-556.

De Busk T.A., Ryther J.H. Effects of seawater exchange, pH and carbon supply on the growth of Gracilaria tikvahiae (Rhodophyceae) in largescale cultures // Bot. Mar. – 1984. - 27, N 8. - P. 357-362.

Deason T.R., Floyd G.L. Comparative ultrastructure of three species of Chlorosarcina (Chlorosarcinaceae, Chlorophyta) // J.

Phycol. - 1987. - 23. - P. 187-195.

- 181 Diehn B. Mechanism and computer stimulation of the phototactic accumulation of Euglena in a beam of light // Photochem.

Pholobiol. - 1970. - 11. - P. 407-413.

Diehn B. Phototaxis and sensory transduction in Euglena // Science. - 1973. - 181. - P. 1009-1015.

Diehn B. Photic responses and sensory transduction in Protists // Handbook of Sensory Physiology, Comparative Physiology and Evolution of Vision in Invertebrates. VII/6A. / H. Autrum (ed.). – Berlin etc.: Springer–Verlag, 1979. - - P. 23-66.

Diehn B., Feinleib M., Haupt W., Hildebrand E., Lenci F., Nultsch W. Terminology of behavioural responses of motile microorganisms // Photochem. Photobiology. - 1977. - 26. - P. 559-560.

Dodge J.D. The fine structure of algal cells. - London: Acad. Press, 1973. - 261 p.

Dodge J.D., Crawford R.M. Observations on the fine structure of the eye-spots and associated organelles in the dinoflagellate Glenodinium foliaceum // J. Cell Sci. - 1969. - 5. - P. 479-493.

Dolle R., Nultsch W. Effects of calcium and calcium channel blocker [3H] verapamil to membrane fractions of Chlamy-domonas reinhardtii // Arch. Microbiol. - 1988. - 101. - P. 18-23.

Dolle R., Pfau J., Nultsch W. Role of calcium ions in motility and phototaxis of Chlamydomonas reinhardtii // J. Plant Physiol.

- 1987. - 126. - P. 467-473.

Donk E., Hessen D.O. Loss of flagella in the green alga Chlamydomonas reinhardtii due to in situ UV-exposure // Underwater Light and Algal Photobiology / F.L. Figueroa, C. Jimenez, J.L. Perez-Llorens, F.X. Niell (eds.). - Malaga: Scientia Marina, 1996, 60 (Suppl. 1). - P. 107-112.

Doughty M.J., Diehn B. Photo sensory transduction in the flagellated alga, Euglena gracilis: I. Action of divalent cations, Ca2+ antagonists and Ca2+ ionophore on motility and photobehaviour // Biochem. Biophys. Acta. - 1979. - 588. - P. 148 168.

Doughty M.J., Diehn B. Photosensory transduction in the flagellated alga, Euglena gracilis: III. Induction of Ca2+-dependent responses by monovalent cation ionophores // Biochem. Biophys. Acta. - 1982. - 682. - P. 32-43.

Doughty M.J., Diehn B., Grieser R. Photosensory transduction in the flagellated alga, Euglena gracilis: II. Evidence that blue light effects alteration in Na+/K+ permeability of the photoreceptor membrane // Biochem. Biophys. Acta. - 1980. 602. - P. 10-23.

Dunal F. Extrait d’un mmoire sur les algues qui colorent en rouge certains eaux des marais salants mditerranens// Ann. Sc.

Nat. Bot. 2 Ser., 1838, 9: 172.

Dunaliella: Physiology, Biochemistry and Biotechnology / M.Avron, A.Ben-Amotz (eds.). - Boca Raton etc.: CRC Press, 1992.

- 240 p.

Duvnjak Z., Cooper D.G., Kosaric N. Production of surfactant by Arthrobacter paraffineus ATCC 19558 // Biotechnol. and Bioeng. - 1982. - 24, N 24. - P. 170-174.

Ehrenberg C.G. Die Infusoriensthierchen als vollkommen Organismen. - Leipzig, 1838.

Ekelund N.G.A. Effects of protein synthesis inhibitors on photoinhibition by UV-B (280-320 nm) radiation in the flagellate Euglena gracilis // Underwater Light and Algal Photobiology / F.L. Figueroa, C. Jimenez, J.L. Perez-Llorens and F.X.

Niell (eds.) - Malaga: Scientia Marina, 1996. - 60 (Suppl.1). - P. 95-100.

Ekelund N.G.A., Bjorn L.O. Ultraviolet radiation stress in dinoflagellates in relation to targets, sensitivity and radiation climate.

// «Proceedings of Workshop», Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 1990.

Ekelund N.G.A., Dolle R., Nultsh W. Phototactic responses of Chlamydomonas reinhardtii in electric field // Physiol. Plant. 1988. - 73. - P. 265-270.

Emerson P.L. Fast Fourier transform fundamentals and applications // Creative Computing. - 1980. - 6. - P. 58-63.

Engelmann T.W. ber die Licht und Fasbenperzeption niederster Organismen // Pflugers Arch. Ges. Physiol. - 1882a. - 29. - P.

387-400.

Engelmann T.W. ber Sauerstoffausscheidung von Pflanzellen im Mikrospectrum // Bot. Ztg. - 1882b. - 26. - P. 419-426.

Enhuber G., Gimmler H. The glycerol permeability of the plasmalemma of the halotolerant green alga Dunaliella parva (Volvocales) // J. Phycol. - 1980. - 16, N 4. - P. 524-532.

