, , ,

<<


 >>  ()

..

XI

"

, "

22-23 2010.

539.12.01(063)

22.383

78

XI

"

, "

....

e-mail bsi@depni.sinp.msu.ru

,,,,,,.

, 2010.

, 2010.

11.07.1910 [. - ] 26.09.1982 [ ] 11 -.

,.. ( ), 1931.

,..

,.

.

.

,,,..

,..

. .

..

,.

,.. 1939,.

..

( ),, ( ).

,.

1946 ( ),... -.

1946..

,, -.

,. -,,,,,...

..

1946.

,.

...,.

.

,., 40-,.

1947 ( ), -2.

. ( 1946 ).

.

..

-.

. 1949..

, 23 1953 ( ).

.. 50-.

.

, (, ).

..

.

15,.

( ).

.,..

,,..,.

.

.,,.

..

.

,..,,,.

,,.

:,,.

,,.

26 1968..

( ).

..

.

26 1982.

http://www.peoples.ru/science/physics/vernov/..

akishin2011@yandex.ru,, ( ),,, [1,2].

C ( ).

,,.

.,,,.

[3-7].

5-7..

, (.1).

.1, Spirit Mars Exploration Rover.

500, ~9.

95 /.

.2.

.2.

3.

.3. : 1-. 2. 3-. 4-. 5, 6-, 7-, 8-, 9.

, [4].

,,,,, (.4).

(.3).

~50-80 /, 104-106.

4., JSC-1,. 1, 2-.

,, -, 20 30 /,, 5-7...

3 /.

(1,35 - 6 ).

(CO2;

Ar,, ) H;

OH;

CO.

( 2).

.

(. 5.a,b),,,., .

a b.5. (a,b),.

5-,, (.6) [8].,,,.

.6. (10-16/12/1972 ) Apollo-17. 1-. 2-. 3-. 4. R-.

2012..

, 18,.,,, (, , ),.[8].

,,,.,, [8].

1.

4-5. 1998 1999. (Lunar Prospector), 8.

[8],,..

(.7).

,, Apollo 17.

, 1 /.

.7. : (+) 5 10 ;

() ;

().

.8

100, [8].,.

.8

100, 1.

.,

.

.

.

. 70, 1-3.

,,.

,.

,.

.

.

,.

,,.

,.

1. J F..Fennell, H,C.Koons., J.I.Roeder., J.B.Blake. Spacecraft Charging: Observation and Relationship to Satellite Anomalie.

URL:http://articles.adsabs.harvard.edu//full/2001ESASP.476..279F/0000279.000.html ( :21.10.2009).

2. Effects of Space Condition on Materials. A.I, Akishin (Editor).Nova Science Publishers, Inc. NY.2001.p, 199.

3. NASA-Phantoms from the Sand: Tracking Dust Devils Across Earth and Mars.

URL:http;

//www.nasa.gov/vision/universe/solarsystem/2005-dust-devil.html ( : 16. 10. 2009).

4...,..

//..., 1962,.XXVI,.11,.1435-1437.

5...,..,..,..,..,..

// -, 1980, 6,.10- 6. W.Thornhill.ElectricDust Devils.

URL:http://translate.googleusercontent.com/translatec?hl=ru&sl=en&u=http://www.biblio ( : 8.12.2009) 7. K.M.Forward,D.J.Lacks,R.M.Sankaran. Particle-size dependent bipolar charging of Martian regolith stimulant.//Geophysical research leters, 2009,v.36, l13201, doi:10.1029/2009GL938589.

8. T.J.Stubbs.,W.M.Farrell.,J.S.Halekas.,M.R.Collier.,R.R.Vondrak., G.T.Delory.The Lunar Dust-Plasma Environment. NASA, Berkeley, Lunar X-ray Observatory (LXO)/Magnetoseath Explorer (MagEX) meeting, Hilton Garden Inn,October 25 2007.

URL:http://www.lpi.usra.edu/meetings/LEA/presentations/wed_am/1_Stubbs_Near_Lunar _Plasma_Environment.pdf ( : 16. 10. 2009).

1 2,3 1..,..,..,..,..

..., ;

2 ( ;

( ) -mail: bondarenko_gg@rambler.ru - ( ),.

, -,,,.,,, [1-3].

,, D,.

,,, 100, 44 [4].

,,.

,. -4,5 100.

,,. 1000 q 3% HCl.

,. Al 475 q.

, SiO2,.

, [5,6]., -,,.

, [5-9].

D- - Pu.

D- 10 -1 - 10 c .

, -, 710-9 10-6 - /..

-,,, D-. 1, 2, D-,.

710-9 -. 1 (a) / D, ( 3).

,,.

- 2.

D 10-6 - /, (. 1, b),.

, -, 3(. 1 b).

,, - 2 (. 1, a) 3(. 1, b), 3 10-7 / -.

D-, (. 1), [4,5,9].

,.

-,, Pu-Be ( 11 ).

.1. -,, : a 710-9 ;

b 10-6 / /. 2, D-.

4108 c-1 -.

, 710-9 / -,.

,.

2,,.

,.

,, 5 (.2, ).

,,.

, -, - [9].,.

,, -.

., 1 5(. 2, b).

9,5.

-, ( ). - 10-.

., 9,5,,,.,.

.2. -, (a) (b), 710-9 /. 2 3.

,.

10-15,,,,,,.,,.

,, -,,.

(D- ).

,.

1. //...

.-.:, 1989, 433.

2...,..,..

. -.:, 1988, 256.

3. T.R. Oldhem, J.M. McGarrity. Ionization of SiO2 by Heavy Charged Particles/ IEEE Transaction on Nuclear Science, 1981, vol. NS-28, No. 6, pp.3975-3980.

4. B..,..,..,..,...

- - // XVII " "(... ),.

2007,.406-409.

5...,..,...

- - : //.:

..., 2004, 256.

6...,..,..,...

- //, 2003,.32, 2,.152-158.

7. B..,..,..,..,...

- //, 2006, 5,. 19-23.

8. B..,..,..,..,..,..

,..,.. //, 2001, 3,.5-11.

9. D. Arnold, E. Cartier, D.J. DiMaria. Theory of high-field electron transport and impact ionization in silicon dioxide // Phys. Rev. B, 1994, vol.49, No.15, pp.10278-10297.

2009 2013 470.

1 2,3..,..,.., 1..,..

..., ;

2 ( ;

( ) -mail: bondarenko_gg@rambler.ru (., [1-3]), - ( ),.,, -.

,.

,,.

,,, [2].

-,,.

-.

SiO2 [4-6]:

- q n t 0 (d ox  x n 0 )  n t (d ox  x n )  p(d ox  x p ) 'VI ()= (1) HH 0 - q n t0x n0  n t x n @ 'VI ()= (2) HH -, SiO V Q N t 0 1  exp  t 0 inj (3) nt q -, SiO g Vg Qinj g Qinj  1  exp  (4)

nt Vg q q -, SiO dp J inj (m  1) @ Vp (N p  p)  J inj V n p (5) q dt - B AE exp , (6) J inj E Q0 = Qc + Qinj + Qion (7) ;

HH0 q- ;

nt0 nt , SiO ;

p-, SiO2;

dox ;

xn0, xn, xp ( Si- SiO2) SiO, SiO ;

Vg SiO ;

Nt Vt SiO2;

t ;

Qinj , = Jinjt);

(m-1) (Qinj (m );

g Vp - ;

Vn ;

Np ;

A=1,5410-6m0/m*MB-1 [A/B2] B=6,83107m0/m*MB3/2 [B/ ] m* - ;

m ;

MB ;

E ;

Q0 , (Q0 =J0t) J0;

Qc , (Qc = Cmos VI(t)), Cmos, VI(t) ;

(Qion = Jiont), Jion Qion ,.

.

(1-7) : nt0(0) = nt(0) = p(0) = 0.

- Vn (5), V n = b0E, -,E b0 ( / ).

, [4]:

E m  1 Pmf ii  1, (8) E th E ii ( / ) Pmf th :

t E f 1  E ii (9)

d ox  t d th th Po (d ox  t d )  P1, (10) Pmf d ox  t d d ox -. 30, : E f = 6, (9) (10), / ;

t d = 8, th ;

Po = 910-3 - ;

t1 = 1,56 ;

P1 = 3.

, (1-7), [6]: Vp = 510-14 2;

bo = 310-13 ;

Vt = 110- / ;

Np = 11013 -2 ;

Nt = 1,51013 -2;

g = 310-7;

Vg = 1,410-15 2.

-, [7],.1 2.

. -,, 10-6 /.,.1,,.. 1,,.. -, 10-7 /.

,. 2,,.,.2,, -.

,,,,.,,,,,,,.

(.1),,.

, (0,1 0,9)I0.

.1. -,, J0 = 10-6 /.

1,2,4,6,8,10. 3,5,7,9, : 3 Jion = 0,9J0;

5 Jion = 0,8J0;

7 Jion = 0,5J0;

9 Jion = 0,1J0.

(.2),, -, -.

, (2 10)I0.

,,, -,,.

,,.

.2. -,, J0 = 10-7 /. 1,2,8,9.

3,4,5,6,7, : 3 Jion = 10J0;

4 Jion = 5J0;

5 Jion = 3J0;

6 Jion = 2J0.

-,,.,, -,,,,.

10...,..,...

- //, 1990,.24,.6,.969-977.

11. T.R. Oldhem, J.M. McGarrity. Ionization of SiO2 by Heavy Charged Particles/ IEEE Transaction on Nuclear Science, 1981,vol. NS-28, No. 6, pp.3975-3980.

12...,..,...

..:, 1988, 256.

13. D. Arnold, E. Cartier, D.J. DiMaria. Theory of high-field electron transport and impact ionization in silicon dioxide// Phys. Rev. B, 1994, vol.49, No. 15, pp.10278-10297.

14. C. Chen, C. Wu. A characterization model for constant current stressed voltage-time characteristics of thin thermal oxides grown on silicon substrate // J. Appl. Phys., 1986, vol.60, No.11, pp.3926-3944.

15. G.G. Bondarenko, V.V. Andreev, V.E. Drach, S.A. Loskutov, M.A. Stolyarov. Study of temperature dependence of positive charge generation in thin dielectric film of MOS structure under high-fields // Thin solid films, 2006, vol.515, pp. 670-673.

16. B..,..,..,..,...

- //, 2006, 5, c. 19-23.

1,2 3 4 4..,..,..,..,..

( );

3 ( );

... ;

E-mail: bondarenko_gg@rambler.ru [1-4].

,,, [4].

1500,.

,.

.

,,.

,.

N, wN 1 w wN w wN  D, (1) D wt r wr wr wz wz D T , D.

r z 0 (. 1) wN 0, z 0, (2) wr wN r, 0 0. (3) wz G2 G r G G G6 G5 G z. 1.

[5],..

G1, G2, G6 G7,, :

N rb, zb 0, (4) rb, zb .

.., G3, G4 G5,, [6]:

wN rb, zb v N rb, zb  D (5) 2ve, wn 8kTb Sm , Tb v, ve ,m,n.

(1)(5),.

r z, N i hr, j hz, hr hz, Nij,, i 1, L j, j 1, M i, L j, Mi M i. Lj (1), [7], Nij 1 2  Nij k k / 2 Nij 1 2  /1 Nij, k k (6) 't Nij 1  Nij 1 k k / 2 Nij 1 2  /1 Nij 1, k k (7) 't / 2 Nij, /1 Nij :

ai, j 1 ai, j 1 aij aij / 2 Nij * Ni, j 1  *  Nij  Ni, j 1, h h hz hz hz z z 1 1 ri 1bi 1, j ri 1bi 1, j r j bij ri bij /1 Nij  h*  h Nij  h N i 1, j, Ni 1, j ri hr hr * r r r Di, j 1  Dij Di1, j  Dij 2, bij ri aij z j 2, h* h ri ri  r, ri 1 ri 1  r.

