авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:   || 2 | 3 |
-- [ Страница 1 ] --

RU 2 411 290 C2

(19) (11) (13)

РОССИЙСКАЯ

ФЕДЕРАЦИЯ

(51) МПК

C12N 7/00 (2006.01)

C12N 15/11 (2006.01) C12N 15/40 (2006.01) C12N 15/63 (2006.01) C07K 14/08 (2006.01) C07K 16/10 (2006.01) A01H 5/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, C12Q 1/04 (2006.01) C12Q 1/68 (2006.01) ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ G01N 33/569 (2006.01) (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ (21)(22) Заявка: 2007130086/10, 09.01.2006 (72) Автор(ы):

ВАН ДЕН ХЕВЕЛ Йоханнес Францискус (24) Дата начала отсчета срока действия патента: Йоханна Мария (NL), 09.01.2006 МАРИС Паулюс Корнелис (NL), ВЕРБЕК Маринус (NL), Приоритет(ы):

RU ДЮЛЛЕМАНС Аннетт Мария (NL), (30) Конвенционный приоритет:

ВАН ДЕР ВЛЮГТ Рене Андриес 07.01.2005 EP 05075042. Антониус (NL) 29.03.2005 EP 05075725. (73) Патентообладатель(и):

(43) Дата публикации заявки: 20.02.2009 Бюл. № ДЕ РЕЙТЕР СИДЗ Р энд Д Б.В. (NL) (45) Опубликовано: 10.02.2011 Бюл. № (56) Список документов, цитированных в отчете о поиске: DATABASE EMBL, accession no. AY829112, 13.12.2004. DATABASE EMBL, accession no.

LERTUPOLY, 18.06.1992. KR 20010086888 A, 15.09.2001. CN 1424326 A, 18.06.2003.

(85) Дата начала рассмотрения заявки PCT на C национальной фазе: 07.08. C (86) Заявка PCT:

NL 2006/000009 (09.01.2006) (87) Публикация заявки РСТ:

WO 2006/085749 (17.08.2006) Адрес для переписки:

129090, Москва, ул. Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. Е.Е.Назиной, рег. № (54) НОВЫЙ ВИРУС РАСТЕНИЙ (57) Реферат: отсутствуют или уменьшены симптомы RU Изобретение относится к выделенному заболевания. Растения, идентифицированные вирусу растений, названному вирус томата таким образом как устойчивые к вирусу, торрадо (ToTV), и его компонентам, а также к используют в качестве донорных при способам получения устойчивых к ToTV скрещивании с реципиентными растениями, и растений. Сначала на растение или его часть из растений-потомков отбирают устойчивые воздействуют инфекционной дозой ToTV. к ToTV. 6 н. и 2 з.п. ф-лы, 5 табл., 7 ил.

Затем идентифицируют растения, у которых.: ru RU 2 411 290 C (19) (11) (13) RUSSIAN FEDERATION (51) Int. Cl.

C12N 7/00 (2006.01) C12N 15/11 (2006.01) C12N 15/40 (2006.01) C12N 15/63 (2006.01) C07K 14/08 (2006.01) C07K 16/10 (2006.01) A01H 5/00 (2006.01) FEDERAL SERVICE C12Q 1/04 (2006.01) FOR INTELLECTUAL PROPERTY, C12Q 1/68 (2006.01) PATENTS AND TRADEMARKS G01N 33/569 (2006.01) (12)

Abstract

OF INVENTION (21)(22) Application: 2007130086/10, 09.01.2006 (72) Inventor(s):

VAN DEN KhEVEL Jokhannes Frantsiskus (24) Effective date for property rights: Jokhanna Marija (NL), 09.01.2006 MARIS Pauljus Kornelis (NL), VERBEK Marinus (NL), Priority:

RU DJuLLEMANS Annett Marija (NL), (30) Priority:

VAN DER VLJuGT Rene Andries Antonius (NL) 07.01.2005 EP 05075042. 29.03.2005 EP 05075725.1 (73) Proprietor(s):

DE REJTER SIDZ R ehnd D B.V. (NL) (43) Application published: 20.02.2009 Bull. (45) Date of publication: 10.02.2011 Bull. (85) Commencement of national phase: 07.08. (86) PCT application:

NL 2006/000009 (09.01.2006) (87) PCT publication:

WO 2006/085749 (17.08.2006) C Mail address:

C 129090, Moskva, ul. B.Spasskaja, 25, str.3, OOO "Juridicheskaja firma Gorodisskij i Partnery", pat.pov. E.E.Nazinoj, reg. № (54) NEW VIRUS OF PLANTS (57) Abstract: EFFECT: plants identified in such a manner as FIELD: agriculture. resistant to virus are used as donor ones to cross SUBSTANCE: first plant or its part is exposed to with recipient plants, and plants resistant to ToTV infection dose of ToTV. Then plants with no or slight are chosen from descendant plants.

symptoms of disease are identified. 8 cl, 7 dwg, 5 tbl, 2 ex RU.: en RU 2 411 290 C ОБЛАСТЬ ИЗОБРЕТЕНИЯ Настоящее изобретение относится к области заболеваний растений. Более конкретно, изобретение относится к новому вирусу растений, выделенному из томата, к способам детекции указанного вируса, к способам детекции устойчивых растений и к способам получения устойчивых растений.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ Томат Solanum lycopersicum (ранее Lycopersicon esculentum) является чувствительным к большому числу видов вирусов. Некоторые из наиболее известных вирусов томата включают в себя вирус бронзовости томата (TSWV;

род Tospovirus), вирус мозаики пепино (PepMV;

род Potexvirus) и вирус желтой курчавости листьев томата (TYLCV;

род Begomovirus). Повреждения, которые эти заболевания наносят растению, находятся в диапазоне от обесцвечивания листьев и некротических очагов до серьезной потери урожайности и гибели растения.

Возможность получать устойчивые растения является крайне важной для коммерческих селекционеров, и для некоторых из вирусов, наносящих наибольший экономический ущерб, получены устойчивые варианты растений. Однако время от времени появляются новые вирусы, которые могут наносить значительный ущерб урожаю.

В 1996 г. опубликован новый вирус томата, инфицировавший растения томата в США и Италии с 1993 г, и названный вирусом инфекционного хлороза томатов (TICV;

род Crinivirus;

Duffus et al., 1996). Другой новый вирус томата из того же рода опубликован в 1998. Показано, что этот вирус инфицировал растения томата в США с 1989, и его назвали вирусом хлороза томатов (ToCV;

Wisler et al, 1998). Доказано, что оба этих новых вируса распространяет белокрылка, насекомое, являющееся очень эффективным переносчиком заболевания.

Обычно считают, что географическое распределение известных вирусов будет увеличиваться и что будут продолжать появляться новые вирусы, частично в результате рекомбинации различных вирусов с образованием новых штаммов или новых вирусов. Разработка устойчивых культурных сортов может играть важную роль в успешном контроле этих заболеваний.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ Недавно на растениях томатов из Испании обнаружили новый вирус, вызывающий симптомы, которые нельзя приписать какому-либо из известных вирусов. У растений обнаруживали некротические повреждения на листьях и коричневые кольца на плодах, а также пониженный рост. Серологические тесты (ELISA) показали присутствие вируса мозаики пепино (PepMV). Исследования электронной микроскопией действительно выявили палочковидные частицы, типичные для потекс вирусов (Potexvirus). Однако в инфицированной ткани листа обнаружены также вирусные частицы сферической формы. Авторам настоящего изобретения удалось выделить новый вирус из комплекса с PepMV. Новый вирус предварительно назвали 45 вирус томата торрадо (ToTV).

Очень важной является возможность распознать заболевание, чтобы проследить его источник, осуществить мониторинг его эпидемиологии и предупредить его возможное распространение. Только тогда можно принимать адекватные меры для изоляции растений и начинать фитосанитарную профилактику. На настоящий момент не существует доступных диагностических средств. Следовательно, существует необходимость разработки диагностических средств для данного заболевания. Более того, в настоящее время неизвестны растения, обладающие специфической.: DE RU 2 411 290 C устойчивостью к этому новому вирусу, в то время как существует необходимость разработки таких устойчивых растений.

Изобретение в первом аспекте относится к вирусу растений, предварительно названному вирус томата торрадо (ToTV), депонированному в немецкой коллекции микроорганизмов и клеточных культур (DSMZ) в Брауншвейге 24 ноября 2004 г. под номером для ссылки депозитов ToTV-E01 (DSM 16999).

Вирус вызывает симптомы заболевания в растениях томата, так же как в других растениях, и может вызывать симптомы самостоятельно или в комплексе с другими вирусами или заболеваниями.

Первые системные симптомы состоят в некротических пятнах на верхушке растения, начиная с основания листочков сложного листа. Некротические пятна набухают и окружены светло-зеленой или желтой областью (см. Фиг.1). Не все системно инфицированные листья проявляют симптомы, однако в этих листьях можно обнаружить вирус, например, посредством электронной микроскопии. На плодах, инфицированных ToTV, наблюдаются некротические кольца. Рост инфицированных растений может быть сниженным по сравнению с неинфицированными растениями.

Приведенное выше описание относится к растениям, заново инфицированным выделенным вирусом, и не обязательно будет точно отражать симптомы, встречающиеся в полевых условиях. Такие факторы, как раса или вариетет растения, стадия развития, воздействие дополнительных заболеваний и абиотические факторы (например, температура и относительная влажность), будут, в конечном счете, определять проявление и характеристики симптомов.