En-Zanfeily H.T., Nawar S.S. Degradation of anionic surfactants and the effect on bacterial indices of pollution // Zbl. Bacteriol.

Parasitenk., Infektionskrankh. und Hyg. 2-Naturwiss. Abt. - 1980. - 135, N 8. - P. 486-488.

Esquivel D.M.S., de Barros H.G.P.L. Motion of magnetotactic microorganisms // Exp. Biol. - 1986. - 121. - S. 153.

Ettl H. Grundri der allgemein Algologie. - Jena: Fischer, 1980. - 549 S.

Ettl H. Die neue Klasse Chlamydophyceae, eine natrliche Grouppe der Grnalgen (Chlorophyta) // Plant Syst. Evol. - 1981. 137. - S. 107-126.

Ettl H. Chlorophyta I. Phytomonadina / Sbwasserflora von Mitteleuropa. Bd.9. - Jena: Fischer, 1983. - 807 S.

Ettl H., Green J.C. Chlamydomonas reginae sp. nov. (Chlorophyceae), a new marine flagellate with unusual chloroplast differentiation // J. Mar. Biol. Ass. U.K. - 1973. - 53. - P. 975-985.

Ettl H., Manton I. Die feinere Struktur von Pedimonas minor Korschikoff // Nova Hedwigia. – 1964. - 8. - P. 421-451.

- 182 Ettl H., Moestrup. Light and electron microscopical studies on Hafniomonas gen. nov. (Chlorophyceae, Volvocales), a genus resembling Pyramimonas (Prasinophyceae) // Pl. Syst. Evol. - 1980. - 135. - P. 177-210.

Eyden B.P. Light and electron microscope study of Dunaliella primolecta Butcher (Volvocida) // J. Protozool. - 1975. - 22, N 3.

- P. 336-344.

Famintzin A.S. Die Wirkung des Lichtes auf Algen und einige andere ihnen nahe verwandte Organismen // Jb. Wiss. Bot. 1867a. - 6. - P. 1-48.

Famintzin A.S. Die Wirkung des Lichtes auf die Bewegung der Chlamydomonas pulvisculus Ehr., Euglena viridis Ehr. und Oscillatoria insignis Tw. // Bull. Acad. Sci. (St.-Petersbourg.) - 1867b. - 10. - P. 534-548.

Feinleib M. Photomovement in microorganism’s strategies of response. // Research in Photobiology / A. Castellani (ed.). - New York: Plenum Publ. Co., 1977. - P. 71-84.

Feinleib M. Photomovement of microorganisms // J. Photochem. Photobiology. - 1978. - 27. - P. 849-854.

Feinleib M. Photomotile responses in flagellates // Photoreception and sensory transduction in aneural organisms / F. Lenci, G.

Colombetti, eds. - New York: Plenum Press, 1980. - P. 45-68.

Feinleib M. Behavioural studies of free-swimming photoresponsive organisms // Sensory perception and transduction in aneural organisms / G. Colombetti, P.-S. Song, eds. - New York: Plenum Press Corp., 1985. - P. 119-146.

Feinleib M., Carry G.M. Methods for measuring phototaxis of cell population and individual cells // Physiol. Plant. - 1967. - 20.

- P. 1083-1095.

Flores-Moya A., Hanelt D., Figueroa F.-L., Altamirano M., Vinegla B., Salles S. Involvement of solar UV-B radiation in recovery of inhibited photosynthesis in the brown alga Dictyota dichotoma (Hudson) Lamouroux // J. Photochem.

Photobiology. - 1999. - 49. - P. 129-135.

Foster K.W. Action spectroscopy of photomovement // Photomovement / D.-P. Hder, M. Lebert (eds.). - Elsevier Sci. B.V.

2001. - P. 55-115.

Foster K.W., Saranak J., Zarilli G., Okabe. M., Kline T., Nakanishi K. A rodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas // Nature. - 1984. - 311. - P. 756-759.

Foster K.W., Smyth R.D. Light antennas in phototactic algae // Microbiol. Rev. - 1980. - 44. - P. 572-630.

Foster R.M., Lning K. Photosynthetic response of Laminaria digitata to ultraviolet A and B radiation // Underwater Light and Algal Photobiology / F.L. Figueroa, C. Jimenez, J.L. Perez-Llorens, F.X. Niell, eds. - Malaga: Sci. Marina, 1996. – (Suppl. 1). - P. 65-67.

Fox G.E., Stackebrandt E., Hespell R.B. et al. The phylogeny of prokaryotes // Science. - 1980. - 309. - P. 457-463.

Fraenkel G.S., Gunn D.L. The Orientation of Animals. Kineses, Taxes and Compass Reactions. – New York: Dover Publ. Inc., 1961. - 376 p.

Francis D. On the eyespot of the dinoflagellate, Nematodium // J. Exp. Biol. – 1967. – 47. – P. 495-501.

Freeman H. On the ecoding of arbitrary geometric configurations. V.EC-10 // IRE Trans. – 1961. - P. 260-268.

Friedl Th. The evolution of the Green Algae // Origins of Algae and their Plastids / D. Bhattacharya (ed.). - Wien: Springer, 1997. - P. 87-114.

Galland P., Keiner P., Drnemann D., Senger H., Brodhum B., Hder D.-P. Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis // Photochem. Photobiol. - 1990. - 51. - P. 675-680.



Pages:     | 1 |   ...   | 5 | 6 || 8 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.