2 G1 G 6 :

G1: 0 d i d l1, j m1;

G2 : i l1, m1 d j d m2 ;

G3 : l1 d i d l2, j m2 ;

(8) l2, m2 d j d m3 ;

G5 : l1 d i d l2, j l1, m3 d j d M i.

G4 : i m3 ;

G6 : i (6) p j N ik, 12  q j Nij 1 2  s j Nik, 12  f j, 1 k (9) j j aij ai, j 1 aij ai, j  2hz   pj, qj, sj, 't * * hz hz hz hz 2hz k 't k Nij  /1 Nij.

fj 't , (7) pi Nik1j  qi Nij 1  si Nik1j  fi, k (10) 1, 1, ri bij ri 1bi 1, j ri bij ri 1bi 1, j 2hr   pi, qi, si, 't * * ri hr ri hr ri hr ri hr 2hr k 1 2 't  / 2 Nij 1 2.

k fi Nij 't (2) [7]:

N 0,j1  N 0,j1 b1, j N1, 1  N 0,j1 k k k k  / 2 N 0,j1 j k (11) 't hr 4 hr N 0,j1 D1 N1, 1  E1, k k (12) j hr2 't hr2 N 0,j1 2  / 2 N 0,j1 k k 2b1, j 't D1, E1, 2b1, j 't  hr2 2b1, j 't  hr (3) [7]:

   ai,1 Nik,1 1 2  Nik,0 1 2 Nik,0 1 2  Nik,  /1 Nik,0 (13) 't hz 2 hz   D 2 Nik,1 1 2  E2, Nik,0 1 2 (14) hz 't hz Nik,0  /1 Nik, ai,1't D2, E2.

ai,1't  hz ai,1't  hz 2, (5) G k 1 2 k 1 2  ai,m2 N i,m2  N i,m2 1 N ik,m1 2  N ik,m2 v    /1 N ik,m2  N ik,m1 2  2ve (15) 't 2 2 hz hz 2 hz   N ik,m1 2 D3 N ik,m1 1  E3, (16) 2 h hz k Ni,m2  z /1 Nik,m2  2hz ve ai,m2 't D3, E3.

h2 h v hz hz v ai,m2   ai,m2  z  z 't 't 2 G (5) N lk 1  Nlk 1 rl2 1 bl2 1, j N lk 1 j  Nlk 1 v 2 1,  / 2 Nlk 1 2  Nlk 1  2ve 2, j 2, j,j (17),j 't 2 2, j 2 2 hr rl2 1 hr 2 hr Nlk 1 D 4 Nlk 1 j  E4, (18) 2 1, 2, j rl2  hr2 k 1 2 hr bl2 1, j  / 2 Nlk 1 2  2hr ve N rl2 1 't l2, j 2, j D4, E4.

hr2 hr v hr2 hr v rl2 1 rl2  bl2 1, j   bl2 1, j   't 't rl2 1 rl2  2 (5) G k 1 2 k 1 2  ai,m3 1 N i,m3 1  N i,m3 N ik,m1 2  N ik,m3 v  (19)  /1 Nik,m3  Nik,m1 2  2ve 't 2 2 hz hz 2 hz   D5 Nik,m1 1  E5, Nik,m1 2 (20) 3 h hz k Ni,m3  z /1 Nik,m3  2hz ve ai,m3 1 't D5, E5.

h2 h v hz hz v ai,m3 1   ai,m3 1  z  z 't 't 2 k  1 2, Nij 1 2, k k  1 [7] z.

Nij 1, k r.

(21) (22) 't.

wN D (21) J wn.,,..

G1, (21) Ni,m1  Ni,m1  J i ai,m1, 0 d i d l1. (22) hz, -400 [3]: 20,6, 96, ( ) T 300 P ' r 1104, ' z 2,5 104.

,,,, 5%, (1)(5).

.2 3.

D T, v T ve T,, [8],, 293.

J, 40 z, 10 10 15 20 25 30 0. 2.

:1 ;

2 J, 1017 r, 10 3 0 1 2. 3.

:1 ;

2.2 3,, 2660, 50, 100,, 90%.

,.

1.....:, 1977. 344.

2.....:, 1991. 252.

3.....:, 1991. 720.

4. G.G. Bondarenko, M.R. Fisher, V.I. Kristya, V.V. Prassitski. Electrode material transport and re-deposition in high-intensity arc discharge lamps // Vacuum. 2004.

V. 73, 2. P. 155159.

5...,..,...

//. 1986.. 56, 9.. 17181723.

6. M.S. Benilov, S. Jacobsson, A. Kaddani, S. Zahrai. Vaporization of a solid surface in an ambient gas // J. Phys. D: Appl. Phys. 2001. V. 34, 13. P. 19931999.

7......:, 1977. 600.

8...,..,..,...

. //. 2002. N 5..30-34.

1,2 3..,..,..

( );

( );

...

E-mail: bondarenko_gg@rambler.ru [1-3]. 1,..

[4].

,.

,.

,,.

[5-13].

[8].

( ).,,.

R L,,, T0.

t rs (t ) (. 1).

, 0,.

z qs (t ), L,, z, T0.

,.,,.

1 w wT w T wT  2

a r (1) wt r wr wr wz qs t O, r d rs t wT r, 0, t , (2) rs t  r d R wz 0, T r,  L, t T0, (3) wT R, z, t 0, (4) wr T r, z,0 T0, (5) O / Uc, O, U c, a,.

[14] :

t f 2a qs W rs2 W exp avm t  W dW  T r, z, t T0  O LR 2 m 0 (6) 2 J 0 si r f t qs W rs W J1 si rs W exp a si   vm t  W dW cos vm z.

s R 2 i 1 si J 0 i J0 x J1 x -, J1 si R 0.

S 2m  1 2 L, si vm (6), rs t Ts t T r, 0, t rdr t rs2 t f 2a qs W rs2 W exp avm t  W dW  T0  (7) O LR 2 m 0 4 f J1 si rs t t s 2 J 2 s R qs W rs W J1 si rs W exp a si2  vm t  W dW.

 rs t i 1 i 0 i 0 dc rs [8,12], Ts,,,, [8,9] jU c, qs (8) Uc j.

[4 8], I S j 1 2, (9) rs I.

dc Uc [13]:

pA exp 1 g ln 1  1 J i, dc (10) Bgpd c 2, Uc (11) [15]:

 K 0Ts1 2U c 2 d c 5 2, (12) j g 1.639, A B, [], J i , K 0 4H 0 1  J i ek V p0 M 1 2, H 0 , V,e M, k.

p 7,16[]:

p0T0 Ts, p (13) p0 T0.

(7) - (13),. qs, rs, p, dc, U c, j, Ts t 2E 2 4a Ts t T0  G [ t  \ t , (14) Ts t LR 2 f 1  exp avm t vm, [ t 2 m 1 i 1 i s exp a s 2  v 2 t  W dW f f J s G T t t J s G T W i m \ t 2 2 Ts W s m 0 i 1 s J s R i i 0 2 I exp 1 g ln 1  1 J K0 1 G,E

i, Bgp0T O S AK 0 Bg 2 3 2 p0T0

.

t of, Ts (f), Tse W m [], Tse E F (Tse ), T0  Tse (15) Tse 4 f J s G T th(si R) 2 GT F Tse se L  2 1 i3 2se.

si J 0 si R R R i ( R o f, L o f ), F (Tse ) [17], (23) z d 0,, [13], (14) (15).

,, T0 300 K, V 2 u1019 ( p0 105, A 2.31 1/( ), B 61.0 /( ), J i 0.13, O 45 /( ) [4,8,11]).

. L, Tse (15) I =1.

Ts t, (14),. 3., 450,,,. 2, 460.

[8] R 0.018 L 0.01., 200 750.

. 2,,, L 0.., [8] (, I = ).

,.. (3).

, (14) (15) ( 0, [8]).

(3)., L 0.0025 1 (15) I 410, [8] 430.

.

,.

Tse,.

, Tse I ! 0, 1.

Tse.

. 1..

Tse. 2.

L I R 0.01 R 0. 1 ( ) ( ).

Ts t. 3.

I 1, R 0.018, L =0.01 ( ) Tse,.2( ).

1. J.J. Shi, M.G. Kong // J. Appl. Phys. 2003. V.94. 9. P.5504.

2. M.J. Kushner // J. Phys. D: Appl. Phys. 2005. V.38. 11. P.1633.

3. K.H.Becker, K.H.Schoenbach, J.G.Eden // J. Phys. D: Appl. Phys. 2006. V.39. 3. P.R55.

4......:, 1987, 592.

5...,..,..,.. //.

2002..28. 10..930.

6. Q.Wang, I.Koleva, V.M.Donelly, D.J.Economou // J. Phys. D: Appl. Phys. 2005. V.38.

11. P.1690.

7. D.Staack, B.Farouk, A.Gustol, A.Fridman // Plasma Sources Sci. Technol. 2008. V.17.

2. 025013.

8. V.I. Arkhipenko, A.A.Kirillov, Y.A. Safronau, L.V.Simonchik, S.M. Zgirovski // Plasma Sources Sci. Technol. 2008. V.17. 4. 045017.

9. Q.Wang, D.J. Economou, V.M. Donelly // J. Appl. Phys. 2006. V.100. 2. 023301.

10. T.Farouk, B.Farouk, D.Staack, A.Gustol, A.Fridman // Plasma Sources Sci. Technol. 2006.

V.15. 4. P.676.

11. S.G.Belostotskiy, V.M.Donelly, D.J.Economou // Plasma Sources Sci. Technol. 2008.

V.17. 4. 045018.

12. V.I. Arkhipenko, A.A. Kirillov, Y.A. Safronau, L.V. Simonchik, S.M. Zgirouski // Plasma Sources Sci. Technol. 18 (045013) 2009.

13... //..,... 2010. 3..107.

14......:

, 1956. 204.

15... //... 2008.. 72. 7.. 1021.

16...,.. //. 1999..69. 11. C.42.

17...,..,...

..:, 1983. 750.

18..,....:, 1963. 466.

1 1 2,..,..,..

;

... ( ;

( ) -mail: bondarenko_gg@rambler.ru, [1], .

,. ( ) ( ), [2].

10%, 100% [3,4].

( ), EuS EuTe [5-7].

EuS TC =16 K [7]).

(, , (108 K HgCr2Se4, 127 K CdCr2Se4 340 K Fe0.5Cu0.5Cr2Se4 [8]).

CdIn2S4/CdCr2Se4 CdIn2S4/HgCr2Se4,, 0,5%, ( ).

Maple.

,, (+) (), 77 ( n-CdIn2S4/p-CdCr2Se4 0, ) 1,175, n-CdIn2S4/p-HgCr2Se4 0,, 0,955 [9, 10].

[1] p,.

CdIn2S4/CdCr2Se4 CdIn2S4/HgCr2Se ) d = 150 E= ( 106108 /.,, [11]:, E B ( / ).

d, ( ) [11] 1/ 4 S 2em d Ed e2 Ed  MB  (M B  h j )e 2Shd [11] 4 S em MB 3 / e2  E2 e h E j 4ShM B B/E ( ), d.