Вирусные частицы являются сферическими (икосаэдрическими) по форме с диаметром приблизительно 28 нм (см. Фиг.2). Вирусные частицы состоят по меньшей мере из трех белков капсида приблизительно по 23, 26 и 35 кДа (см. Фиг.3). После очистки вирус отображает на дисплее по меньшей мере две видимые полосы в градиенте сульфата цезия. Верхняя видимая полоса (верхняя фракция вируса) содержит молекулу РНК приблизительно 5,5 т.н. (более точно, 5,2 т.н.), а нижняя видимая полоса (нижняя фракция) содержит молекулу РНК приблизительно 8 т.н.

(более точно, 7,7 т.н.) (см. Фиг.4). Инокуляция растений табака обеими объединенными полосами приводит к инфекции.

ToTV способен механически передаваться нескольким видам Nicotiana.

Общепринятый буфер для инокуляции (например, 0,03 M фосфатный буфер с pH 7,7) является пригодным. Для размножения ToTV предпочтительными являются N.glutinosa, N.tabacum и N.benthamina. Виды табака N.hesperis '67A' и N.occidentalis 'Р1' являются очень чувствительными к ToTV и проявляют системные симптомы после 3-4 суток. У этих видов томата развивается сильный некроз за короткое время, и, таким образом, они являются более подходящими для использования в качестве индикаторного растения, чем в качестве хозяина для размножения. N.glutinosa реагирует местными очагами хлороза, системным хлорозом и 45 умеренной деформацией листьев. N.benthamiana не проявляет местных симптомов и реагирует системным хлорозом и деформацией листьев.

Кроме того, изобретение относится к вирусу, содержащему по меньшей мере одну последовательность нуклеиновой кислоты, выбранную из группы, состоящей из SEQ ID NO:1 и SEQ ID NO:2 и последовательностей, обладающих по меньшей мере 30%, предпочтительно по меньшей мере 40%, предпочтительно по меньшей мере 50%, предпочтительно по меньшей мере 60%, более предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 80%, еще более предпочтительно по меньшей.: RU 2 411 290 C мере 90%, еще более предпочтительно по меньшей мере 95%, еще более предпочтительно по меньшей мере 98% и наиболее предпочтительно по меньшей мере 99% гомологией с ними. Такие вирусы также охвачены термином ToTV, как используется в данном описании.

В предпочтительном варианте осуществления вируса по изобретению, обладающего вышеуказанной гомологией последовательности, указанный вирус связан с заболеваниями томата, известными под названиями «Торрадо», «Марчитец»

и/или «Заболевание шоколадной пятнистости», и/или указанный вирус, на основании численного таксономического анализа таксономических признаков, в основном, как определено в таблице 1, обладает более близким родством с вирусом, как определено по п.1 формулы изобретения, чем с любым другим изолятом вируса, доступным в публичных коллекциях, и указанный вирус обладает необходимыми характеристиками, связанными с заболеванием, вызывающим некротические повреждения у томата.

В другом аспекте изобретение относится к выделенной или рекомбинантной нуклеиновой кислоте, содержащей последовательность нуклеиновой кислоты, выбранную из группы, состоящей из SEQ ID NO:1, SEQ ID NO:2, последовательностей, обладающих по меньшей мере 50%, предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 80%, еще более предпочтительно по меньшей мере 90%, еще более предпочтительно по меньшей мере 95%, еще более предпочтительно по меньшей мере 98% и наиболее предпочтительно по меньшей мере 99% гомологией нуклеотидной последовательности c SEQ ID NO:1 или SEQ ID NO:

2, комплементарных им цепей и их ToTV-специфических фрагментов. Такую нуклеиновую кислоту можно получить из вируса по изобретению.

В другом аспекте изобретение относится к полинуклеотиду, способному гибридизоваться в строгих условиях с выделенной или рекомбинантной нуклеиновой кислотой по изобретению, как описано выше.

В другом аспекте изобретение относится к выделенному или рекомбинантному полипептиду, полученному из вируса по изобретению, или его ToTV-специфическому фрагменту. В предпочтительном варианте осуществления указанный полипептид выбран из группы, состоящей из белков капсида 23, 26 и 35 кДа и их ToTV специфических фрагментов.

В другом аспекте изобретение относится к антигену, содержащему полипептид по изобретению или его ToTV-специфический фрагмент.

В другом аспекте изобретение относится к антителу, специфически направленному против антигена по изобретению.

В другом аспекте изобретение относится к способу получения антитела против ToTV, включающему стадии: a) получения вируса ToTV или его (рекомбинантного) белка, или фрагмента его пептида;

b) иммунизации подходящего позвоночного-хозяина указанным вирусом, белком или фрагментом пептида и c) 45 сбора из крови (включая сыворотку) или спленоцитов указанного позвоночного хозяина антител против указанного вируса, белка или фрагмента пептида. В предпочтительном варианте осуществления указанный способ дополнительно включает в себя стадии: d) отбора одного продуцирующего антитело спленоцита, e) слияния указанного спленоцита с иммортализованной линией клеток гибридомы и f) обеспечения возможности указанной слитой гибридоме продуцировать моноклональные антитела.

В другом аспекте изобретение относится к антителу, которое можно получить.: RU 2 411 290 C способом получения антитела против ToTV по изобретению.

В другом аспекте изобретение относится к способу идентификации изолята вируса как вируса ToTV, включающему реакцию указанного изолята вируса или его компонента с антителом по изобретению.

В другом аспекте изобретение относится к способу идентификации изолята вируса как вируса ToTV, включающему реакцию указанного изолята вируса или его компонента с полинуклеотидом по изобретению.

В другом аспекте изобретение относится к способу детекции присутствия ToTV в образце, включающему определение в указанном образце присутствия вируса ToTV или его компонента путем реакции указанного образца с полинуклеотидом или с антителом по изобретению.

В другом аспекте изобретение относится к способу идентификации устойчивого к ToTV растения, включающему стадии: a) воздействия на растение или часть растения инфекционной дозы ToTV, и b) идентификации указанного растения как устойчивого к ToTV, когда, после указанного воздействия, или i) симптомы заболевания в указанном растении или части растения остаются отсутствующими, или их проявление задержано, или, по меньшей мере, тяжесть уменьшена, или они являются локализованными по сравнению с чувствительным контрольным растением, и/или ii) вирус ToTV или геномные последовательности ToTV не присутствуют в указанном растении или части растения или присутствие вируса ToTV является по меньшей мере уменьшенным количественно по сравнению с чувствительным контрольным растением. Стадия a) включает период инкубации достаточно долгой продолжительности, чтобы позволить установление поддающихся выявлению симптомов заболевания в чувствительных контрольных растениях, подвергавшихся воздействию сравнимой инфекционной дозы вируса. Посредством осуществления данного способа можно идентифицировать у растения все формы устойчивости, включая полную устойчивость, частичную устойчивость, гиперчувствительность и толерантность. Чтобы подтвердить толерантность, необходимо подтвердить (системное) присутствие вируса в растении (клетках). Стадия b) может включать осуществление способа детекции присутствия ToTV в образце из указанного растения или части растения по настоящему изобретению, где применяют антитело или полинуклеотид по изобретению в общепринятых способах для анализов гибридизации нуклеотидов или иммуноанализов, хорошо известных специалисту в данной области.

Альтернативно, стадия b) может включать приведение в контакт части указанного подвергшегося воздействию растения с чувствительным индикаторным растением.

Таким образом, можно выявлять наличие системной или местной инфекции в указанном подвергшемся воздействию растении через наблюдение возникновения заболевания в индикаторном растении или даже в дополнительном контактировавшем индикаторном растении, контактировавшем с указанным первым контактировавшим индикаторным растением.

45 В другом аспекте изобретение относится к способу получения устойчивого к ToTV растения, включающему стадии идентификации устойчивого к ToTV донорного растения одним из вышеуказанных способов для идентификации устойчивого к ToTV растения по изобретению, скрещивания указанного устойчивого к ToTV донорного растения с реципиентным растением (где реципиентное растение может быть либо чувствительным к ToTV, либо устойчивым к ToTV, но является, соответственно, устойчивым к ToTV растением в случае, если устойчивый фенотип обусловлен рецессивным геном), и отбора из растений-потомков (например, F1, F2 и.: RU 2 411 290 C самоопыленного растения) устойчивого растения способом идентификации устойчивости к ToTV у растения, как описано выше. В случае, если признак устойчивости является рецессивным признаком, устойчивые растения можно обнаружить среди растений-потомков самоопыления F1 или F2 или более дальних поколений. В предпочтительных вариантах осуществления по данному аспекту указанное устойчивое к ToTV донорное растение и реципиентное растение представляют собой растения семейства Solanaceae или семейства Cucurbitaceae. В других предпочтительных вариантах осуществления по данному аспекту указанное реципиентное растение представляет собой томат, баклажан, перец, дыню, арбуз или огурец, более предпочтительно растение из вида Solanum lycopersicum, наиболее предпочтительно линии S.lycopersicum, обладающей коммерчески желательными характеристиками.

В другом аспекте изобретение относится к устойчивому к ToTV растению, предпочтительно томату, баклажану, перцу, дыне, арбузу или огурцу, или его части, такой как семя, которые можно получить способом получения устойчивого к ToTV растения по изобретению.

В другом аспекте изобретение относится к диагностическому набору для детекции присутствия ToTV в образце или для идентификации устойчивости к ToTV в растении, содержащем вирус, полинуклеотид, полипептид, антиген и/или антитело по изобретению.

В другом аспекте изобретение относится к применению вируса, полинуклеотида, полипептида, антигена или антитела по изобретению для получения диагностической композиции.