CdIn2S4/HgCr2Se, [12].

[13].

.1 2 CdIn2S4/CdCr2Se4 CdIn2S4/HgCr2Se, (+) ().

j+ j,, 100 % ( 77 ).

. 1. - j+ ( ) j ( ) CdIn2S4/CdCr2Se, d: 5 (1), 10 (2), 15 (3), 50 (4). 2. - j+ ( ) j ( ) CdIn2S4/HgCr2Se, d: 5 (1), 10 (2), 15 (3), 25 (4),.

( - ),,. -,.

, HgCr2Se4, CdCr2Se4, /.

j(E) ( ). -, Ed ( ), B, Ed. B, ( ) ;

d E.

.3 CdIn2S4/CdCr2Se4 CdIn2S4/HgCr2Se j+, (+).

. 3. - j+ CdIn2S4/CdCr2Se4 () CdIn2S4/HgCr2Se4 ( ), E: 10 (1), 4 107 (2), 8 107 (3), 108 / (4), ( 3,4.3 2-4 j(d).3 ). -, E, Ed (. ), B, d, B/E.

.4. j/j CdIn2S4/HgCr2Se4 d= 5 ( ) 15 (), E:

( ) 107 (1), 3 107 (2), 5 107 (3), 6 107 (4), 7 107 / (5), 9 107 / (6);

( ) 107 (1), 7 7 7 7 2 10 (2), 3 10 (3), 4 10 (4), 6 10 (5), 9 10 / (6).4 CdIn2S4/HgCr2Se,.

,., T,, j+. (, HgCr2Se4 [14].) j/j0 d=.4, 0,60,8 4,05,0 d= 15.

, (.4 1,, 3-6 ;

. 1, 2-6 ).

[15],.

1., CdCr2Se4 HgCr2Se,.

,.

CdIn2S4/Cd(Hg)Cr2Se.

2.,,, CdIn2S4/Cd(Hg)Cr2Se4.

, T.

,.

17. I.Zutic, J.Fabian, S. Das Sarma. Spintronics: Fundamentals and applications // Rev. Mod.

Phys., 2004, vol.76, No.2, pp.323-410.

18. G.Schmidt. Concepts for spin injection into semiconductors a review // J. Phys. D: Appl.

Phys., 2005, vol. 38, No. 7, pp. R107-R122.

19...,..,... // ,2001,. 4. http://zhurnal.ape.relarn.ru/articles/2001/039.pdf.

20... //, 2002,.172, 12,.1458-1461.

21. C.J.P.Smits, A.T.Filip, J.T.Kohlhepp, H.J.M.Swagten, B.Koopmans, W.J.M. de Jonge Magnetic and structural properties of EuS for magnetic tunnel junction barriers // Appl.

Phys., 2004, vol. 95, No. 11, pp. 7405-7409.

22. H.Kepa, G.Springholz, T.M.Giebultowicz, K. I. Goldman etc. Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices // Phys. Rev. B, 2003, vol. 68, No. 2, pp. 024419.1-024419.16.

23..... :, 2007, 262.

24. K.G. Nikiforov. Magnetically Ordered Multinary Semiconductors. Progress in Crystal Growth and Characterization of Materials. Vol. 39. Oxford: Pergamon, 1999, 104 p.

25...,.. CdCr2Se4/ CdIn2S4 // , 2008,. 11,. 1008-1017.

http://zhurnal.ape.relarn.ru/articles/2008/091.pdf.

26...,...

HgCr2Se4/CdIn2S4 //, 2008, 3,.16-20.

27. /..,.. .:, 1973, 367.

28. K.G. Nikiforov, M. Baran, V.K. Belyaev et al. Magnetization and chromium ions with minority valency in CdCr2S4 and HgCr2Se4 //Physica Status Solidi (B), 1990, vol.158, No.1, pp.63-67.

29. T.Arai, M.Wakaki, S.Onari, K.Kudo, T.Satoh, T.Tsushima Magnetoabsorption in single crystal HgCr2Se4 // J. Phys. Soc. Japan, 1973, v.34, No1, pp. 68-73.

30. N.Koguchi, K.Masumoto. Electrical properties of the n-type ferromagnetic semiconductor HgCr1.9In0.1Se4/Ag Schottky-barrier diode // Japan. J. Appl. Phys., 1980, vol. 19, suppl. 19 3, pp.273-278.

31...,..,..,... // :..,, 2003. :, 2003,.33-35.

1 2..,..,..

..., ( ) 1. (- ),.

- ( ) [1]:

,, , , ,  - ( ) .

- ( ), +. - ( ) = 1,6 10 1,02,.

,.

[1].

,,,.

,.

, S-c,.

.

Ne=Np 2,,.

-.

2.

- ( ),.

,,.

.

,.

,,, .

.

.

.

( ),, ( - ).

.

(,, ),., S-,.

- .

-,,.

1100.

dA ~ 1011 c.

( ) -.

,.

-,,,,, .

( ),.

.

3. [1,2],, :

 ;

 - ;

 -,, - ;

 - ;

 ;

 ;

,,.

4.,.

.

[2,3].

.

.

- S.

[2,3].

.

.

[1].

.

,,.

[1].,,,.

-.

.

.

[2,3].

.

5.

[1,4,5].

Se,p | e,p| t) = | (R, t)|exp[iSe,p(R, t)].

e,p(R, e,p |2, |2.

= |e|| =|e||, .

(S- ),.

,.

-, ( ).

.

[1,6].

,.

.

1... - :

..: - . 2009.

2...,..,..,..

-.. 1991.

3...,..,..

..:. 1993.

4.....:.

2008.

5...,..

( )..:. 2002.

6...,..,..

. //.. 55. 4. 2010....1,..1... E-mail: lmis@miem.edu.ru;

.

2.

,.

.

,.

:

-, ;

-,.

60 1.

:

1.

20.

2.

, ( 0. 0.5 )., 2/ + 25%. 0.5.

3. f I 1,.

,, ( ( )+ ( )) [1] ( ) D /D = 3, D,D .

,, f f,.

,.

- ( I) :

{[ = (N/2 l)] H121};

{[ = (N/2 3)] H311};

{[ = (N/2 4)] H411}.

Q.

311 Q = 180 240,,,.

I.

f f f.

, ( ), [1].

:Q ~ Q ~ 650.

2,0 3,5.

,,,,.

, - I,,.,, I [2 - 4].

(, ),, I.

0,37 12,5. 1,9,,.

,, I.

I,, 0. 0.5.

.

.

60 .

, 1 3,.

.

( ) ( )., [5, 6],, 1.

. 1..

[7].

411,.

, H411 H121,.

,.

,,.

.

Q 120.

5, 60.

.

5.

f = 1, ( 3,5)..

~.

Q.

Q= 650 700.

:

1.

60 10.

2.

3.

.

,,.

1.... ,,, 1991.

2. - ,, 1971.

3...,... -3, 1976.

4.... - - , 1985.

5...,... - , 1979.

6...,... - -1 , 1977.

7.... ,,, 1955.

..1,..1... E-mail: lmis@miem.edu.ru;

.

, 1000.

400.

, :

-,, ( ), ;

-, 150 / ;

;

, -.

,, , 10-., 100, 296.5.

( ) 307. 111.

.

3.6% (~ 11 ).,,.,, 1200.

( ), 15-,. 230.

287, 294 157.

.

4.5% (~13 ).

1.

, [1],.

,.

,.

,,,,.

. 1/,, 3 [1] 411.

= +, (1) , , .

, 732, 568.

. 1.,,. : timp (timp = 0.08 );

trel1 , (trel1 = 0.08 );

trel2 (trel2 = 80 ).

. 2.,,. : timp (timp = 0.08 );

trel1 , (trel1 = 0.08 );

trel2 (trel2 = 80 ).

,, 8.25.

1200 ( 1700 [2]).

,, 732 1200,,,,.

,,.

, (, ),.

1...

1.

.

Da, D, a, b, /w / (t, ) 1 3.2 3.86 0.156 0.156 1 88. 2 3.2 3.86 0.156 0.156 1 3 3.22 3.8 0.170 0.100 1.163 79. 4 3.22 3.8 0.170 0.100 1.163 + (0.2) 93. 5 3.22 3.8 0.170 0.100 1.163 + (0.1) 87. :

Da ;

D ;

;

;

/w ;

t.

. 3..

,.

, : ( 3), ( 5).

,, Weber.

,

...., BEMS.

Bz(z), Br(z).

.,.

L,, 0.18 0.08.

,,.

,,,,, -.

,,.

. ( ) - ( ) .

Q0 ~ 1.5 2 .

.

(, ).,, ( ).

( ),, :

- (5. 1);

(3. 1);

- (. 1).

.

. 619 (1238 ).

.

.

.

.

.

, 2 1000.

1... ,..,.: , 1966.

2.. ,. 1 ,.....,.:

, 1962.

..,..,..

E-mail: lmis@miem.edu.ru.

.

,,,.

,,.

(. 1).

3. 1. - :1 ;

2 ;

3 ;

4 ;

5 [1, 2]. 600, 2450. 10, 7080. 30.

: 30, 30, : 15, 45.

.

Ansoft HFSS.

: 50% 25%.

[3].

, .

.. 50%.

) ). 2.

50%, 1 50, 2, 3 : ), ).

,, 30 40.

.

,,,.

25%,.

. 3.

,.

.

) ). 3. ( ) ( ), 1 50, 2, 50 : 25%, 50% 1...

........., 2005.

2...

...,, 2007.

3...

........, 2001.

..

..., E-mail: vasilenkol@depni.sinp.msu.ru.

-,.

-,,.,,,, [1,2,3].,,,,,, (. ).

 E1 N1dt  dN, E1 N1 .

,,, 8000 [4],., H x, OH x, HO2.

x,,, [5,6] (. ).

,,  E1 N1dt  V N 2 N1dt dN1c  c dN  E 2 N 2 dt  dN 2  dN 2  V N 2 N1dt  N N 2 dt  c c c dN, N 2c N2 ,, E2 ,N,V , E1 , N1c .

V N 2 N1dt, c.

,,,,.,,,.

,,.,,,.

1......:, 1962, 99 c.

2..,...:, 1969, 183.

3......:,, 1978, 232.

4..... // :,,. 2003, 1,. 23-26.

5. J. Barilla, M. Lokajek. The Role of Oxygen in DNA Damage by Ionizing Particles. Journal of Theoretical Biology, V. 207, N 3, P. 405-414, 2000.

6. J. Barilla, M. Lokajek, P. Simr. Mathematical Model of DSB Formation by Ionizing Radiation, arXiv:0801.4880 [physics.bio-ph].

..,..

-...

...,119991, n.g.goncharova@gmail.com,, ( ).

, Eval E d Eval,.

(.,[1]).

.. , ( ) [2].

,.( 1+ 16 O Ca, (e,e) [3]. ) - , -40,.

0 p 0h : 0  ( 40Cag.s. ), ( 40Ca gr.st ) | a1 0 p0h : 0   a2 2 p 2h : 0  ...;

ai !1 z 0.

.

2+.

.,.

.. (rigidity) C EN.

VN N -, =Z = a EN (2 N  5) (2 N  5).

N, J, M N, J, M 2 DZ m m ( ) - :

5=Z E02.

:

3ZR E0.

Q0 | 5S 0+.

, 2 o 0  [4]. [4].

1 - sd-, 2+, [4].

.

[5],, ,,,.

, Si-34 Si-28;

S-36 S-32, 22,.

,,

.,.

.