В другом аспекте изобретение относится к диагностической композиции, содержащей вирус, полинуклеотид, полипептид, антиген или антитело по изобретению.

В другом аспекте изобретение относится к применению ToTV или частей вирусного генома ToTV в качестве экспрессирующего вектора.

В другом аспекте изобретение относится к применению ToTV или частей вирусного генома ToTV для получения обусловленной патогеном устойчивости у растений.

В другом аспекте изобретение относится к применению аттенуированной формы вируса ToTV, или его генома, или его частей для премуниции растения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ Определения Как используется в данном описании, термин «часть растения» обозначает часть растения, включая отдельные клетки и клеточные ткани, такие как клетки растения, являющиеся интактными в растениях, скопления клеток и культуры тканей, из которых можно регенерировать растения. Примеры частей растения включают, без ограничения, отдельные клетки и ткани из пыльцы, семяпочек, листьев, зародышей, корней, кончиков корней, пыльников, цветов, плодов, отростков стебля и семян;

так же как пыльцу, семяпочки, листья, зародыши, корни, кончики корней, пыльники, цветы, плоды, стебли, побеги, черенки, корневище, семена, протопласты, каллюсы и т.п.

Термин «образец» включает в себя образец из растения, из части растения или из переносчика, или образец почвы, воды или воздуха.

Термин «переносчик», как используется в данном описании, относится к распространяющему заболевание агенту или веществу. Переносчики ToTV в полевых условиях могут включать, без ограничения, животных, таких как Arthropoda (в частности, из классов Insecta и Arachnida), Nematoda (в частности, из.: RU 2 411 290 C класса Adenophorea), а также более крупных животных, таких как, например, птицы, кролики и мыши, грибы (т.е. тип Eumycota, в частности грибы класса Phycomycota), (паразитические) растения (включая члены семейства Cuscutaceae), пыльцу, семена, воду, твердые частицы и даже руки человека, оборудование и обувь.

Термин растение-«потомок» относится к любому растению, полученному в качестве потомства благодаря вегетативному или половому размножению от одного или нескольких родительских растений или их потомков. Например, растение-потомок можно получить клонированием или самоопылением родительского растения, или скрещиванием двух родительских растений, и оно включает в себя растения, полученные самоопылением, так же как F1 или F2, или более дальние поколения. F представляет собой потомство первого поколения, полученное от родителей, по меньшей мере одно из которых применяли первый раз в качестве донора признака, тогда как потомство второго поколения (F2) или последующих поколений (F3, F4 и т.д.) представляет собой экземпляры, полученные от самоопылений F1, F2 и т.д. F может, таким образом, быть (и обычно является) гибридом, полученным от скрещивания между двумя родителями из разведения гомозигот (гомозиготы из разведения являются гомозиготными по признаку), тогда как F2 может быть (и обычно является) потомством от самоопыления указанных гибридов F1.

Термин «устойчивый», как используется в данном описании, относится к растению, способному сопротивляться размножению вируса в его клетках и/или (системному) передвижению вируса к другим клеткам и/или развитию симптомов заболевания после инфекции указанным вирусом, где вирус способен к инфицированию и размножению в соответствующих неустойчивых или чувствительных вариететов указанного растения.

Термин используют для включения таких отдельно идентифицируемых форм устойчивости, как «полная устойчивость», «иммунитет», «частичная устойчивость», «гиперчувствительность» и «толерантность».

«Полная устойчивость» обозначает полную неспособность вируса развиваться после инфекции и может быть либо результатом неспособности вируса входить в клетку (отсутствие начальной инфекции), либо может быть результатом неспособности вируса размножаться в клетке и инфицировать последующие клетки (отсутствие подпороговой инфекции, отсутствие распространения). Наличие полной устойчивости можно определить установлением отсутствия вирусных частиц или вирусной РНК в клетках растения, так же как отсутствия каких-либо симптомов заболевания в указанном растении после воздействия на указанное растение инфекционной дозы вируса (т.е. после «инфекции»). Среди селекционеров данный фенотип часто обозначают как «иммунный». «Иммунитет», как используется в данном описании, таким образом, относится к форме устойчивости, характеризуемой отсутствием вирусной репликации, даже когда вирус активно переносят в клетки, например, посредством электропорации.

«Инфекционную дозу» определяют как дозу вирусных частиц или нуклеиновой кислоты вируса, способную инфицировать растение, где доза может различаться между растениями и между тестируемыми изолятами ToTV. Теоретически, количество от приблизительно 1-10 до приблизительно 500-5000 вирусных частиц указанного вируса или его нуклеиновых кислот будет являться достаточным. Инфекции, таким образом, можно достигать механической инокуляцией очищенных частиц вируса или нуклеиновой кислоты вируса в растения.

«Частичная устойчивость» обозначает уменьшенное размножение вируса в клетке, уменьшенное (системное) передвижение вируса и/или уменьшенное развитие.: RU 2 411 290 C симптомов после инфекции. Наличие частичной устойчивости можно определить установлением системного присутствия низких титров вирусных частиц или вирусной РНК в растении и присутствия уменьшенных или отсроченных симптомов заболевания в указанном растении после воздействия на указанное растение инфекционной дозы вируса. Титры вируса можно определить с использованием способа количественной детекции (например, способа ELISA или количественной полимеразной цепной реакции с обратной транскрипцией [RT-PCR]). Среди селекционеров данный фенотип часто обозначают как «промежуточно устойчивый».

Термин «гиперчувствительный» относится к форме устойчивости, при которой инфекция остается местной и не распространяется системно, например, из-за местного некроза инфицированной ткани или отсутствия системного передвижения за пределы инокулированной ткани. В гиперчувствительных растениях обнаруживают местные, но тяжелые симптомы заболевания, и в таких растениях можно установить местное присутствие вируса.

Термин «толерантный» применяют в данном описании для обозначения фенотипа растения, при котором симптомы заболевания остаются отсутствующими после воздействия на указанное растение инфекционной дозы вируса, при котором можно установить присутствие системной или местной вирусной инфекции, размножение вируса, по меньшей мере присутствие вирусных геномных последовательностей в клетках указанного растения и/или их интеграцию в геном. Таким образом, толерантные растения являются устойчивыми для проявления симптомов, однако бессимптомные растения являются носителями вируса. Иногда вирусные последовательности могут присутствовать или даже размножаться в растениях, не вызывая симптомов заболевания. Этот феномен известен также как «латентная инфекция». Некоторые ДНК- и РНК-вирусы могут становиться не подлежащими выявлению после первичной инфекции, но появляться вновь позже и приводить к острому заболеванию. При латентной инфекции вирус может существовать в истинно латентной неинфекционной скрытой форме, возможно, в виде интегрированного генома или эписомального агента (так что вирусные частицы нельзя обнаружить в цитоплазме, в то время как способами PCR можно показать присутствие последовательностей вирусной нуклеиновой кислоты) или в виде инфекционного и постоянно реплицирующегося агента. Реактивированный вирус может распространяться и вызывать эпидемию среди контактирующих чувствительных растений. Наличие «латентной инфекции» нельзя отличить от наличия «толерантного»

фенотипа у растения.

Термин «чувствительный» используют в данном описании для обозначения растения, не обладающего устойчивостью к вирусу, что приводит к проникновению вируса в клетки растения, размножению и системному распространению вируса, вызывая симптомы заболевания. Термин «чувствительный», таким образом, является эквивалентным «неустойчивому». В чувствительном растении обнаруживают 45 нормальные титры вируса в клетках после инфекции. Таким образом, чувствительность можно определить посредством установления нормальных (т.е.

относительно других вирусных инфекций у растений) титров вирусных частиц или вирусной РНК в клетках растения и присутствия нормальных симптомов заболевания (т.е. относительно симптомов заболевания, как описано здесь для растения, из которого первоначально выделен ToTV) в указанном растении после воздействия на указанное растение инфекционной дозы вируса.

Термин «чувствительный» отражает симптоматическую реакцию чувствительного.: RU 2 411 290 C растения после вирусной инфекции. Реакция или симптомы могут быть более или менее тяжелыми в зависимости от уровня чувствительности растения. Если вирус повреждает или даже вызывает гибель растения, указанное растение определяют как «чувствительное».

Растения, искусственно инокулированные аттенуированными штаммами вируса, впоследствии являются защищенными от близкородственных вирулентных вирусов. В качестве защищающих вирусов можно использовать либо существующие в природе умеренные штаммы, либо аттенуированный штамм (искусственно полученный умеренный мутант). Предпочтительно, чтобы достигнуть премуниции растения против ToTV, можно использовать аттенуированный штамм ToTV, который не вызывает симптомов или для которого показано по меньшей мере уменьшенное проявление симптомов в инфицированном растении относительно вирулентного штамма ToTV. Способы получения аттенуированного вируса могут включать, например, случайный мутагенез генома ToTV и скрининг штаммов с аттенуацией симптомов. Приведена непосредственная ссылка на способы получения аттенуированных вирусов растений, как описано в статьях Takeshita et al., 2001;

Lu et al., 2001;

Hagiwara, et al., 2002;

Hirata et al., 2003.

Как используется в данном описании, термин «томат» означает любое растение, линию или популяцию Lycopersicon или Solanum, включающие, без ограничения, представленные в списке ниже. Недавно номенклатура Lycopersicon была изменена.

Новая номенклатура Lycopersicon представлена в следующем списке (из: Peralta, Knapp & Spooner, неопубликованная монография (см.: http://www.sgn.cornell.edu "Guide to revised Solanum nomenclature")).

Наименование в монографии о томатах (Peralta et al., в подготовке Эквивалент Lycopersicon для публикации в Systematic Botany Monographs) Solanum juglandifolium Dunal Lycopersicon juglandifolium (Dunal) J.M.H. Shaw Solanum ochranthum Dunal Lycopersicon ochranthum (Dunal) J.M.H. Shaw Solanum sitiens I.M. Johnst Lycopersicon sitiens (I.M. Johnst.) J.M.H. Shaw Solanum lycopersicoides Dunal Lycopersicon lycopersicoides (Dunal in DC.) A. Child ex J.M.H. Shaw Solanum pennellii Correll Lycopersicon pennellii (Correll) D'Arcy Solanum habrochaites S. Knapp & D.M Spooner Lycopersicon hirsutum Dunal Solanum “N peruvianum” для описания в Peralta (4 географических Часть Lycopersicon peruvianum (L.) Miller (вкл. вар. рас 35 расы: стелющийся, лома, Марафон, Chotano-Yamaluc) стелющийся и Марафон) Часть Lycopersicon peruvianum (L.) Miller (из Ancash, alogn Rнo Solanum “Callejon de Huaylas” для описания в Peralta Santa) Solanum neorickii D.M. Spooner, G.J. Anderson & R.K. Jansen Lycopersicon parviflorum C.M. Rick, Kesicki, Fobes & M. Holle Solanum chmielewskii (C.M. Rick, Kesicki, Fobes & M. Holle) D.M.

Lycopersicon chmielewskii C.M. Rick, Kesicki, Fobes & M. Holle Spooner, G.J. Anderson & R.K. Jansen Solanum corneliomuelleri J.F. Macbr. (1 географическая раса: Misti Часть Lycopersicon peruvianum (L.) Miller;

известная также nr. Arequipa) как Lycopersicon glandulosum C.F. Mull.

Solanum peruvianum L. Lycopersicon peruvianum (L.) Miller Solanum chilense (Dunal) Reiche Lycopersicon chilense Dunal Solanum cheesmaniae (L. Riley) Fosberg Lycopersicon cheesmaniae L. Riley (опубликован как cheesmanii) Часть Lycopersicon cheesmaniae L. Riley (ранее известная как 45 Solanum galapagense S. Darwin & Peralta форма или вар. minor) Solanum lycopersicum L. Lycopersicon esculentum Miller Solanum pimpinellifolium L. Lycopersicon pimpinellifolium (L.) Miller «Экспрессирующий вектор» определяют как молекулу нуклеиновой кислоты, содержащую ген, обычно гетерологичный ген, экспрессирующийся в клетке-хозяине.

Как правило, этот ген содержит кодирующую белок последовательность. Экспрессию гена всегда помещают под контроль промотора, и такой ген, как говорят, является.: RU 2 411 290 C «функционально связанным с» промотором. Термин «гетерологичный» относится к молекуле ДНК или к популяции молекул ДНК, которая в природных условиях не существует в данной клетке-хозяине.

Термин «полинуклеотид», как используется в данном описании, является взаимозаменяемым с термином «нуклеиновая кислота» и относится к мультимеру нуклеотидов или полимерной форме нуклеотидов, обладающим любым числом нуклеотидов, например дезоксирибонуклеотидов или рибонуклеотидов, или к полученным синтетически соединениям (например, PNA, как описано в патенте США № 5948902 и процитированных там ссылках), и может быть либо двух-, либо одноцепочечным. Полинуклеотид может гибридизоваться с существующими в природе полинуклеотидами специфическим к последовательности образом, аналогичным гибридизации двух существующих в природе полинуклеотидов, например может участвовать во взаимодействиях Уотсон-Криковского спаривания оснований. Термин также включает в себя модифицированные, например, метилированием и/или кэппированием и немодифицированные формы полинуклеотида.

Термины «рибонуклеиновая кислота» и «РНК», как используется в данном описании, обозначают полимер, состоящий из рибонуклеотидов.

Термины «дезоксирибонуклеиновая кислота» и «ДНК», как используется в данном описании, обозначают полимер, состоящий из дезоксирибонуклеотидов.

Термин «олигонуклеотид» обозначает короткую последовательность мономеров нуклеотидов (обычно от 6 до 100 нуклеотидов), соединенных фосфорными связями (например, фосфодиэфирной, алкил- и арилфосфатной, фосфоротиоатной) или нефосфорными связями (например, пептидной, сульфаматной и другими).

Олигонуклеотид может содержать модифицированные нуклеотиды, имеющие модифицированные основания (например, 5-метилцитозин) и модифицированные группы сахаров (например, 2'-O-метилрибозил, 2'-O-метоксиэтилрибозил, 2' фторорибозил, 2'-аминорибозил и т.п.). Олигонуклеотиды могут представлять собой природные или синтетические молекулы двух- и одноцепочечной ДНК и двух- и одноцепочечной РНК кольцевой, разветвленной или линейной формы и, не обязательно, содержат домены, способные формировать вторичные структуры (например, стебель-петля, псевдоузлы и структуры соприкасающихся петель).

Термин «гомология нуклеотидной последовательности», как используется в данном описании, обозначает наличие гомологии между двумя полинуклеотидами.

Полинуклеотиды обладают «гомологичными» последовательностями, если последовательность нуклеотидов в двух последовательностях является одинаковой при сравнении по максимальному соответствию. Сравнение последовательности между двумя или более полинуклеотидами, как правило, проводят сравнением частей двух последовательностей в окне сравнения для идентификации и сравнения локальных областей сходства последовательности. Окно сравнения обычно 45 составляет приблизительно от 20 до 200 непрерывных нуклеотидов. «Процент гомологии последовательности» полинуклеотидов, например 50, 60, 70, 80, 90, 95, 98, 99 или 100 процентов гомологии последовательности, можно определить сравнением двух оптимально выровненных последовательностей в окне сравнения, где часть последовательности полинуклеотида в окне сравнения может содержать добавления или делеции (т.е. пропуски) по сравнению с контрольной последовательностью (которая не содержит добавлений или делеций) для оптимального выравнивания двух последовательностей. Процент вычисляют посредством (a) определения числа.: RU 2 411 290 C положений, в которых идентичные основания нуклеиновой кислоты присутствуют в обеих последовательностях, для получения числа совпадающих положений;

(b) деления числа совпадающих положений на общее число положений в окне сравнения;

и (c) умножения результата на 100 для получения процента гомологии последовательности. Оптимальное выравнивание последовательностей для сравнения можно проводить компьютеризированным исполнением известных алгоритмов или визуальным контролем. Легко доступными алгоритмами сравнения последовательностей и множественного выравнивания последовательностей являются, соответственно, основная программа поиска локального выравнивания (BLAST) (Altschul et al., 1990;

Altschul et al., 1997) и программа ClustalW, обе доступны через интернет. Другие подходящие программы включают, без ограничения, GAP, BestFit, PlotSimilarity и FASTA в пакете программного обеспечения Wisconsin Genetics (Genetics Computer Group (GCG), Madison, WI, USA) (Devereux et al., 1984).

Как используется в данном описании, «в основном комплементарные» означает, что две последовательности нуклеиновой кислоты обладают по меньшей мере приблизительно 65%, предпочтительно приблизительно 70%, более предпочтительно приблизительно 80%, даже более предпочтительно 90% и наиболее предпочтительно приблизительно 98% комплементарностью последовательностей друг с другом. Это означает, что праймеры и зонды должны обладать достаточной комплементарностью с их матрицей и нуклеиновой кислотой-мишенью, соответственно, чтобы гибридизоваться в строгих условиях. Таким образом, последовательности праймера и зонда не должны отражать точную комплементарную последовательность связывающей области на матрице, и можно применять вырожденные праймеры.

Например, некомплементарный нуклеотидный фрагмент можно присоединять к 5' концу праймера, причем остальная последовательность праймера является комплементарной цепью. Альтернативно, в праймер можно вставлять некомплементарные основания или более длинные последовательности при условии, что праймер обладает достаточной комплементарностью с последовательностью одной из подлежащих амплификации цепей для гибридизации с ней и, таким образом, формирования структуры дуплекса, которую можно достроить способами полимеризации. Некомплементарные нуклеотидные последовательности праймеров могут включать участки для рестрикционных ферментов. Добавление участка для рестрикционного фермента на конец(концы) последовательности-мишени может быть особенно полезным для клонирования последовательности-мишени. В основном комплементарная последовательность праймера представляет собой последовательность, обладающую достаточной комплементарностью последовательности с матрицей для амплификации, чтобы приводить к связыванию праймера и синтезу второй цепи. Специалистам в данной области известно, что праймеры должны обладать достаточной комплементарностью последовательности с 45 матрицей для амплификации.

Термин «гибрид» в контексте нуклеиновых кислот относится к двухцепочечной молекуле нуклеиновой кислоты, или дуплексу, образованной с помощью водородных связей между комплементарными нуклеотидными основаниями. Термины «гибридизоваться» или «отжигаться» относятся к процессу, при помощи которого отдельные цепи последовательности нуклеиновой кислоты образуют двуспиральные отрезки путем водородного связывания между комплементарными основаниями.

Термин «гибрид» в контексте селекции растений относится к растению,.: RU 2 411 290 C являющемуся потомком генетически разнородных родителей, полученным путем скрещивания растений из различных линий, пород или видов.

Термин «зонд» относится к одноцепочечной олигонуклеотидной последовательности, которая будет распознавать комплементарную последовательность в последовательности-мишени аналита нуклеиновой кислоты или производной от нее кДНК и формировать с ней дуплекс с водородными связями.