1. - sd, MeV E(2+), MeV C, MeV O-16 7.96 6,92 0,36 130, O-22 7.35 3,19 0,21 184, Si-28 8.45 1,78 0,41 26, Si-34 8.32 3,33 0,18 259, S-32 8.50 2,23 0,31 57, S-36 8.57 3,29 0,17 291, Ar-36 8.56 1,97 0,26 75, Ar-38 8.57 2,17 0,16 204, Ar-40 8.55 1,46 0,25 57, Ar-42 8.50 1,21 0,28 40, Ar-44 8.49 1,14 0,24 49, Ca-38 8.35 2,21 0,13 353, Ca-40 8.55 3,9 0,12 644, Ca-42 8.65 1,52 0,25 62, Ca-44 8.69 1,16 0,25 45, Ca-46 8.69 1,34 0,15 143, Ca-48 8.67 3,83 0,11 852, 1...-,..., 2. Brown G.E., Bolsterly M. - Phys. Rev. Lett. 3 (1959) 3. A.Richter. Prog.Part.Nucl.Phys.1 (1985) 4. Raman S. et al -At. Data & Nucl.Data Tables. 78 (2001) 5...,..,..,..,-, 66 (2003) 673, 68(2005) Ca..,..,..

-...

...,119991, E-mail: n.g.goncharova@gmail.com, lokom11@mail.ru.

,.

Ca.

Ca, ( )

, . Ca,, Ca.

1 Ca " - = ".

" " ( -1) [1].

( -1) :

D ( J ' E 'T ') ( A1) u ( n f l f j f ) : J f T f J ' T ', j J f Tf (1) f (1), :

C ( J ' E 'T ')( A1) u ( ni l i ji ) : J iTi J ' T ', j J iTi (2) i Ci :

Si Ci Si, (3) i Si , Ca [2].

(2) S0. =47, Ca(p,d) N(1f7/2). [2], 6.7,, Ca.

1d5/2 [3], 1d5/ [3]. 2p3/,.

1 Ca 1- T=4 1- T=5 T=.

T=5.

T=4 (7/2-, E=0 ), (3/2+, E=2,58 ), (1/2+, E=2., ), (5/2+, E=4.98, 5.30, 5.45, 6.25, 6.87 T=7/ ) + + - (1/2, E=12.73 ), (3/2, E=13.09 ) (7/2, E=18.11 ) T=9/2. T=9/2 T=. 8, =47 T=9/2. sd- 1f7/2, 1f7/2.

1- T=4 1- T= Ca.

1

q=Eexc:

FE21,T f q 1, T f T1el (q ) J iP 0, Ti JP 4;

(4) f el T (q),, -. :

J  j J 1 ( q r j ) [Y J 1 : u 2 ei T JeM | l ] JM (5) 2J  j j q T=4 T= 1.

1 Ca E10, 1f7/2 2p3/.. . 2p3/, 1 Ca(e,e') [4].

.,,,. =22. T=9/,. 22.,.

1. 1.

=4;

=5.

.,,,. =22. T=9/,. 22.,.

.2 3,,.

48 Ca(,n) Ca(,p), [5].

.2. Ca(,n). [5].

Ca(,n),,., .

(7) 90.

Ca(,p).

. 3. [5].

.

=24.9 =,. =5 ( =19.3 ) :

Ca =7/2, Ca =9/2 .

,, 10 18 ,.

=4 =5 Ca,, ( =4)19. ( =5)23.8, [5].

Ca,

1. N.G. Goncharova, N.P. Yudin, Phys. Lett. B. 1969.V.29.P. 2. T.W.Burrows, Nucl. Data Sheets. 2007.V.108.P. 3. P.M. Endt, R.B. Firestone, Nucl. Phys. A. 1998.V.633.P. 4. T. Hartman, J. Enders et al, Phys. Rev. Lett. 2000.V.85.P. 5. G.J. OKeefe, M.N. Thompson et al, Nucl. Phys. A. 1987.V.469.P. DETECTION METHODS OF SUPERNOVA EXPLOSION WITH THE ANTARES TELESCOPE.

V. Kulikovskiy1,2, M. Anghinolfi2, H. Costantini2, E. Shirokov 1 Moscow State University,Skobeltsyn Institute of Nuclear Physics,Leninskie gory, Moscow, Russia 2 INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy vladimir.kulikovskiy@ge.infn.it Section 1. Supernova.

Supernova explosion is occurring for stars which are heavier than Chandrasekhar's limit (1.38 solar mass). It's a fast conversion to a neutron star when the thermonuclear processes can't withstand to the gravitation force. During the explosion about 99% of the gravitational binding energy radiates in neutrinos. About 1% are electron neutrinos from the initial "neutranization" phase while the residual 99% are produced during the cooling phase through weak interactions in the hot and dense matter. The latters are roughly equally distributed among all flavours. The time scale of this process lasts over tens of seconds and about one half of the neutrinos escapes the star during the first 1-2s.

The famous supernova explosion in 1987 occurred in the Large Magellanic cloud (SN1987A) and it was seen by the Cherenkov detectors Kamiokande II and IMB and by the scintillation detectors Baksan and LSD. It's predicted that SN explosions in our galaxy should occur once in about 30 years[1].

Our ANTARES neutrino telescope is a large water Cherenkov detector and can provide the opportunity to detect the Cherenkov light produced by positrons from SN antineutrinos.

To investigate this possibility we describe the various procedures which use the data recorded during the normal run operation and the response of our Optical Modules to SN neutrinos evaluated with a Geant4 simulation.

A method to minimize the effect of the bioluminescence burst is discussed in the section 2 while the statistical analysis based on singles rates and double coincidences in one storey is presented in sections 3 and 4.

Section 2. The bioluminescence filter.

In addition to the Cherenkov light produced by muons, neutrino telescopes also detect Cherenkov light from the decay of radioactive elements and light from luminescent organisms. Fig. 1 represents the variation in time of the rate of the single photon events that are the hit counts detected in one OM. One of the main contributions comes from the radioactive decay of 40K. The frequency of this noise is evaluated by MC calculations to be around 40kHz and does not change since the 40K concentration depends on the salinity which is almost constant on time and sea depth. However in fig.1 the mean rate is about 60kHz, the additional contribution being due to a constant bioluminescent activity.

Above this slow variable noise one can see high sharp peaks due to the emission of light bursts from small animals in transit close to the OM. Later in this note we will term these peaks as "bioluminescent burst" to distinguish them with respect to the continuous or slowly variable bioluminescence noise even if the origin of both is biological.

Fig. 1 Example of singles rate (0.3 pe threshold) events in three OMs of the detector Fig. 2 Example of hit counts distribution in one OM. This distribution was evaluated for time slices each of 105ms duration time Considering that the hits in one OM are independent one from each other and that their frequency doesn't change in time with the exclusion of the bioluminescence bursts periods, then the hits for every OM must follow the Poisson distribution.

As an example in fig.2 the distribution hiexp of the hit counts above the 0. photoelectron (pe) threshold in each time frame of 105 ms for one OM is shown.

One can distinguish two particular areas: the region on the left side which is well fitted with the Poisson distribution and a tail on the right where the hit counts distribution is higher than the fit. The hits on the left part of the distribution are mostly from 40K decay and from the continuous bioluminescence noise while the bioluminescence bursts clearly determine the right part of the distribution.

The left region is fitted with a Poisson's function up to a right margin imax which is a free parameter. There are three parameters in the fit:, the mean value of the Poisson distribution, the right margin of the fit and the scaling factor (height of the distribution).

The output of the fit can be used as a filter to exclude time frames where OMs are affected by bioluminescent bursts: for a given OM only time frames with rates lower than imax were considered for this bioluminescence bursts filter. When applying the filter, the number of working OMs is strongly decreased depending on the environmental conditions.

Section 3. Super Novae registration with singles.

According to a note of Y.Becherini, G. Ramadori and M.Spurio[2], one should expect ~12 hits on the single OM from a SN1987A like supernova in a ms time interval. The main idea is to measure the increase of the total hits in the detector in one time slice.

This method, in the specific case of ANTARES, can not be directly applied due to the bioluminescence bursts which have been therefore excluded using the filter as described above.

The procedure we have used is the following:

The data collected in a 45 min time interval, sufficiently large to have good statistics, were used to determine the fit hiexp of the hit counts distribution for each ith OM in the detector. These hiexp are different because detection efficiencies of OMs are different and also because the bioluminescent activity can vary in the various parts of the detector. This hiexp can be seen as the probability density function (PDF) of the hits in each OM.

The results from the fit were also used to define quality cuts that fit converges, 2000, and the area of the Poisson component is larger than 30%.

For a given time slice, we sum the contributions of all OMs that aren't affected by bioluminescence (counting rate below the cut imax) to determine the total hit counts in the detector for that time slice.

Probability density function of the hit counts in the detector can be estimated, where mi is mean of PDF for ith working OM as Gaussian with (mathematical expectation of hit counts in particular OM after bioluminescence filter) and with a sigma, where i is a variance for ith PDF. Using this PDF of hit counts in the detector is possible to define cut value according to predefined probability to have a fake signal. After actual total number of hits in time slice compared with this cut value.

Section 4. Supernova registration with coincidences between Optical Modules.

The ANTARES storey includes OMs which are arranged close to each other (distance is less than 1m), and light from 40K decay can be simultaneously seen by a couple of OMs. This fact is rather well known and it's used in the detector calibrations.

One example of the time distribution of this coincidence in one storey is shown in fig.3.

We can distinguish a plateau due to the random coincidences in the time window of 20 ns and a Gaussian shaped distribution due to 40K decay.

Fig. 3 Example of the time difference between hits on OM 1 and 2, storey 1635. Dashed line represents random coincidence level. The area of the Gaussian accounts for the number of hits from 40K coincidences.

The mean coincidence rate for each couple of OMs from the fit is about 16Hz for the 40K events which we indicate as "true" coincidence. It's rather constant in time because it is almost independent by the biological activity but it is different for different couples due to non uniformity in the efficiency of the OMs which depends on high voltage, quality of the OM (and photomultiplier) surfaces and so on. Geant simulations show that the light produced by the positrons induced by SN neutrinos simultaneously hits two and even three OMs in the same storey. These additional events should increase the coincidence rate during the SN explosion. The Geant simulation of this effect gives a rate of about 2.8Hz in the first 100ms time window i.e. an increase of 0.28 events for each pair of OMs in the considered 105 ms time slice.

The measurement of this small increase in the detector can extend the discovery potential of ANTARES to the SN explosion.

Section 5. Conclusion.

The ANTARES detector operates in the environment with high background rates from bioluminescence and 40K decay. In this note we've described two different possibilities for detecting supernova. Efficiency of this methods is under investigation. Also approaches for SN detection described here could be implemented in other Cherenkov's telescopes (Baikal, NEMO) and in case of bigger detectors in future (KM3net) capabilities will be much more encouraging.

1. Tammann G A et al 1994 Astrophys. J. Suppl. 92 2. Y.Becherini, G. Ramadori and M.Spurio "Detection of e from Supernovae with ANTARES", ANTARES-PHYS-2002-002.

..

E-mail: derzskij@physics.msu.ru...

,, - ( ).

, :, ;

, ;

.

.

.

,,.

.

.1( ),.

.

. (A. Cameron) [3].

. 1. ( ) ( ).

:

1. - 90%., ~ 10%.

,, :

,.,.

2.,,., pax.

3.,.

4.

.

5.

( ).

6. A ~.

7.

Z., Z.

- 74Se, 78 92 Kr, Mo, Ru 8.,.,,.