Термин «праймер», как используется в данном описании, относится к олигонуклеотиду, способному отжигаться с мишенью для амплификации, позволяя присоединение ДНК-полимеразы, таким образом, выполняя функцию точки инициации синтеза ДНК при помещении в условия, в которых индуцируется синтез продукта удлинения праймеров, т.е. в присутствии нуклеотидов и средства для полимеризации, такого как ДНК-полимераза, и при подходящих температуре и pH.

Праймер (для амплификации) предпочтительно является одноцепочечным для максимальной эффективности амплификации. Предпочтительно, праймер представляет собой олигодезоксирибонуклеотид. Праймер должен быть достаточно длинным для праймирования синтеза продуктов удлинения в присутствии средства для полимеризации. Точные длины праймеров будут зависеть от многих факторов, включая температуру и состав (содержание A/T и G/C) праймера. Пара двусторонних праймеров состоит из одного прямого и одного обратного праймера, как общепринято в области амплификации ДНК, такой как амплификация PCR.

Понятно, что «праймер», как используется в данном описании, может относиться к более чем одному праймеру, в частности, в случае, где существует некоторая неопределенность информации относительно концевой последовательности(последовательностей) области-мишени, подлежащей амплификации. Таким образом, «праймер» включает набор олигонуклеотидов праймеров, содержащий последовательности, представляющие возможные варианты последовательности, или включает нуклеотиды, позволяющие типичное спаривание оснований.

Олигонуклеотидные праймеры можно получать любым подходящим способом.

Способы получения олигонуклеотидов конкретной последовательности известны в данной области и включают в себя, например, клонирование и рестрикцию подходящих последовательностей, и прямой химический синтез. Способы химического синтеза могут включать, например, фосфо ди- или триэфирный способ, диэтилфосфорамидатный способ и твердофазный способ, описанные, например, в патенте США № 4458066. Праймеры, если желательно, можно метить путем введения средств, способных к выявлению, например, спектроскопическими, флуоресцентными, фотохимическими, биохимическими, иммунохимическими или химическими способами.

Зависимое от матрицы удлинение олигонуклеотидного праймера(праймеров) катализирует полимеризующее средство в присутствии подходящих количеств четырех дезоксирибонуклеотидтрифосфатов (dATP, dGTP, dCTP и dTTP, т.е. dNTP) или 45 аналогов, в реакционной среде, состоящей из подходящих солей, катионов металлов, и системы для забуферивания pH. Подходящими полимеризующими средствами являются ферменты, известные как катализирующие зависимый от праймера и матрицы синтез ДНК. Известные ДНК-полимеразы включают, например, ДНК полимеразу I E.coli или ее фрагмент Кленова, ДНК-полимеразу T4 и ДНК полимеразу Taq. Условия реакции для катализа синтеза ДНК этими ДНК полимеразами известны в данной области.

Продукты синтеза представляют собой молекулы дуплекса, состоящего из цепей.: RU 2 411 290 C матрицы и цепей после удлинения праймера, содержащих последовательность-мишень.

Эти продукты, в свою очередь, служат матрицей для другого цикла репликации. Во втором цикле репликации цепь после удлинения праймера из первого цикла отжигается с комплементарным ей праймером;

в результате синтеза получают «короткий» продукт, который как на 5'-, так и на 3'-конце ограничен последовательностями праймеров или комплементарными им. Повторяющиеся циклы денатурации, отжига праймеров и достройки приводят к экспоненциальному накоплению области-мишени, определяемой праймерами. Проводят достаточно циклов для достижения желаемого количества полинуклеотида, содержащего область мишень нуклеиновой кислоты. Желаемое количество может меняться и определяется назначением, для которого должен служить полинуклеотидный продукт.

Способ PCR хорошо описан в руководствах и известен специалистам в данной области.

После амплификации PCR полинуклеотиды можно выявлять гибридизацией с полинуклеотидом-зондом, образующим стабильный гибрид с последовательностью мишенью в условиях гибридизации и отмывки от строгих до умеренно строгих. Если ожидают, что зонды будут по существу полностью комплементарными (т.е.

приблизительно на 99% или более) последовательности-мишени, то применяют строгие условия. Если ожидают некоторые несоответствия, например ожидают, что варианты штаммов будут приводить к неполной комплементарности зондов, строгость гибридизации можно уменьшать. Однако выбирают условия, исключающие неспецифическое/случайное связывание. Условия, влияющие на гибридизацию, которые выбирают против неспецифического связывания, известны в данной области и описаны, например, в Sambrook et al., (2001). Как правило, более низкая концентрация соли и более высокая температура увеличивают строгость связывания.

Например, обычно считают, что строгие условия представляют собой инкубации в растворах, содержащих приблизительно 0,1SSC, 0,1% SDS, при температуре инкубации/отмывки приблизительно 65°C, а умеренно строгие условия представляют собой инкубации в растворах, содержащих приблизительно 1-2SSC, 0,1% SDS, при температуре инкубации/отмывки приблизительно 50°-65°C. Условия низкой строгости представляют собой 2SSC и приблизительно 30-50°C.

Термины «строгость» или «строгие условия гибридизации» относятся к условиям гибридизации, влияющим на стабильность гибридов, например температуре, концентрации соли, pH, концентрации формамида и т.п. Эти условия эмпирически оптимизируют для максимизации специфического связывания и минимизации неспецифического связывания праймера или зонда с последовательностью-мишенью нуклеиновой кислоты. Термины, как используется, включают в себя обозначение условий, при которых зонд или праймер будет гибридизоваться с его последовательностью-мишенью в большей степени, чем с другими последовательностями, что можно выявить (например, по меньшей мере в 2 раза выше 45 фона). Строгость условий зависит от последовательности и будет различаться в различных обстоятельствах. Более длинные последовательности специфически гибридизуются при более высоких температурах. Как правило, выбирают условия строгости приблизительно на 5°C ниже, чем температурная точка плавления (Tm) для конкретной последовательности при определенной ионной силе и pH. Tm представляет собой температуру (при определенных ионной силе и pH), при которой 50% комплементарной последовательности-мишени гибридизуется с точно совпадающим зондом или праймером. Как правило, строгими условиями являются такие, при.: RU 2 411 290 C которых концентрация соли составляет менее чем приблизительно 1,0 M иона Na +, обычно, концентрация иона Na + (или других солей) составляет приблизительно 0,01 1,0 M при pH 7,0-8,3, а температура составляет по меньшей мере приблизительно 30°C для коротких зондов или праймеров (например, 10-50 нуклеотидов) и по меньшей мере приблизительно 60°C для длинных зондов или праймеров (например, более чем нуклеотидов). Строгих условий можно достигать также добавлением дестабилизирующих средств, таких как формамид. Характерные условия с низкой строгостью или «условия пониженной строгости» включают в себя гибридизацию в буферном растворе 30% формамида, 1M NaCl, 1% SDS при 37°C и отмывку в 2SSC при 40°C. Характерные условия с высокой строгостью включают в себя гибридизацию в 50% формамиде, 1M NaCl, 1% SDS при 37°C и отмывку в 0,1SSC при 60°C. Способы гибридизации хорошо известны в данной области и описаны, например, в Ausubel et al., 1998 и Sambrook et al., 2001.

Термин «антиген» относится к веществу, способному запускать иммунный ответ у позвоночного, приводящий к продукции антитела в качестве части защиты против указанного вещества. Антигены могут представлять собой белки вируса, которые могут провоцировать продукцию антитела, например, в клетках крови, клетках лимфатических узлов и селезенке позвоночных.

Термин «антитело» включает антигенсвязывающие пептиды и относится к антителам, моноклональным антителам, полноразмерному иммуноглобулину или антителу, или любому функциональному фрагменту молекулы иммуноглобулина.

Примеры таких пептидов включают полные молекулы антитела, фрагменты антител, такие как Fab, F(ab')2, определяющие комплементарность области (CDR), VL (вариабельную область легкой цепи), VH (вариабельную область тяжелой цепи) и любое их сочетание или любую другую функциональную часть пептида антитела.

Термин «антитело» относится к полипептиду, в основном кодируемому геном иммуноглобулина или генами иммуноглобулинов, или его фрагментам, которые специфически связывают и узнают аналит (антиген). Однако в то время как различные фрагменты антител можно определить исходя из расщепления интактного антитела, специалист в данной области будет принимать во внимание, что такие фрагменты можно синтезировать de novo, либо химически, либо с использованием способов рекомбинантной ДНК. Таким образом, термин антитело, как используется в данном описании, включает в себя также фрагменты антител, такие как одноцепочечный Fv, химерные антитела (т.е. содержащие константные и вариабельные области из различных видов), гуманизированные антитела (т.е. содержащие определяющую комплементарность область (CDR) из не относящегося к человеку источника) и гетероконъюгированные антитела (например, биспецифические антитела).

Термины «в основном чистый» и «выделенный» используются взаимозаменяемо и описывают белок, пептид или нуклеиновую кислоту, которые являются в основном отделенными от других (суб)клеточных компонентов, сопровождающих их в природе.

Термин охватывает нуклеиновую кислоту или белок, удаленные из их природного окружения, и включает в себя рекомбинантные или клонированные изоляты ДНК и химически синтезированные аналоги, или аналоги, биологически синтезированные в гетерологичных системах. Как правило, термин относится к очищенным белку и нуклеиновой кислоте, обладающим чистотой по меньшей мере приблизительно 75%, например, 85%, 95% или 98% по массе. Незначительные изменения или химически модификации обычно разделяют одну и ту же полипептидную или нуклеотидную последовательность. В основном чистый белок или нуклеиновая кислота обычно.: RU 2 411 290 C будут содержать приблизительно 85-100% (масс./масс.) образца белка или нуклеиновой кислоты, более обычно, приблизительно 95%, и предпочтительно будут обладать более чем приблизительно 99% чистотой. Чистоту или гомогенность белка или нуклеиновой кислоты можно показать рядом способов, хорошо известных в данной области, таких как электрофорез образца белка в полиакриламидном геле с последующей визуализацией отдельной полосы полипептида после окрашивания или электрофорез образца нуклеиновой кислоты в агарозном геле с последующей визуализацией отдельной полосы полинуклеотида в агарозном геле после окрашивания.