, He, Ne, Ar, Kr, Xe ( ).

:,.

,.

. 2..

.2,. [3],.,,,, ,.

.

,.

(, ), (p,n),.

.

,,,,.,, 10-103,.

.

,,,, (, CNO.).

,.

10%, 8000 20 000.

. 3.

( );

, 106 Si.

, 4,..

. quasar - QUASi stellAR radio source,..

.,, .

1960.,. 1963.. ( ),.,,,.

,.

, 10 (..

). ( ),.,, 10,.

, 10 000, 260 000 000, 14.

.,,,,..

.,, ;

,.,, 10-12..

.

. 4. PKS 2000-330 z = 3,78.

:

1... -,..,,.:

.,., 1986;

..

,2.,., 1986;

,.

,..,,., 1987.

2..., . http://www.astronet.ru/db/msg/ 3. Cameron A. G. W. Abundances of the elements in the solar system. Space Science Rev. 15, 121146, 1973.

..,..,..

top20072007@rambler.ru [1-3], ( ), ( ) ( ).

( ),,,,,,.

.

,,,.

.

.

, [4]. [5].

1.

c R, I.,,,, ( ).

t ! Tmelt, ( ) Tmelt.

( I 0 ),.

T ! Tvapour Tvapour, Tm  T  Tvapour,.,,,,,.

[6],.

.

(T ) T  'T, T ph  'T @.

T ph, ph,, :

wT 1 w 2 wT ( (T ) U  QG (T  'T )) r O (T ). (1) wt r 2 wr wr..

:

T 3/ 2 2O0T wT  1  V T 4  T 4, O Db I  (2 ) T0 wr 3R rR wT O 0. (2 ) wr r (2 ) ( Db - ), ( O0 -, T0 const t ), (V - ).,, :

4FW las  N 1 / 3 Lp, (3) LT F LT -,, W las -, N-, Lp -.

2.

(1) (2) [0,R].

273 K..

T.

:

1, T  T ph 'T m Q / 2'T, T ph 'T  T  T ph 'T, (4) ef , T ! T 'T 2 ph O1, T  T ph 'T O1O T  Tph 'T, Tph 'T  T  Tph 'T, O O1 (5) 2 'T O2, T ! T ph 'T O1 , O, , 1, T  T ph 2'T, 2, T ! T ph m,,.

:

 0.1  2.7 * 10 (T  T0 ), T  T ph D b (T ) (6) 0.6, T ! T ph [7].

3.

:

R 10  100 u 10 6 ;

/ ;

Q 267000 c1 /( );

/( );

c2 / 3;

U O1 15 /( );

O2 /( );

;

T ph 1 y ;

T0 273 I O / ;

/( );

0, 'T 1.

.

.

.

( r0) t g | r02 / 4F ( F - 2.10 3 cm 2 c 1, r F 1Pm ).

 t Las !! t g, 1.2.10 c., tg.

.

t Las  t g ( ).

. 1..

, . R 10, I /.

1-3.., :1. 2.

R. 5, R 10, -R. I /.

15 ;

2- ;

3.

.

,,,.

,,.

,.

.

.

,.

R -, .

.

,.

.

. 3. ( t2 ) ( ) ( ). R 10 ( ) R 30 (),,,.

( ),.

,.

.

1... ...: 2009, 424.

2. :

.//..

..:, 2009 -664.

3...,..,..,..

// XII " - ", 2008..231-236.

4. Astafieva L.G.,. Prishivalko A.P. Heating of solid aerosol particles exposed to intense optical radiation J. Heat Mass Transfer Vol. 41, 2,. 489- 5. Nonlinear interaction of intense laser radiation with solid aerosol. Inner-institute collection, Barnaul, 1988.

6..... ..: 784.

7...,..,..,..

..,, 1970,..,..,..

top20072007@rambler.ru [1-2], ( ), ( ) ( ).

( ),,,,,,.

1.

.

.

,.

. [3],,.

,,.

.

[4,5].

[6].

.

.

,, ( ).

2.

:

wb wT 1 w 2 wT U r O  UL, (1) wt wt r 2 wr wr, ( 7874 kg/m3).

, :

T 3/ 2 2O0T wT  1  V T 4  T 4, O Db I  T0 wr 3R rR (2) wT O 0, wr r T0=300K -, 0=0.03W/(m ).

:

4S t t b r, t J T ( r, [ ) r*  v (T ( r, t cc)) dt cc d[, 1  exp  (3) 3 [ J T -.

Q (T ) r*.

,, [7] :

16S J : E 3 k BT exp  a exp J ( 'T ) (1  b) N 0 (4), k T 3k B T'S 'T h B b, N0 kB -,h-, Ea ,-, , S.

:

E 'S 'T k BT exp  a 1  exp  k T , (5) v (t ) d0 k T h B B d0 , (4) 3.

1 .

1803 K., T,.

.

:

c1b( r, t )  c 2 (1  b( r, t )) c( r, t ) (6) k 1 b( r, t )  k 2 (1  b( r, t )), k ( r, t ) - 450 J/(kg*K), 1 824 J/(kg*K), k1 15 W/(m*K), k2 32 W/(m*K).

.

.,.

.

.

4.

.

10 y 100 ;

R [8].

1 y, I /. 1-4.

. 1. ( ) (b ) ( ). , . I=60 /, R=10.

.

.

,.,.

.

1.168 Tm.

., (1).

.

,.

.,, b.

., wb / wt.

.

.

,.,,.

. 2.

2.

. I=5 / R=20.

. 3.

2. I=20 / () I=60 / ( ).

R=10.

( (9).

( ) ( ).

,., 3-.

.

,. 4.

( ) ( ).

2.

I=5 / R=20.

..

( , - ).

, -.

.,,. 0.2 0..,.

,,,.

( ),.

,.

.

.,.,.

1. :

.//..

..:, 2009 -664.

2... ...: 2009, 424.

3. B. Xiao, Y. Zhang, Laser sintering of metal powders on sintered layers. J. of Phys. D: Appl.

Phys. 40, 6725-6734, 2007.

4. Y. Zhang, A. Faghri, C.W. Buckley, T.L. Bergman, Three-dimensional sintering of two component metal powders with stationary and moving laser beams. Int. J. of Heat and Mass Transfer 49, issue 7-8, 1489-1492, 2006.

....

5.

,.., 1937,. 3,.355-359.

6... -. -.:, 1980, 88. 7..., , 2000, 70,.8. 58- 8...,.. ., 1984, 231.

9...,..,..,... .

, 2006, 48,.5. 557-582.

10. //..

.- :, 1986. - 180.

1, 2 2..,..,.., 3 2..,..,...

...

;

2 ;

....

ilmut@mail.ru, baumolga@gmail.com 15 [1 - 4].,,.

,.

,,,,,.

,, [5].

., [6].

- [7].

(,,, ). c.,,, [5].

,.

,,,.

,.

- [3].

,,.

,,., 70 [8].

1,56,. (.1).

.

. 1..2. .1.1,2,3,4,2,3,4,5,5..

,, (.2).

(.1).

,.,.

.

1,7;

1,8 2, 15 ( 2,0 ) (1,7;

1,8 ).

1..

* 1, 500/700, 10, 1,5 II 2, 500/700, 20, 1,7 II 3, 500/700, 20, 1,8 II 4, 500/700, 15, 2,0 I * :I ;

II .

,.

,,,.

[9].

,,,,.

,, (.3).

. 3..

T(1) , (2) ,.

, - :

I 0e  kd, I,k,d I0 ,.

:

w 2T (x, y, z, W ) w 2T (x, y, z, W ) w 2T (x, y, z, W ) wT (x, y, z, W ) cv J O  G (x, y, z, W ),   wW wx 2 wy 2 wz ,J -,O cv G (x, y, z, W ).

.

T(1), [9].

,,,.

,,,, (.4).

.

, 0 5 10 15,.4. 1,8 :1 ;

2 ;

3.

,,.

.

: ( 10-02 90045- _, 09-02-00763 ) 1. E.Helidonis,.Sobol, G.Kavvalos, J.Bizakis, P.Christodoulou, G.Velegrakis, J.Segas, V.Bagratashvili. Laser shaping of composite cartilage grafts. Amer.J. Otolaryngology, Vol. 14, 6, 410-412, 1993.

2. E.N.Sobol. Phase Transformations and Ablation in Laser-Treated Solids, John Wiley & Sons Inc., New York, 1995.

3...,..,...,.:

, 2006.

4. C.Bourolias, J.K.Hajiioannou, E.Sobol, G.Velegrakis, E.Helidonis. Epiglottis reshaping using CO2 laser: a minimally invasive technique and its potential applications. Head Face Med, Vol.4, 15, 2008.

5...,..,....

.:, 2007.

6......:, 1972.

7...,.. :..:, 1978.

8. N.Yu.Ignatieva, V.V.Lunin, S.V.Averkiev, A.F.Maiorova, V.N.Bagratashvili, E.N.Sobol.

DSC investigation of connective tissues treated by IR-laser radiation, Thermochimica Acta 2004, Vol. 422, pp. 4348.

9......, 1967.

1 2..,..,.., 2..,...

...

;

2.

baumolga@gmail.com, [3].

,.,.

,, [4, 5],.

, [1].

, 1,56.,, ( 0,3 0,8 ).

( 0,8 ) 11 ( 0,3 ).

(.1) (.2).

. 1.. 2.

. 1 ;

2 ;

6,8 / 3 ;

4.

, (. 1),.

1, 1,, 1, 0, 0, 0, 0, 0, 0 2 4 6 8 10 12 14,. 3.

.

6,8, 5,5 8,2 /.

,, [2, 6].

2 ;

25100.,,,.

:

Q, Q/m, / 1 107 10, 2 81 8, 1 122 11, 2 136 14,, ,,.

(25 ) ) NaN3 (, 0,15 NaCl 0,02% ( Sigma, ). 1 /. 37.,. 3,3 4,0.,.

,.

( 10-02 :

90045- _, 09-02-00763 ).

1...,..,... IV ., 2009.

2......:

..., 2009.

3...,..,.....:

, 2006.

4...,..,... ., XVII, I,.32 34,, 2008.

5...,..,... . - :,, ,.489-493,, 24-25 2009, 6. P.E.McLain, E.R.Wieley. Differential Scanning Calorimeter Studies of the Thermal Transitions of Collagen. The Journal of Biological Chemistry V247, 3, p.G92G97, 1972.

..,..,..

E-mail: i.saveliev@gmail.com, y.stakhmich@live.ru [1-3],.

[4],.

,, [4].

ABCD-, [5],.

, :

c ^2Sl  m  n  14  (m  n r 1))` Q mn (1) 2SL, L,,,l,,, /, m, n , , .

ABCD, :

\ mn \ 00 H mn (t, v), (2) \ 00 - \ TEM00.

:

k sin 4 x 2  y 2 k x2  y2 S \ 00 exp  exp i , (3) 2L 4f 2L k,L,, x, y ,, m, n ,f,, , H mn (t, v) [6]:

1 m(m  1) mn H mn t, v t1 t 2  [ Q 11t1m  2t 2  Q 12t1m 1t 2 1  mn n n 2 1 (4) 1 n(n  1) Q 22t1mt 2  2 ] ...

 n.

:

x  iy i 2k sin T t (5) x  iy 0 Q 4kL sin T (6) 1, ( ) ( ).

00, 01, 20., :

a = 0.04, = 0.63*10- f = 1.2,, x = [, 0.002;

0.002], y = [-0.002;

0.002] [4],,.