«Окрашивание» либо может обозначать применение неспецифических для пептида или нуклеиновой кислоты красителей, таких как красители с серебром и Кумасси или красители бромид этидия и SYBR®, либо может обозначать применение специфического для пептида или нуклеиновой кислоты окрашивания, такого как контактирование пептида с антителом и визуализация антитела с использованием меченого вторичного антитела (например, конъюгированного со щелочной фосфатазой) в случае белков или пептидов, или контактирование нуклеиновой кислоты с комплементарным зондом, меченым для визуализации наличия гибридизации между нуклеиновой кислотой и зондом. Для конкретных целей можно обеспечить более высокое разрешение с использованием для очистки высокоэффективной жидкостной хроматографии (ВЭЖХ) или подобных способов.

Такие способы находятся в области общеизвестных общих знаний (см., например, Katz, et al., 1998).

Идентификация и таксономия Изобретение относится к выделенному вирусу, содержащему по меньшей мере одну последовательность нуклеиновой кислоты согласно SEQ ID NO:1 и/или SEQ ID NO:2 и последовательности, обладающие по меньшей мере 30%, 35%, 40%, 45%, 50%, 55%, 60% или предпочтительно 65% гомологией нуклеотидной последовательности с ними.

Как указано выше, полинуклеотиды обладают «гомологичными»

последовательностями, если последовательность нуклеотидов в двух последовательностях является одинаковой при выравнивании для максимального соответствия. Поисками BLAST с использованием нуклеотидных последовательностей, полученных из изолята вируса ToTV, не выявили значительной гомологии с какой-либо из известных вирусных или невирусных последовательностей в базах данных GenBank и EMBL. Наибольший процент гомологии, обнаруженный таким образом, составлял 46,5% между мотивами геликазы в ORF1 SEQ ID NO:2, соответствующими RNA1 ToTV, с мотивами геликазы других вирусов растений (см.

примеры ниже).

Следует понимать, что гомология может быть большой, когда две последовательности сравнивают в небольшом окне сравнения, поскольку часто можно найти локальные области сходства последовательности при сравнении двух длинных нуклеотидных последовательностей. Однако специалист в данной области 45 сознает, что гомология последовательности требует установления общих мотивов между последовательностями, среди которых идентичность последовательности локально может быть настолько высокой, как от 35 до 100%, однако может быть настолько низкой, как 10-20% в других частях геномной последовательности из той же самой ORF. Таким образом, когда в данном описании указано, что последовательность обладает гомологией нуклеотидной последовательности по меньшей мере 50% с SEQ ID NO:1 или SEQ ID NO:2, это может относиться к гомологии последовательности между областями среди общих мотивов, где гомология является.: RU 2 411 290 C наибольшей, а также между кодирующей последовательностью двух гомологичных белков. Необходимо отметить, что гомология последовательности может различаться между различными генами в геноме (см. примеры).

В качестве выявления родства между вновь идентифицированным изолятом вируса ToTV и другими вирусами (включая вирусы, подлежащие сравнению с ним) можно обычно провести филогенетический анализ на основе (части) информации о геномной последовательности вирусов.

Несколько таких анализов представлены в примерах ниже. Информация, поученная таким образом, далее указывает на то, что ToTV обладает наивысшим уровнем гомологии с вирусами из родов Sequivirus и Waikavirus (Sequiviridae) и родов Cheravirus и Sadwavirus. Вирусы из этих родов различают на основании числа вирусных РНК Sequiviridae обладает 1 РНК, в то время как Cheravirus и Sadwavirus обладают двумя РНК;

и числом белков капсида - Sadwavirus обладает двумя CP, Cheravirus - тремя CP.

Эти критерии позволяют предполагать, что вирус томата торрадо наиболее вероятно входит в группу рода Cheravirus. Однако филогенетические анализы с использованием нескольких различных мотивов из предположительных белков RdRp и геликазы располагают ToTV четко отдельно от родов Cheravirus и Sadwavirus и фактически позволяют предполагать, что он является более близко родственным с Sequiviridae. К сожалению, в настоящее время доступны полные последовательности только одного Cheravirus (CRLV) и двух Sadwavirus (SDV и SMoV). Предварительные данные о переносчике позволяют предполагать, что ToTV могут переносить белокрылки, в то время как природные переносчики CRLV и Sadwavirus неизвестны. На основании доступной в настоящее время информации, включая информацию о последовательности, так же как дополнительную таксономическую информацию, как представлено в таблице 1 ниже, вновь обнаруженный вирус, наиболее вероятно, представляет собой новый род.

Таблица 1: Таксономические описания для недавно обнаруженного вируса ToTV (как перечислено в международно принятых способах из руководства "Matthew's Plant Virology" (“Matthew's Plant Virology”, Fourth Edition, Roger Hull (ed.) Academic Press, San Diego, p 15, таблица 2.1) (Нумерацию из таблицы в Matthews соблюдают в таблице ниже).

I. Свойства вирионов A. Морфологические свойства вирионов 1. Размер 28 нм 2. Сферический (икосаэдрический) по форме 3. Отсутствие внешней оболочки B. Физические свойства вирионов (не исследовали) C. Свойства генома 1. Нуклеиновая кислота РНК-типа 2. Одноцепочечная РНК 3. Линейная РНК 4. Положительное смысловое кодирование 5. По меньшей мере 2 фрагмента (РНК 2;

SEQ ID NO:1 и РНК 1;

SEQ ID NO:2) 50 6. 5,5 т.н. (более точно, 5,2 т.н. или 5389 нуклеотидов, исключая поли(A)хвост), и 8 т.н. (более точно, 7,7 т.н. или 7793 нуклеотидов, исключая поли(A)хвост) 7. 5'-концевой кэп неизвестен 8. Ковалентно присоединенный к 5'-концу полипептид неизвестен 9. Поли(A)хвост присутствует в обоих фрагментах.: RU 2 411 290 C 10. Сравнения нуклеотидной последовательности: - РНК 1 содержит ORF1 с мотивами, типичными для геликазы (Hel), протеазы и РНК-зависимой РНК-полимеразы (RdRp).

Уровень гомологии с мотивами геликазы и RdRp других вирусов подробно описан в примерах.

- РНК 2 содержит две ORF, одна из которых имеет на N-конце мотив, типичный для предположительного двигательного белка (MP) и содержит на C-конце последовательности для трех белков капсида (оболочки) (CP). Уровень гомологии с белками капсида других вирусов подробно описан в примерах.

D. Свойства белков 1. 3CP;

Hel;

RdRp;

протеаза;

предположительный MP 2. CP: 35, 26 и 23 кДа 3. (Виды функциональной активности см. выше и в примерах ниже) 4. (Сравнение аминокислотной последовательности см. в примерах ниже) II. Организация и репликация генома 1. Организацию генома см. на Фиг.7 6. Цитопатология: по меньшей мере эпидермис, или мезофильные клетки, или соседние клетки флоэмы 15 III. Антигенные свойства 1. Нет известного серологического родства IV. Биологические свойства 1a. Природный круг хозяев: томат;

1b. Экспериментальный круг хозяев: Протестированные альтернативные растения-хозяева для ToTVМестные симптомы/ системные симптомы Chenopodium quinoa-/ Gomphrena globosa-/-Nicotiana benthamiana-/cNicotiana clevelandii-/cNicotiana glutinosa-/cNicotiana hesperis 67Anl/c, n, mfNicotiana occidentalis P1nl/c, n, mfNicotiana rustica-/-(la)Nicotiana tabacum 'White Burley'-/-(la)Physalis floridananl c, n, mf, do c=хлороз;

n=некроз;

l=очаги;

mf=деформация;

do=отмирание;

la=латентная инфекция, -= отсутствие симптомов. 25 2. Патогенность Симптомы в природном растении-хозяине: Некротические повреждения, заканчивающиеся ожогоподобным, полным некрозом ткани растения и гибелью растения;

концентрические кольца некротических тканей на плодах.

Связь с заболеванием: Торрадо;

возможно также шоколадная пятнистость;

возможно также Марчитец 3. Трофическое влияние на ткани: по меньшей мере, на эпидермис или мезофильные клетки, или соседние клетки флоэмы 4. Способы передачи в природе неизвестны 5. Связь с переносчиком: предположительно белокрылка 6. Географическое распределение: Средиземноморье;

Америка (Центральная Америка, Мексика и южная часть Северной Америки) Авторы настоящего изобретения недавно обнаружили, что геномные последовательности вируса, связанного с заболеванием томата в Центральной Америке (например, в Мексике и Гватемале) под названием «Заболевание шоколадной пятнистости», «Шоколад» или «Марчитец», являются идентичными последовательностям описанного здесь ToTV (см. пример 2). Таким образом, возбудитель заболевания, связанный с данным заболеванием, является аспектом настоящего изобретения.

По мере того как больше вирусных последовательностей станут доступными как из не относящихся к ToTV вирусов, которые могут быть или могут не быть близкородственными с ним, так и из вирусов, близко родственных с вирусом ToTV или 45 существенно напоминающих его, филогенетический анализ будет служить полезным способом определения объема таксона или клада ToTV на основе филогенетического родства между изолятами.

Филогенетическое родство можно определить, например, на основании любой или всех нуклеотидных последовательностей RNA 1 и/или РНК 2 из вирусного генома или по данным последовательности (гена) белка капсида. Филогенетические анализы хорошо известны специалисту в данной области и могут, например, включать в себя анализ путем реконструкции деревьев на основе расстояния (например, от соседних.: RU 2 411 290 C узлов), способами максимального правдоподобия или экономии с использованием таких программ, как ClustalX (Thompson et al., 1997), PAUP (Swofford, 2000) или PHYLIP (Felsenstein, 1989).


Чтобы провести анализ филогенетического родства между новым изолятом, последовательностью ToTV, как представлено в данном описании, и контрольными последовательностями из вирусных штаммов, например, из баз данных GenBank, EMBL или DDBJ, геномную РНК из указанного нового изолята можно выделить непосредственно из инфицированных растений, и геномные последовательности можно амплифицировать с нее. Способы амплификации PCR с обратной транскрипцией (RT-PCR) можно выполнять, например, с использованием вырожденных олигонуклеотидных праймеров, где такие праймеры, например, способны действовать как праймер для амплификации последовательностей нуклеиновой кислоты из геномов дивергентных изолятов ToTV, так же как из геномов близкородственных видов вирусов. Предпочтительно, но не обязательно, таким образом можно получить продукты амплификации полноразмерного генома из контрольных штаммов (например, дивергентных изолятов), тестируемых цепей (предположительных изолятов ToTV) и близкородственных видов. Предпочтительно, для сравнения амплифицируют конкретные интересующие генетические области.

Продукты амплификации (ДНК) затем можно секвенировать, например, прямым секвенированием двухцепочечных нуклеотидов с использованием флуоресцентно меченных останавливающих дидезоксинуклеотидов (Smith et al., 1986) с помощью вырожденных олигонуклеотидных праймеров, используемых для RT-PCR.

Редактирование, анализ, необязательное предсказание аминокислотной последовательности и выравнивание нуклеотидной последовательности можно проводить с помощью доступных пакетов программ, таких как пакет для анализа последовательности LaserGene версии 5 (DNASTAR, Inc., Madison, Wis.) и программное обеспечение IntelliGenetics Gene Works версии 2.5.1 (IntelliGenetics, Mountain View, Calif.).

Затем филогенетические анализы можно дополнить филогенетическим анализом с использованием, например, программного обеспечения для поиска максимальной экономии (PAUP) с помощью алгоритма соседних узлов с использованием абсолютных расстояний с последующим эвристическим поиском и 1000 независимыми повторами, и можно получить филогенетическое дерево анализом максимальной экономии выравниваемых непрерывных нуклеотидных или аминокислотных последовательностей, при котором в таких деревьях номера, как правило, представляют собой уровни достоверности после повторов. После 1000 повторов уровень достоверности выше 60%, предпочтительно выше 70%, более предпочтительно выше 80%, 90%, 95% или 98% в филогенетическом дереве считают достаточным доказательством правильного филогенетического заключения (помещения изолятов в конкретный клад), при условии, что дерево является достаточно разветвленным, в силу чего, не обязательно, разветвление можно 45 улучшить образованием корня с подходящими видами вне групп. Таким образом, можно определить, какие изоляты являются наиболее близкородственными с последовательностями ToTV, как представлено в данном описании. Родство, как правило, выражают в переводе на процент сходства последовательностей, обозначенный здесь гомологией последовательности.

Хотя филогенетические анализы предоставляют подходящий способ идентификации вируса в случае достаточной гомологии нуклеиновых кислот, для известных вирусов в данном описании также представлено несколько других, возможно, более прямых,.: RU 2 411 290 C хотя несколько более грубых способов для идентификации указанного вируса или вирусных белков, или нуклеиновых кислот из указанного вируса. Как эмпирическое правило, вирус ToTV можно идентифицировать по процентам гомологии подлежащих идентификации вирусных белков или нуклеиновых кислот по сравнению с вирусными белками или нуклеиновыми кислотами, идентифицированными в соответствии с изобретением по последовательности. Общеизвестно, что виды вирусов, особенно виды РНК-вирусов, часто состоят из псевдовидов, где для кластеров указанных вирусов показана гетерогенность среди их членов. Таким образом, ожидают, что каждый изолят может обладать до некоторой степени различным процентом гомологии с последовательностями изолята, представленного в данном описании.

Таким образом, другие изоляты вируса, обладающие достаточной гомологией последовательности с ToTV (например, более чем 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 98% или 99% гомологией последовательности), считают принадлежащими к тому же самому вирусу. Таким образом, вирус ToTV по настоящему изобретению представляет собой вирус, обладающий по меньшей мере 50 или 60% гомологией, предпочтительно по меньшей мере 70%, более предпочтительно по меньшей мере 80%, еще более предпочтительно по меньшей мере 90%, еще более предпочтительно по меньшей мере 95%, еще более предпочтительно по меньшей мере 98% и наиболее предпочтительно по меньшей мере 99% гомологией с последовательностями белка или нуклеиновой кислоты, представленными в данном описании, и вызывающий симптомы индуцированного ToTV заболевания у Solanaceae, более конкретно, у Solanum и Nicotiana, где симптомы заболевания могут быть или могут не быть подобными симптомам, описанным в данном документе. У Cucurbitaceae вирус, по видимому, не вызывает видимых симптомов, хотя вирус способен к размножению в растениях.

Если желательно сравнить выделенный изолят вируса с последовательностями белка или нуклеиновой кислоты, описанными в данном документе, изобретение предоставляет выделенный вирус (ToTV), который можно идентифицировать как филогенетически соответствующий ToTV путем определения последовательности белка или нуклеиновой кислоты указанного выделенного изолята вируса и определения того, что последовательность указанного белка или нуклеиновой кислоты обладает процентной гомологией последовательности по меньшей мере 60%, предпочтительно по меньшей мере, 70%, более предпочтительно по меньшей мере 80%, еще более предпочтительно по меньшей мере 90%, еще более предпочтительно по меньшей мере 95%, еще более предпочтительно по меньшей мере 98% и наиболее предпочтительно по меньшей мере 99% с последовательностями, перечисленными в данном описании.

Изоляты вируса, имеющие отдельные белки или нуклеиновые кислоты с более высокой гомологией, чем эти указанные максимальные значения, считают филогенетически соответствующими и, таким образом, таксономически 45 соответствующими вирусу ToTV, и как правило, белки будут кодировать последовательность нуклеиновой кислоты, структурно соответствующую последовательности, указанной в данном описании. При этом изобретение относится к вирусу, филогенетически соответствующему выделенному вирусу, последовательности которого перечислены в данном описании.

Следует заметить, что, подобно другим вирусам, можно ожидать, что будет обнаружена определенная степень изменчивости между вирусами ToTV, выделенными из различных источников.

.: RU 2 411 290 C Кроме того, нуклеотидные или аминокислотные последовательности вируса ToTV или его фрагментов, как приведено в данном описании, проявляют, например, менее чем 95%, предпочтительно менее чем 90%, более предпочтительно менее чем 80%, более предпочтительно менее чем 70% и наиболее предпочтительно менее чем 60% гомологию нуклеотидной последовательности, или менее чем 95%, предпочтительно менее чем 90%, более предпочтительно менее чем 80%, более предпочтительно менее чем 70% и наиболее предпочтительно менее чем 60% гомологию аминокислотной последовательности с соответствующей нуклеотидной или аминокислотной последовательностью любого не относящегося к вирусу ToTV или ближайшего родственного ему.

Отклонения последовательности штаммов ToTV в мире могут быть до некоторой степени выше по аналогии с другими вирусами растений.

Изобретение относится к выделенному вирусу (ToTV), который можно идентифицировать как филогенетически соответствующий этому путем определения последовательности нуклеиновой кислоты подходящего фрагмента генома указанного вируса и тестирования в филогенетических анализах, где получают деревья с максимальным правдоподобием с использованием, например, повторов, как описано выше, и обнаружения того, что он является филогенетически более близко родственным с изолятом вируса, содержащим последовательности из SEQ ID NO:1 или SEQ ID NO:2, как перечислено в данном описании для ToTV, чем родственным с изолятом вируса из не относящегося к ToTV контрольного штамма или ближайшего родственного ему.

Подходящими фрагментами нуклеиновокислотного генома, каждый из которых можно применять для таких филогенетических анализов, является, например, любая часть последовательности нуклеиновой кислоты из фрагментов РНК 5,5 т.н. или 8 т.н.

(соответственно обозначенных здесь РНК 2 и РНК 1), как описано в примере.

С обеспечением информации о последовательности данного вируса ToTV изобретение предоставляет диагностические средства и способы для использования при детекции вируса ToTV в образце. Предпочтительно, детекцию вируса ToTV проводят с помощью реагентов, которые являются наиболее специфическими для вируса ToTV. Это ни в коем случае, однако, не исключает возможности использовать вместо этого менее специфичные, но в меру перекрестно реактивные реагенты, например, потому что они являются более легко доступными и подходят для решаемой задачи.

Изобретение относится, например, к способу детекции присутствия ToTV в растениях, предпочтительно в растениях томата, более предпочтительно в растениях S.lycopersicum. Указанный способ может, например, включать определение в указанном образце присутствия вируса ToTV или его компонента с помощью реакции указанного образца со специфической для ToTV нуклеиновой кислотой или антителом по изобретению. Хотя контактная инфекция индикаторного растения 45 также является подходящим способом для детекции присутствия вируса в тестируемом растении.