,.

. 1. ( ) ( ) m.

n (. 2), (. 3, 4).

. 2. ( ) ( ). 3. ( ) ( ). 4. ( ) ( ),,, :

G G mn p1 r mn p2.

E (7),, E10, (1)., p, 2 : E101 E10-1:

1 E101 \ 01 p1  \ 10 p 1 \ 01  \ 10 , (8)  i i 1 E10 1 \ 01 p1  \ 10 p1 \ 01  \ 10 . (9)  i i. 5,.

. 5. ( ) ( ) E101 E10-1,. 6.

. 6. E101, ( ) E10-1 ( ) 1...

. //. 1968. -. 25, 2.

2. J.A.Arnaud Nonorthogonal Optical Waveguides and Resonators // The Bell Technical Journal. 1970. Vol. 49, 11. - P. 2311 - 2348.

3...,.. //. 1976. -. 3, 7. -. 1517- 1526.

4...,..,...

// X ,, /..... /. 2009. . 38 42.

5...,... ABCD // IX ,, /.....

/. 2008. . 79 83.

6..,.. :

... .:, 1974. 832.

..

( ) 1. , [1].,.

-,.

.

.

.

[1].

.

,,.

.,,,.

-.

.

, -.

[2] [1,3].

.

.

.

,.

2. -, [1], (x, y, z, t), (x, y, z, t), y, z, t), i(x, =| e,p,i| exp(iSe,p,i),,,i |2 = ne, |2 = np, |2 = ni.

| | | e p i V, (, ) (, ).

(x, y, z, t).

e 2 ')  p  Z i H e = we  '  Ue, i= H e e, He wt 2m wp = i= H p p,  ' U p, Hp wt 2m = wi  '  Ui, i= H i i, Hi wt 2M Ue, Up, Ui , ( Z|e|) (x, y, z, t), Ue = |e| U = |e| Ui = Z|e|,,.

G, A 1 G e G 2 w i= p  A  e) .

wt 2m c

,, (~ 4.10 11 ) r0=1013 c.

,,, ( ) + ( ).

* n= j = d * d e  *  ) *, n 2imc 2 dt dt mc @ i=e e grad *  * grad  * A.

j mc 2m n, j..

, - -,.

.,.

3.

.

t.

(x, y).

y = 2,5 (. 1).

(x, y).1.

t=0 ( t=0,038 ( ) ),,.

+, (. 2).

.2. ( ) + x = 2,5.

( ) (. 3).

,.2.

. 3. ( ) + x = 2, ( ),,,., ( ).

.

1... - :

..: - . 2009.

2...,..,..,..

-. :. 1991.

3...,..,..

. //.. 55. 4. 2010.. 2 1 1..,..,..,..

, " ".

E-mail: vovan_18-12@mail.ru, i.saveliev@gmail.com,,.

,.

,,.

.

.

0.5.

.

, 1 [1-3].

.

( 50 5 ).

., [4].

:

S r 2 K U, m, Vr r, 2S r (U K(,m) , ) O m.

..

.,.

( ) ( ),,.

,,,.,.

CCD.

.2.

1.

2.

3.

4.

5.

6.

. 2.

(2) (1) (3).

(4),.

.

.

( ),.

, ( )..

.

,,,.

.

,.,.

1. http://www.retsch-technology.ru/ru/rt/products/rassejanie-lazernogo-sveta/la-950/function features/ 2. http://www.mtrus.com/lab/research/rtsys/technology/ 3. http://www.malvern.com/processrus/systems/laser_diffraction/technology/technology.htm.

4.... 1961.

Fe-Cr Fe-V.C.,..

E-mail: met@miem.edu.ru - Fe-Cr.

600-900.

- Fe-Cr,,, Fe-Cr.

-.

2-8. %.

.

1 ( ).

.

.

-3 .

,.

, 2 [1].

.1 Fe Cok., 8 % Cr,,,.,.

-,.

( ).

.

. 1: 8 %, Cok, 1-,.,,.

, [2].

[3].

, [4] 5.430940.00002.

Co K 60 -.

(220) (310) (440) (531).

., PDWin 4.0.

,.

20 C.

12.3 10-6 -.

,.

..

. 2. Fe-Cr Fe-V, a=0.,.

.

09-03-00983-.

1...,..,...:.,, 1994.-328.

2...,... .:, 1963. 300.

3....,.,, 1977, 480.

4...

.-,, 1982.

1,2 1 1..,..,..,.., 3,..

;

...

;

..

);

( ( ) E-mail: symp@imet.ac.ru;

bondarenko_gg@rambler.ru.

,, .

.,,,,, -.

, ,.

,.

( -4).

.. [1], ~1018 .

,, (2-4), /.. 1,.

1-2,5, ~4, 108 1010 / 2, 10 40, ~3.

, W-Cu.

W -46.

,, 5,0 1,0.

0,25-0,5, [2].

-46 1, r 1%.

[3] W = (1-r)2exp(-kd) (1) r ;

k ;

d.

,, ..1,, ( ),,,.

- ( ),,.

,, 150.

, (Al2O3).,, [4], Al2O3 (2046 ), Al O.

~3000 ~.,.

.1 20 90: ;

-.

.., (~2 ),. ,,.

,.

.

( ), (W, Cu.).

90.

,,,, Al Cu ( 2564 ).

.

;

, (0,4-0,76 ).

.2,..

.3 (, ) 90,.1 .3.

.3.

( 90).

. 14 1.

.

,,.

.

(.4),.

,,.

, (.4 ).

1.

( 90).. 1 2 3 -..%. %. %.

% - % - % - % % O 6.60 20.22 O 6.10 19.1 O 44.60 57.86 O 50. 3 63. Al 7.41 13.46 Al 6.29 11.6 Al 54.32 41.79 Al 49. 9 36. Cu 85.9 66.32 Cu 87.61 69.1 Cu 1.08* 0.35* Cu 0.32* 9 8 0.10*. 4. ( 90).. ;

-.

W r 0,25- 1,0.2.

5,0.

.

(..

).,.2, 0,25-0,55 ~10,, ~71,5%.., r [5,6].

:

(n  1) r (n  1) n.

O=0,4, n0=1,7862, [6];

O=1,06 [5];

O=1,, n0=1,75449,, n =1, [5].

( 5,0 ), 1,0.

W 0, r.3., W r.

(W) (r) ( 1,0 ;

5,0 ) O, W, % O, W, r, % r, / % % 1 0,25 70,1 16,3 0,25 8,0 71, 2 0,28 71,0 15,7 0,28 8,0 71, 3 0,30 75,1 13,3 0,30 8,1 71, 4 0,35 78,2 11,6 0,35 8,1 71, 5 0,40 80,8 10,1 0,40 8,1 71, 6 0,45 82,0 9,4 0,45 8,0 71, 7 0,48 82,8 9,0 0,48 8,1 71, 8 0,50 83,2 8,8 0,50 8,1 71, 9 0,52 83,2 8,8 0,52 8,1 71, 10 0,55 84,3 8,2 0,55 8,0 71, 11 1,06 - 7,5 [4] 12 1,06 - 7,4 [4] 13 0,40 - 8,0 [5] (W) (r) 1, ( 1,0 ;

) O, W, % r, % / 1 0,4 80,80 10, 2 0,4 8,88 70, ( ) 3 0,4 8,08 71, 4 0,4 8,80 70,  5 0,3  [8], 6 0,5  7 0,6 0,25-0, [3,6,7].

(.3).,,,.,.3,4, Al2O,.,, -,.

[9,10], Ba1xSrxTiO3.

TiO ~0,45~0,6.

, 1.

.

,,.

,,.

2.

0,25-0,55,.

, Al2O3,,.

1. L.I. Ivanov, A.I. Dedurin, I.V. Borovitskaya, O.N. Krokhin, V.Ya. Nikulin, S.N. Polukhin, A.A.Tikhomirov, A.S. Fedotov. Plasma focus installations as a tool for study of the interaction of high power plasma streams with condensed matter. Problems of atomic science and technology, ser.8: Plasma phycics, 2002, No.5, p.83-85.

2. M.Griot. Refractive index of sapphire. Optics Guide. 1980, 4:3-15.

3......:, 1981, 229.

4...,....:, 1997, 543.

5......: 1974. 348.

6......,, 1982. 589.

7. V.Gribkov, L.Ivanov, S.Maslyaev, V.Pimenov, M.Sadowski et al. On the nature of changes in the optical characterization produced in sapphire on its irradiation with a pulsed powerful stream of hydrogen ions. Nukleonika, 2004, v.49, No.2, p.43-49.

8......,....:

, 1991, 1231.

9...,..,..,...

., 1985, 4,.178-180.

10...,...

Ba1xSrxTiO3., 2008, 4,. 31 35.

2 1,3..,..,..

1 2 ( );

;

...

E-mail: metanabol_05@mail.ru. ( ), [1].

,.

.

.

He-Ne.

,,,,.

,,, [5].

. 1.

( ).

, ( ) [4].

, :

( ). ,,.

. 2. ( ) [2].

,,.

. 3.

,,.,.

,,, [6].

,.

, ( ).,.

( ), [3], 4..4,,.

. 4.

,,,,,.,,,. ., O/2, ( ).

,.. 2O.

.

O/,., (2O),.

,.

,,,.

,,.

.,.

, 5,.

. 5.

:

( ), 55 75. - ( -6), U, U.

10, f1,.

( ).

I1,,,.

, I2,,.

: 1,, :

Q1 I1  I2 :CT1 u, I : 1, I,, I1, I 2 ,,. 6.

,.

7 8,.

. 7. +75. 8. -55, 5% 100.

,,, ,, 95% 100.

1.....:,...

... (.,, 1974,. 182).

2...,..,...

., 30, 2. (2000).

3....

.,. 2, (1996).

4......11., 2 (54), 30 (1990).

5......,,. 43, (1973).

6.......

,. 17 5,. 775-777, (1974).

1,2 2 1,..,..,..

1. ( );

2. ...

azarovav@hotbox.ru;

zteps1@gmail.com;

tvc-t@bk.ru 1..

,.,, [1].,.

[2],,.

.,.

2. New View 6200 (NV).

.

.,,,.

z 0,1.

NV. 1.

- :

550 nm, 125 nm 2,9 m., : /,,,,.

.

, .

.

,,.

.

.

, MetroPro.

MetroPro.,. 5 m, 1 [1].

. 1. New View 3., :

.

, (. 2) (. 3).

, y = 1,607m.

, Step Height h = 1,595 m.,, y = 2,373 m.

,, Step Height.4,, ((1,779 0,01) ). Step Height New View 6200.

, ( ).

.


.

New View (7KH 3UHFLVLRQ 5HIHUHQFH )ODW, =*2 SDUW QXPEHU )., (. 5),,,,,.

(. 6):,,, ,.,,, ( 100%).

.

,,.

4.

,,, [1],,.

,,, 1.

..

.

. 07-02-13662.

1...,..,. 9,,.95, 2008.

2. Jeremy Coupland and others. Limitation of White light interferometry. Proceeding of Loughborough University, UK, 2 1 1 1..,..,..,..,.., 1..,...

, e-mail: onov@mail.ru [1, 2].,,.

,, [3].

YAG:Nd3+.

10- -. 800...

~ 50%.

.

:,,.

.

(1) (4):

L ! x p !! rD, (1) Te !! Ti, (2) U ! U sat, (3) H i !! k B Te, (4) L, xp , Te Ti ,U, Usat , kB , i.

rD [4]:

rD [cm] | 743 Te [eV ] / ne [cm 3 ], (5) ne -.