Изобретение относится к частичной нуклеотидной последовательности нового выделенного вируса (называемого здесь также вирус ToTV) и к специфическим для вируса ToTV компонентам или их синтетическим аналогам. Дополнительные геномные последовательности вируса ToTV, кроме представленных в данном описании, можно определить способами секвенирования, известными специалистам в данной области. Теперь, когда по настоящему изобретению предоставлен вирус ToTV,.: RU 2 411 290 C так же как его частичные геномные последовательности, определение геномной последовательности легко доступно специалисту в данной области. Эти способы включают в себя, например, способы, описанные в примере ниже. Как правило, такие способы секвенирования включают в себя выделение нуклеиновых кислот из вирусного генома способами выделения нуклеиновой кислоты и определения нуклеотидной последовательности выделенной нуклеиновой кислоты, например способами дидезокси-остановки цепи (Sanger et al., 1977), не обязательно предваряемыми обратной транскрипцией РНК в ДНК.

Изобретение, среди прочего, относится к выделенной или рекомбинантной нуклеиновой кислоте или ее специфическому для вируса функциональному фрагменту, которые можно получить из вируса по изобретению. Выделенные или рекомбинантные нуклеиновые кислоты включают в себя последовательности, перечисленные в данном описании, или последовательности гомологов, способные гибридизоваться с ними в строгих условиях. В частности, изобретение относится к праймерам и/или зондам, пригодным для идентификации нуклеиновой кислоты вируса ToTV. Дополнительные зонды и праймеры, способные гибридизоваться с последовательностью нуклеиновой кислоты вируса ToTV, можно разрабатывать способами, известными специалисту в данной области.

Экспрессирующие векторы и экспрессия кодирующих генов вируса Кроме того, изобретение относится к экспрессирующему вектору, содержащему нуклеиновую кислоту по изобретению. Во-первых, экспрессирующие векторы, такие как плазмидные векторы, содержащие (части) двухцепочечной последовательности вирусного генома ToTV, вирусные векторы, содержащие (части) генома ToTV (например, без ограничения, вирус осповакцины, ретровирусы, бакуловирус), или вирус ToTV, содержащий (части) генома других вирусов или других патогенов, являются частью настоящего изобретения.

Экспрессирующий вектор может содержать геномную последовательность ToTV или ее часть, которая находится под контролем регуляторного элемента, такого как промотор, или является функционально связанной с ним. Фрагмент ДНК, обозначенный как промотор, является ответственным за регуляцию транскрипции ДНК в мРНК. Экспрессирующий вектор может содержать один или несколько промоторов, подходящих для экспрессии гена, предпочтительно для экспрессии гена, кодирующего вирусный белок, в клетках растений, клетках грибов, бактериальных клетках, клетках дрожжей, клетках насекомых или других эукариотических клетках.

Экспрессирующие векторы по изобретению очень полезны для получения антигенов вируса в системах экспрессии гена.

Изобретение относится также к клетке-хозяину, содержащей нуклеиновую кислоту или экспрессирующий вектор по изобретению. Плазмидные или вирусные векторы, содержащие нуклеиновые кислоты, кодирующие белковые компоненты вируса ToTV, можно получить в прокариотических клетках для экспрессии компонентов в 45 подходящих типах клеток (клетках растений, клетках грибов, бактериях, клетках насекомых, клетках растений или других эукариотических клетках). Плазмидные или вирусные векторы, содержащие полноразмерные или частичные копии генома вируса ToTV, можно получить в прокариотических клетках для экспрессии вирусных нуклеиновых кислот in vitro или in vivo.

Способы выделения и очистки ToTV Вирус ToTV можно выделить из инфицированных растений или других источников любым доступным способом. Выделение может включать в себя очистку или.: RU 2 411 290 C частичную очистку вирусных частиц ToTV из подходящего источника. Для выделения и очистки вируса доступен широкий ряд способов (например, см. Dijkstra and De Jager, 1998). Очистку ToTV можно, например, проводить с использованием общепринятых способов, например, для неповирусов или лютеовирусов (с помощью органических растворителей) (см., например, Walker, 2004). Хотя такие способы могут приводить к потере инфекционности вируса, эти способы еще могут быть применимыми для получения вирусного материала для других целей.

Предпочтительно, чтобы поддерживать целостность вируса, для очистки ToTV используют способ мягкой очистки. Такой способ мягкой очистки может включать в себя, например, гомогенизацию инфицированного материала растения (такого как листья) в буфере для гомогенизации (содержащем, например, 0,1 M буфер Трис-HCl при pH приблизительно 8, приблизительно 20 мМ сульфит натрия [Na2SO3], приблизительно 10 мМ диэтилдитиокарбамат натрия [Na-DIECA] и приблизительно мМ этилендиаминтетраацетат натрия (Na-EDTA)), отделение дебриса центрифугированием (например, в течение 30 мин при 49000 g), помещение супернатанта на подходящую подушку сахарозы (например, 20%) и осаждение вирусных частиц (например, центрифугированием в течение 1,5 часов при 70000 g).

Затем осадок, содержащий вирусные частицы, можно ресуспендировать в подходящем буфере (например, в Трис-HCl, pH 8), и содержащую вирус фракцию можно отделить от остальной суспензии с использованием центрифугирования в градиенте плотности сахарозы (например, 10-40% сахароза в буфере для гомогенизации, центрифугирование в течение 2 час при 110000 g). Содержащую вирус фракцию можно определить с использованием экспериментов по инфекции. Дополнительную очистку можно проводить с использованием центрифугирования в градиенте плотности сульфата цезия (например, 10-40% градиент сульфата цезия в Трис-HCl, pH 8, центрифугирование в течение 16 час при 125000 g). Обогащенные вирусом полосы можно затем собирать из градиента и дополнительно концентрировать центрифугированием или диализовать (например, против 0,1 M Трис-HCl, pH 8).

Инфекционность ToTV после очистки можно проверить инокуляцией в чувствительное растение (например, N.hesperis '67A').

Способы очистки связанных с ToTV белков и аминокислотного секвенирования После получения очищенного или частично очищенного вируса ToTV можно получить в основном чистый препарат связанных с вирусом белков (например, кодируемых вирусом белков). Хотя в данной области известны многочисленные способы и стратегии очистки белка, самой подходящей является очистка вирусных белков ToTV, таких как белки вирусной оболочки, либо электрофорезом с использованием, например, полиакриламидного геля с додецилсульфатом натрия (SDS PAGE), либо аффинной хроматографией. Каждый из этих способов будет описан ниже.

Представляющие интерес белки ToTV можно разделять электрофорезом с использованием, например, трицин-SDS-PAGE (Schagger и Von Jagow, 1987) или глицин-SDS-PAGE (Laemmli, 1970). Можно, конечно, применять другие системы электрофореза, способные разделять различные белки, содержащиеся в изоляте вируса, или транскрибируемые с его генома и экспрессированные в подходящей экспрессирующей системе, такие как не денатурирующий гель-электрофорез. Область геля для PAGE, содержащую заданный белок, можно вырезать, и заданные полипептиды можно элюировать оттуда, например, с использованием устройства Elutrap® (Schleicher & Schuell, Dassel, Germany). Заданный белок можно идентифицировать по его подвижности относительно контрольных полипептидов в.: RU 2 411 290 C геле. Для увеличения степени очистки можно проводить электрофорез элюированного белка во втором геле для SDS-PAGE и элюировать его второй раз. Белок или пептид, содержащийся в вырезанном фрагменте геля, можно затем снова элюировать, и он является пригодным для использования при иммунизации или секвенировании белка.

Представляющие интерес белки ToTV можно очистить также аффинной хроматографией с использованием антитела (такого как моноклональное антитело), специфически связывающегося с белком ToTV. Антитело можно ковалентно присоединить к твердым подложкам, таким как целлюлозы, полистирол, полиакриламид, поперечно-сшитый декстран, гранулированная агароза или стекло с контролируемым размером пор, с использованием бифункциональных сшивающих средств, которые реагируют с функциональными группами на подложке и функциональными группами (т.е. реакционноспособными боковыми цепями аминокислот) в молекуле антитела. Такие способы легко доступны специалисту в данной области. Полученную несущую антитело твердую фазу приводят в контакт с очищенным или частично очищенным вирусом в восстанавливающих условиях с использованием pH, ионной силы, температуры и продолжительности обработки, позволяющих представляющему интерес белку связываться с иммобилизованным антителом. Вирус или белок элюируют с колонки пропусканием элюента, который диссоциирует водородные связи с подложкой. Обычно применяемыми элюентами являются буферы с конкретным pH или более чем приблизительно 2 M растворы NaCl.

Способы осуществления аффинной хроматографии с использованием антител, так же как другие способы иммуноаффинной очистки белков (таких как белки вирусного капсида), хорошо известны в данной области (см., например, Harlow and Lane, 1988).

По предоставленным здесь объяснениям специалист в данной области может выделить специфический для вируса ToTV белок, определить аминокислотную последовательность, например, N-концевой части указанного белка, сконструировать набор вырожденных зондов (ввиду вырожденности генетического кода) для гибридизации с ДНК, кодирующей область указанного белка, с использованием этих зондов для массива генов в геномной библиотеке, полученной из вируса, получить положительную гибридизацию и локализовать соответствующие гены. Затем специалист в данной области может идентифицировать структурную область гена и, не обязательно, области последовательности против хода транскрипции и по ходу транскрипции от нее. После этого специалист в данной области может установить правильную последовательность аминокислотных остатков, формирующих белок.



Pages:   || 2 | 3 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.