(1)-(3) rD,..,.

xp ~ 0,1, L 10 120. (2),..

,.

[4]. (3) i,. (4),,.

5.

i,,. 1.

. 1. : - ), -) - );

1 -,2,3-,4-,5-,6-, -,8-,9-, 10 -, 11 -.

(.

1),, (. 1 ). 5, 0,.

-20,.

- ( ).

.

1800 700,,, 180.

,,.

.

Si, Fe, Cr, Mn Sn..2 Mn -.

. 2. Mn L.

-.

.

Si, Fe, Cr, Mn Sn -1/, ~.

,, (. 3).

. 3. Si, Fe, Cr, Mn Sn :

/ 2) 2 1- ( = 1,06, J = 22 ( = 0,53, J = / 2).

[3]:

1 dN. (6) f ( Ei ) S dEi Ei.

I(t) :

It, (7) f ( Ei ) emi L2 S e, mi ...

. 4. :1 2 (22 / ), 2 (22 / ).

- 6.5.

=1,06 =0,53,..

, (.1 ).

,.

.

. 5.

. 5. Ei Si:

, -, Si.

1700 700 Si 40 370.. ( ), 490.

-,,,,.

:

Ei t, 4 E0 (t ) cos 2, (10) E0(t) , ..5,.

.

.

.

,.

,.

,.

.

09-08-00291, 09-07 00208, 09-02-12108, 09-07-12151.

1. R. Eason. Pulsed laser deposition of thin films: Applications-LED growth of functional materials. Hoboken. N.J. :Wiley-Interscience, 2007. 682 p.

2...,..,... //.

2006. 4.. 39-51.

3...,..,..,..,..,...

//. 1988.. 58,. 5.. 930.

4. X....:, 1986. 272.

..,..,..,..,..

e-mail: khaydukov@mail.ru.

,. ( ) [1].

,, [2].

,,.

( ), [2,3]...

,,.

. 1. ZnO ZnO.

YAG:Nd3+.

10-6.

1064... ~ 50%.

.

n,, L.

..

, :

2SnL. (1) X M,.

( ).

..

-. 2. N( ) :

2 - 12 / ;

- 58 /.

,.

40 /,.

E,. 3.,.

. 3. :1 1 ;

2- 1 3 ;

3- 3 5.

Al, Zn, Cu Sn - N( ),. 4.

. 4. N, 1 t Al, Zn, Cu, Sn.

.

.,,.

,.

,.

,.

.

N.

,,,. 5.

. 5..

.. N( ) ( ) :

N (4) N 0 cos m 4, (2) N0 .

[4].

. 6. ( - ) ( ).

,.

m = 10.

(2),,.

, [5].

. 7.

. 7.

:1-,2-,3-,4-, 5-,6-,7-,8-,9-, 10 -, 11 -, 12.

R, L d.

,,,.

,.,,,,.

:

2SRZ L  l Xd, (3) d (, ), 3 /, .

.. 8.

,.

. 8., () ( ).

,.,.

,.

09-08-00291, 09-07-00208, 09-02-12108, 09-07-12151.

1...,..,... //. 2006. 4.. 39-51.

2. R. Eason. Pulsed laser deposition of thin films: Applications-LED growth of functional materials. Hoboken. N.J. :Wiley-Interscience, 2007. 682 p.

3.... //. :

..:, 1990. 107.

4...,... //. 2002..172, 3.. 301-333.

5...,..,... // 89906. 2009125756.

06.07.09.

SiO2 Ta2O.

1,2..,..

1. ( );

2. ...

azarovav@hotbox.ru;

1..

,.

,.

,., ,,..

.

,,,..

[1,3]. ( ),.

Ta2O5, SiO.

2..

, (. 1).

. 1..

, () () Rp Rs p- s :

RP tan ei' (1) U RS,,.

.

SiO2 Ta2O5 (Si).,.

(.2),.

. 2..

380 65, 70 75.

:

(2) :

(3) N (, ), M ,, ,, , .

,.

.,,..

.

.

3.

SiO2 1.

1.

( ) (n) =632, 1 94.00 1. 2 178.18 1. 3 179.08 1. SiO,...

1 100, 2 3 200.

,.

Ta2O5,, 2.

2.

( ) (n) =632, 4 203.40 2. 5 203.51 2. 4 14.447 13.716,.

,.

.3,.

. 3. ( ) ( ).

(. 4),..,.,,.4.

.4.

4 5. 14.447 13.716 2. 2.277..5,.

. 5.

.

,, 3.

3.

( ) (n) ( ) =632, 1 41.93 2. 4 198. 2 156.95 2. 1 36.90 2. 5 199. 2 162.30 2., Ta2O5.

,,.,, 20 100.. 4 (1 ).

.6. Ta2O5 1, 3.

3,, 1 2, 1,...

,..

.

2 3, ~4.

, -,.

.

5.

,,.

.

6.

..

.

.

07-02-13662.

1...,..,..

//.

. 1980,.49,.4.,.802-808.

2. G. Kolodnyi, Yu. Golyaev, V. Azarova, M. Rasyov, N. Tikhmenev, Ion beam optical coatings for visible and near IR lasers. Proc. SPIE, v.4350, 120y125, 2000.

3..,...:,1981.-582.

..,..

....

E-mail: natmois12@yandex.ru,,,.

[1,2].

,.

,.

,,.

., 0,1 2, 5,, 20 /, ~ 0,5, ~ (50006000) /.

,.

.

Talystep [3], Taylor-Hobson,,, 0,1.

. 1.

, 0,32.

.1.

320. Rq 1,6.

(AFM) ( ND MDT. )[4].

[5],.

, - 2-7 1.

3-,.

0,08.

.2, (Rq) 1,3., Rq 1,3 4.

.2. Rq,, : 17.

,,.

.3, 1, 6 7.

., 1, 6,. 1.

6.

,,,..

. 3. 1, 6, 7.

-.

.. 4,,.

Rq,. [4],,,.

. 4. Rq ( : 1-7).

( S), Rq S.

, [4].

2.

,,,.

,,.

1...,..,..

.,.

30, 2, 2000.

2...,..,..,.. 50..

,. 96, 2007.

3. G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930-933, 1986.

4. 07-02-13662,, 2008.

5...,..,...

.,..., 65,,.79-81, 2010.

..

E-mail: rogozhin@silab.sinp.msu.ru.

:,, -, [1].

. -,, ;

-,, [2].

,.

, .

.

,.

.

;

,.

D0 (Tevatron) D0 Tevatron (FNAL), 2,51032 -2 -1.

1. 36 ( ) 132 [3].

D :, (F disks) (H-disks).

800 000.

.

.

,. (4 ) (8 ). (100 121 ). :

,. 50, 62, 153,5.

. 1. D0 [3].

.

80, 15.

50 62,5 ;

30.

SVXIIe. SVXIIe 128, ( ). :

36.

.

ATLAS (LHC) ATLAS - LHC (Large Hadron Collider), 7.

1034 -2 -.

25 2808.

ATLAS [4].

. 2. ATLAS.

5, 9., 11 20,.

. 62,4 22,, 61 440. 50.

ATLAS FEI3. 2 880 18 160.

16.

.

.

18.

30, 37, 44 51 ;

160.

6,36 6,4, 768. :

, 40.

, 83 279 26 56. ;

50 90.

. 3. ATLAS.

ABCD3T.

128.

132.

.

DMILL.

CMS (LHC) CMS LHC.

CMS [5]. 10,,. 20,.

., 55, 120 180.

4, 7 53., 34,5 46,,. 6 ;

15.

100 150.

: 20.,,,,,.

7.

. 4. CMS.

PSI46.

4 160.

.

,,.

(Tracker Inner Barrel) 20 55 ;

.

130. (Tracker Outer Barrel) 55 110 ;

.

220. z 120 280 (Tracker End Caps).

6 (Tracker Inner Disks), 3.

: 320 500, 80 205.

. 5. CMS ;

.

, 100.

APV25.

.

128 ;

192.

,.

CLAS12 (CEBAF) CLAS12 CEBAF.

CEBAF 6.

, 1035 -2 - 12.

. 4. CLAS12.

(Silicon Vertex Tracker, SVT) CLAS12 :.

- 5, 8, 12 16, 8, 12, 18 24,. (2 ) 30 (4 ).

, 150, 3.

, 23,8, 25,3 26,8.

18,8, 2,3.

.

FSSR2 data driven:,.

CEBAF.

1...

//. 1992.. 23.. 3.. 785.

2. H. F-W. Sadrozinski. Applications of Silicon Detectors. IEEE Trans. Nucl. Sci., vol. 48, no. 4, pp. 933-939, Aug. 2001.

3. The D0 Collaboration. The Upgraded D0 Detector. Nucl. Instrum. Meth., vol. A565, pp. 463 537, 4. ATLAS Inner Detector Community, ATLAS Inner Detector Technical Design Report Vol. I, II. CERN/LHCC/97-16, CERN/LHCC/97-17.

5. CMS Collaboration. CMS Physics Technical Design Report Volume I CERN/LHCC 2006- 6. Conceptual Design Report for The Science and Experimental Equipment for The 12 GeV Upgrade of CEBAF. Jefferson Lab March 25, 2005.

1 1 2..,.. -,.C.,..

-..

..

..

E-mail: gryzlova@gmail.com (FLASH, SPring-8, LCLS ).

( ).

[1], [2,3].

[4,5].

.. Ei ;

Ef P3/2.

, ( ), - (.. ).

[6-8].

,,,,.

[9],.

, ( ) (. 1).,.

,,, :

JMJ ' M ' | kq J ' M ' U ( 1) U kq ( J ;

J ' ) J 'M ' JM, (1) MM ' -.

[1], 4S k q k U k q ( J i ;

T1, M1 ) SDZ B ( k1, ki, kJ ) U kJ J Yk*q (T1, M1 ), 0 | ki qi (2) 1 i J 2k1  1 1 i 11 1 k1kJ D,Z ( ), Ykq T,M , T1,M1 z. (2) U kJJ ;

J J U00 1 / 3 U 20  2/3.

B (k1, ki, kJ 1 ) ( ) :

J i j j l1 1 / 2  1 j ' 1/ 2 l1l'1 j1 j'1 l1 0l '1 0 | k1 0l ' 1 u J i B ( k1, k i, kJ 1 ) k i k1 j ' j '1 k1 kJ 1 l1l '1 j1 j ' (3) ki k1 * u J i, l1 j1 : 1 D 0 J i, l '1 j '1 : 1 D 0, 6j- 9j D, 2 j  1 ;

l1, j1 .

j (3), (6) [1], (3), 0.

J.

( ), [10].

, 4S U W (T1, M1 ;

T 2, M 2 ) ( J 2, J ' 2 ;

T1, M 1 ) Yk q (T 2, M 2 ), (4) 2k 2  1 2 k 2 q k 2 q2 J 2 J ' ki kJ 2 k p kJ 3 U ki qi ( J i ;

T1, M1 ) U JJ qJ U JJ qJ u U k q ( J 2, J ' 2 ;

T1, M1 ) SDZ k k 2 2 ki qi kJ 3 qJ (5) k p q p kJ 2 qJ ~ u ki qi kJ 2 qJ 2 | k p q p k p q p kJ 3 qJ 3 | k 2 q2 B{ki, kJ 2, k p, kJ 3, k 2 };

~  1 l2 l' 2 2 ' 2 J 2 J ' 2 l2 0l ' 2 0 | k 2 0 u J 2  J i2 1 / jj B{ki, kJ 2, k p, kJ 3, k 2 } l 2 l ' 2 j2 j ' J pJ 'p J p J p J J i 1 j l2 1 / 2 j2 J f J u 2 J '2 u J i J ' p J p 1 (6) l ' 2 j' 2 k2 J ' 2 k2 j' k p k p k2 ki kJ 2 kJ * J p D J i J ' p D J 'i J f, l2 j2 : J 2 D J p J f, l ' 2 j ' 2 : J ' 2 D J ' p u.

( E p  E J i  Z )( E p '  E J i  Z ) pp ' (4)-(6) l2, j2 , Jf, J2 Jp,,. (6) p, p,.

(4).

(6), :

J p D Ji J2 D J p Jd D Ji J2 D Jd Jc D Ji J2 D Jc  (7) dEc.

E p  Ei  Z E d  Ei  Z E c  Ei  Z p d c (7).

.

:

J f ;

lp jp : J p., Jp,,,, [10] G L  S  J  j J f p J p J i Si L p ( 1) p p i u J f ;

l p j p : J p D Li Si : J i S P Si Lp L f S f J f (8) S J p Lp u i l p 1 / 2 j p L f ;

l p : L p D Li.

Ji Li 1 L p Si J p G 2 p J 2 S p S 2 L p L2 J p J 2 ( 1) L2  S2 1 J p u j j f J f ;

l 2 j2 : J 2 D J f ;

l p j p : J p S2 S p Lp L f S f J i2 L f Sf J f (9) S J p Lp u p l p 1 / 2 j p l2 1 / 2 j2 L f l2 : L2 D L f l p : L p.

1 L2 J L p Si J p L2 S2 J 2 (8) - [11]., (np5+np3(n+1)s2+np3(n+1)p2+np3(n+1)d2).

(np4Lf + Hl) 2L.

(9).

, [12].

.

.

09-02-00516.

1. S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova and N.M. Kabachnik// Angular distributions and angular correlations in sequential two-photon double ionization of atoms, J. Phys. B: At. Mol. Opt. Phys., 41, 165601 (2008).

2. S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova and N.M. Kabachnik// Sequential two photon double ionization of Kr atoms, J. Phys. B: At. Mol. Opt. Phys., 42, 145602 (2009).

3...,.. -,.., S. Fritzsche//,, , 24,. 73-77 (2009).

A.S. Kheifets// Sequential two-photon double ionization of noble gas atoms, J. Phys. B: At.

4.

Mol. Opt. Phys., 40, F313 (2007).

5. A.S. Kheifets// Photoelectron angular correlation pattern in sequential two-photon double ionization of neon, J. Phys. B: At. Mol. Opt. Phys., 42, 134016 (2009).

6. M. Braune et al.// XXV Int. Conf. on Photonic Electronic and Atomic Collisions (Freiburg, Germany, 2007), Abstracts, p. Fr034.

7. M. Kurka et al.// XI Int. Conf. on Multiphoton Processes (Heidelberg, Germany, 2008), Abstracts, p. Fr23.

8. M. Kurka, A. Rudenko, L. Foucar, K. U Kuhnel, Y. H Jiang, Th. Ergler, T. Havermeier, M. Smolarski, S. Schossler, K. Cole, M. Schoffler, R. Dorner, M. Gensch, S. Dusterer, R.

Treusch, S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova, N. M Kabachnik, C.D.

Schroter, R. Moshammer and J. Ullrich//Two-photon double ionization of Ne by free electron laser radiation: a kinematically complete experiment, J. Phys. B: At. Mol. Opt.

Phys., 42, 141002, (2009).

9. H. Fukuzawa, E.V. Gryzlova, K. Motomura, A. Yamada, K. Ueda, A.N. Grum-Grzhimailo, S.I. Strakhova, K. Nagaya, A. Sugishima, Y. Mizoguchi, H. Iwayama, M. Yao, N. Saito, P.

Piseri, T. Mazza, M. Devetta, M. Coreno, M. Nagasono, K. Tono, M. Yabashi, T.

Ishikawa, H. Ohashi, H. Kimura, T. Togashi and Y. Senba// Photoelectron spectroscopy of sequential three-photon double ionization of Ar irradiated by EUV free-electron laser pulses, J. Phys. B: At. Mol. Opt. Phys., 43, 111001, (2010).

10. Balashov V.V., Grum-Grzhimailo A. N., Kabachnik N. M. // Polarization and Correlation Phenomena in Atomic Collisions. A Practical Theory Course, N.Y., (2000).

11. Froese Fischer C., Brage T. and Jnsson P.// Computational Atomic Structure. An MCHF Approach, Bristol: IOP Publishing 279 p. (1997).

12. van Enky S.J., Zhangy J. and Lambropoulos P.// On the freefree dipole moment, J. Phys.

B: At. Mol. Opt. Phys., 30, L17 (1997).

Pb..,..

E-mail: akostuckov@gmail.com Pb.

(,n), (,2n),.

Pb.

Pb.. Pb,.

. 1. Pb n,.

, n, % (g,1n) (g,2n) (g,3n) (g,4n) (g,5n) (g,6n) (g,7n) (g,8n) Pb 1,4 8,39 15,32 24,07 31,15 40,24 47,49 56,86 64, Pb 24,1 8,09 14,82 23,21 30,14 38,88 45,97 55,06 62, Pb 22,1 6,74 14,82 21,56 29,95 36,87 45,62 52,71 61, Pb 52,4 7,37 14,11 22,19 28,92 37,32 44,24 52,99 60, E max =67,.

RTM-70 [1] 2,5.

,.

Pb.

8.

.

3.

Pb [2].

, : 7.

,.

.

. 5.

. 5. Pb,.

10. Pb, -,.

Y ( E max ), W ( E, E max ) (E) E max max ( E )W ( E, E max )dE, (1) Y (E ) o A Y ( E max ), (2) n I (1  e  t1 )e  t 2 (1  e  t 3 ) ,n Pb, , t1 , t2 , ,A t, Pb. I , -.

- [3], [4].

Pb, GEANT [5].

Pb (A208) Pb.

, A Pb, ( ) 206- Pb,.

,, .

A204, Pb.

Pb(,2n)204mPb 204m, Pb.

Pb Pb(,n)203Pb.. 2.

20%.

. 2. Pb.

JP.

f JP f 204 Pb (,n) Pb 5/2- 204 202m Pb (,2n) Pb 9- 0, 204 Pb (,3n) Pb 5/2- 0, 204 Pb (,4n) Pb 0+ 0, 204 Pb (,1n1p) Tl 0+ 0, 206 204m Pb (,2n) Pb 9- 0, 205 202g.s.

Pb Pb, - -. ( Pb(,1n1p)202Tl) Pb.

,, 4-6.

,,.

. 6.

206,207, Pb [6,7].

206- Pb, Pb, [6,7].

. 6,, Pb [8]. 3.

Pb.

Emax,. 3. [6,7,8] V max, * V int Pb, Pb.

V max, V int, *, Emax, Pb 13,74 529 4 2220 [6] Pb 13,74 500 4 2050 [6] (,n) Pb 13,50 645 3,5 2731 [7] 13,50 613 3,8 1909 [8] Pb 18,23 82 8 560 [6] Pb 17,46 94 8 600 [6] (,2n) Pb 16,53 92 8 613 [7] 16,85 94 145 [8] Pb (,3n) 29,95 23 11 197 [7].3, (,n) A. (,2n).

(,2n) [6,7] (,n).

Pb.

[8] 12 17,, [6,7], (,2n).

Pb E max =67,7.

[6,7] exp ( E ) Wcalc ( E, E max ), GEANT4 [5]:

E max Y ( E max ) ( E )Wcalc ( E, E max )dE.

exp o, Pb(,n)207Pb,. 4.

. 4. Pb, [6,7].

Pb 0,84 [6] (,n) Pb 0,74 [6] Pb 1 [7] Pb 0,10 [6] (,2n) Pb 0,11 [6] Pb 0,13 [7] Pb (,3n) 0,02 [7] (,3n), (,2n) (,n),.

4,, Pb A204 Pb.

, Pb.,.

204 Pb(,2n)204mPb Pb 67,, Pb A Pb.

Pb, [6,7,8].

1. V.I. Shvedunov, A.N. Ermakov, I.V. Gribov // Nucl. Instrum. Methods in Phys. Research A. 2005. V. 550. P. 39.

2... // X ,, .., 2009.. 174.

3. Jagdish K. Tuli. Nuclear wallet cards. National Nuclear Data Center (http://www.nndc.bnl.gov/) 4. LUNDS homepage http://ie.lbl.gov/toi/ 5. S. Agostinelli et al. // Nuclear Instruments and Methods A. 2003. V. 506. P. 250.

6. R.R. Harvey, J.T. Caldwell, R.L. Bramblett, S.C. Fultz // Phys. Rev. 1964. V. 136. P.

B126.

7. A. Veyssiere, H. Beil, R. Bergere, P. Carlos, A. Lepretre // Nucl. Phys. A. 1970. V. 159. P.

561.

8. B.L.Berman, R.E.Pywell, S.S.Dietrich, M.N.Thompson, K.G.McNeill, J.W.Jury // Phys.Rev. C. 1987. V. 36. P. 1286.

..

...

E-mail: pustota05@gmail.com (100 ).

,,.,,..

.

:

,,, :

+n p+, + +p n+.

;

75 ( ), 2475,,.

.,,,,,.

,.

.

.,.

,,,,.

. 7.

2009.

.. , ,,.

. 8..

,.

(. 3).,, ( ).,,.

,.,. 4,,.

. 10.

.

,.

,.1 3,..,,,.

III, (. 5).

.

. 9.

III.

,,, :

( ),.

(. 6).

.

,,.

. 12.,,.

, (,, ).

.

,,,. 7.

,.

. 11.

,.

,., (,,, ).

,.

3,1%, 2009 98,1%;

2008.

.

.. 127,144.. 91,..6.... 12.. 49,.. 19.... 38.... 91,96...C. 159.. 133,.. 12,19,25,32,38,113.... 113.... 61.. 99,.. 19.... 12.... 63,66.... 113.... 170.... 80,85.. 49, -.. 159.. 91,.. 159.... 75.... 63.... 120.. 12,.. 133.... 113.... 44.... 113.... 99.... 12.... 164.... 25,32.... 133,138.. 133,.. 150.... 107.. 80,.. 66.. 133,.. 80,85.... 19.. 44,.. 44...C. 110.... 96.. 49,.. 58 Anghinolfi M... 38 Costantini H... 133,138 Kulikovskiy V. Shirokov E....

...,..,..,..,..

.

-...,..,..,..,..

....,..,..,..,...

...,..,...

...,..,...

.

..,..,...

-...,..,...

...,..,...

2...,..,...

....

.

..,...

-...,..,...

Ca. V. Kulikovskiy, M. Anghinolfi, H. Costantini, E. Shirokov. Detection methods of supernova explosion with the ANTARES telescope.

......,..,...

.

..,..,...

...,..,..,..,..

,...

...,..,..,..,..

.

...,..,...

....

...,..,..,...

..C.,...

Fe-Cr Fe-V.

..,..,..,..,..

.

...,..,...

...,..,...

...,..,..,..,..,..

,...

...,..,..,..,..

....,...

Ta2O SiO...,.......

.

..,.. -,.C.,...

...,... Pb....

. XI ", "....

..

9.10.2010.

50.

Җ " "./ : (495) 939-44- E-mail: press@kdu.ru

 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .