авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 16 |

«КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Издание девятое, исправленное и дополненное Рекомендовано ...»

-- [ Страница 11 ] --

Разный срок отпущен клеткам внутри одного орга низма человека: чем больше в клетках антиоксидантов, тем меньше степень их повреждения активными фор мами кислорода, тем дольше они живут. Поэтому неко торые клетки крови живут несколько часов, а другие несколько лет. Наблюдения показали, что изменения в Часть III. ЕСТЕСТВЕННО-НАУЧНЫЕ КОНЦЕПЦИИ РАЗВИТИЯ организме при естественном старении и действии радиации похожи. Оказалось, что при радиоактивном облучении происходит разложение воды с образовани ем активных форм кислорода, повреждающих клетки.

Результаты исследований позволили выработать стратегию поиска средств против старения. Так, удалось увеличить в полтора раза жизнь лабораторных живот ных, вводя в их рацион сильные антиоксиданты. Введе ние антиоксидантов типа супероксиддисмутазы защища ет организм от токсичного действия активных форм кис лорода и способствует увеличению продолжительности его жизни. Это вселяет надежду: антиоксиданты можно использовать как эффективное средство против старе ния человека. Установлено, что среди множества антиок сидантов, содержащихся в продуктах питания, особенно важны витамины А, С, Е и микроэлемент селен.

Процесс старения запрограммирован генетически, поэтому проблема продления жизни организма должна решаться современными средствами молекулярной биологии и генных технологий. Предполагается, что в старении повинны полифункциональные соединения в виде продуктов обмена веществ, например яблочной, янтарной и фумаровой кислоты, а также радикалов.

Между двумя молекулами этих веществ возникают мо стиковые связи, что приводит к накоплению дефектных белков и функциональному нарушению работы клеток и в результате — к старению организма. В соматичес ких клетках ферменты репарации (ремонта) ДНК испы тывают отклонения от нормального функционирования гораздо чаще, чем в половых клетках, поэтому старению прежде всего подвергаются нейроны, клетки печени, сердечной мышцы и т. п.

Чем больше отклонений в работе клеток и вызыва ющих их факторов, тем быстрее проходит процесс старения. Известно, что свободные радикалы приводят к существенным отклонениям в работе ферментов репараций. Поэтому разработка ингибиторов свобод ных радикалов — одно из важнейших направлений в решении проблемы продления жизни организма. Но все же наиболее эффективный способ предотвраще ния старения заключается в исправлении программы, заложенной в геноме организма.

-.•о Возрастное старение организма обусловливается 41L ухудшением работоспособности составляющих его кле Глава 7. биосферный уровень организации материи ток. Почему с возрастом активность клеток падает? Ис следования показали, что с каждым клеточным делени ем уменьшаются теломеры — особые хромосомные структуры, расположенные на концах клеточных хро мосом. Такое уменьшение теломер приводит к старению клеток. Проведенный эксперимент по искусственному удлинению теломер в клетках in vitro дали удивитель ный результат: клетки обрели способность многократно делиться, полностью сохраняя свои нормальные свой ства. Очень важно, что клетки, обретя потенциальное бессмертие, не стали раковыми и не вызывают опухо лей. В последние годы обнаружен клеточный фермент — теломераза, способствующий наращиванию концов хромосом —теломер, которые неизбежно укорачивают ся при рождении клеточных поколений. Предполагает ся, что в организме человека теломеры хромосом могут удлиняться без участия теломеразы.

По оценкам специалистов, в настоящее время на земном шаре живут примерно 100 000 человек в возра сте свыше ста лет. Проводятся целенаправленные эк сперименты, обсуждаются различные мнения и гипо тезы — все это дает возможность с оптимизмом утвер ждать: если не нынешнее, то грядущее поколение воспользуется плодами кропотливых и сложнейших эк спериментов, которые позволят продлить жизнь чело веку до 100, 200 и более лет.

7.12. Формирование ноосферы Появление научной мысли в биосфере в перспек тиве неизбежно полностью ее видоизменит. В сочета нии с трудовой деятельностью человека мысль ста новится неведомой до этого геологической силой, спо собной преобразовать вместе с биосферой весь поверхностный слой Земли. Носитель земного разу ма — человек — с нарастающим темпом воздействует на биосферу, активно захватывая все занимаемое ею пространство, меняя облик земной поверхности. По убеждению академика В.И. Вернадского, преобразо вание биосферы грядет неизбежно и необратимо. Та кая точка зрения была высказана им в начале 30-х годов XX в. и со скептицизмом воспринята научным со обществом тех лет. Ученый назвал трансформирован Часть III. ЕСТЕСТВЕННОНАУЧНЫЕ КОНЦЕПЦИИ РАЗВИТИЯ ную биосферу ноосферой. Под ноосферой он понимал не выделенный над биосферой «мыслящий пласт», а качественно новое се состояние. Известны и более ранние переходы биосферы в подобные состояния, сопровождавшиеся почти полной ее перестройкой.

Но современный переход представляет собой нечто особенное, ни с чем не сравнимое.

Свой анализ процесса трансформации биосферы в ноосферу В.И. Вернадский закончил следующими обобщениями:

• Ход научного творчества является той силой, при помощи которой человек меняет биосферу. Изме нение биосферы после появления в ней человека — неизбежное явление, сопутствующее росту науч ной мысли.

• Изменение биосферы не зависит от человеческой воли, оно стихийно, как природный естественный процесс.

• Научная работа человечества есть природный про цесс, сопровождаемый переходом биосферы в но вое, более упорядоченное состояние — ноосферу.

• Такой переход выражает собой «закон природы».

Поэтому появление в биосфере рода Homo (чело века) есть начало новой эры в истории планеты.

• Человек может рассматриваться как определенная функция биосферы, в определенном ее простран стве-времени. Во всех своих проявлениях человек составляет определенную закономерную часть биосферы.

• Взрыв научной мысли в XX столетии подготовлен всем прошлым биосферы и имеет глубочайшие корни в ее строении. Он не может остановиться и пойти назад. Биосфера же неизбежно, рано или поздно, перейдет в ноосферу. И в истории народов, населяющих планету, произойдут нужные для это го события, а не события, этому противоречащие.

Что можно сказать по поводу перехода биосферы в ноосферу с точки зрения современной концепции развития? Во-первых, процесс трансформации биосфе ры — это объективная реальность. Мы все, живущие на Земле, являемся свидетелями и в определенной мере 414 участниками этого переходного процесса, даже если Глава 7. Биосферный уровень организации материи не отдаем себе отчета в характере происходящего.

Процесс преобразования биосферы начался не вчера и завершится не завтра. По человеческому масштабу времени трансформация растянута на несколько по колений, но в геологическом измерении она мгновен на и ее следует рассматривать как скачок в разви тии биосферы. Во-вторых, в основе современных представлений об этом процессе лежит предложен ная В.И. Вернадским концепция формирования но осферы.

Контрольные вопросы • С возникновением каких основополагающих жизненных систем произошел переход неживой материи к живой ?

• Какие функции выполняют молекулы ДНК ?

• Каковы структура и состав молекул ДНК?

• Как образуется генетический код? Каковы его основные свойства?

• Каковы структура и функции белков ?

• Почему клетку считают живым организмом?

• Из чего состоят клетки?

• Чем отличается растительная клетка от клетки животных?

• На какие группы делятся все организмы в зависимости от типа клеток?

• При каких условиях зарождалась жизнь на Земле?

• Какова роль углеродных соединений при образовании живых систем?

• В чем заключается химическая эволюция ?

• Какова роль фотосинтеза в зарождении многоклеточных организмов ?

• Охарактеризуйте кратко предпосылки для развития эво люционной идеи.

• В чем заключается сущность эволюционной идеи Дарвина ?

• В чем заключалась основная идея Менделя о наследствен ности?

• Назовите основные факторы эволюции живых организ мов ?

• Какова взаимосвязь целенаправленных действий и есте ственного отбора?

• Что такое тонкая подстройка Вселенной и в чем заключа ется антротшый принцип?

• Дайте краткую характеристику эволюции жизни в раз ные геологические эры. 4lu Часть 111. ЕСТЕСТВЕННО-НАУЧНЫЕ КОНЦЕПЦИИ РАЗВИТИЯ Охарактеризуйте основные разновидности растений и животных.

Каковы особенности растительного и животного мира?

Назовите основные типы адаптации живых организмов, В чем заключаются физиологические особенности чело века?

Каковы основные свойства мозга человека?

Существуют ли возрастные ограничения в развитии чело века?

В чем сущность социологической идеи Гегеля?

Чем обусловливается эстетическое восприятие человека?

Охарактеризуйте кратко проблему роста населения и обеспечения продовольствием.

Назовите основные способы увеличения продовольствен ных ресурсов?

Как можно улучшить плодородие почвы?

Что такое фиксация азота?

Какова роль белков в питании ?

Охарактеризуйте роль фотосинтеза в жизнеобеспечении человека.

Какова специфика современных средств сохранения здо ровья?

Чем обусловливается процесс старения организма?

Как зависит продолжительность жизни от интенсивности обмена веществ ?

В чем заключаются основные современные способы про дления жизни организма?

Что такое ноосфера и как она формируется?

Часть IV ЕСТЕСТВЕННО-НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЗНЕРГЕТИКИ И ЭКОЛОГИИ Блажен человек, который снискал мудрость, и человек, который приобрел разум Библия (Книга притчей Соломоновых, гл. 3, ст. 13, 14) Глава ECTECTECTBEHHО НАУЧНЫЕ АСПЕКТЫ ТЕХНОЛОГИЙ • 8.1. Развитие средств информационных технологий Технологии и естествознание. Технология — сово купность методов обработки, изготовления, изменения состояния, свойств, формы сырья или полуфабрикатов, осуществляемых в процессе производства продукции.

Слово «технология» означает, кроме того, научную дисциплину, изучающую физические, химические, механические и другие закономерности различных производственных процессов. В последнее время это слово стало ключевым. Часто говорят о технологиях информационных, микроэлектронных, химических, генных, биотехнологиях и др. Ощущается некое «заси лье технологий».

Следует различать естественно-научные знания, которые что-то объясняют, и знания, которые воору жают стратегией и тактикой действий: одно дело — «я знаю», другое — «я умею». Вот если «я знаю», то это фундаментальная наука, если «я умею» — это уже технология, некая совокупность действий, процессов и процедура управления ими, а также регламент, на правленный на достижение заранее предопределенно го результата.

Рождение той или иной технологии свидетельству ет о высоком уровне зрелости соответствующей ей от расли естествознания, когда она начинает развивать ся быстро и оказывается полезной обществу, становит ся прикладной. В современном обществе развиваются многие виды технологий, среди которых большое вни мание уделяется информационным.

27* Унификация информационных технологий. Удов летворение все возрастающих потребностей общества при неуклонном росте народонаселения земного шара требует резкого повышения эффективности всех сфер деятельности человека, непременньм условием кото рого выступает адекватное повышение эффективнос ти информационного обеспечения. Под информацион ным обеспечением понимается предоставление необ ходимой информации с соблюдением требований ее своевременности и актуальности. Предоставление необходимой информации — одна из важнейших со ставляющих информатизации общества. Концепция информатизации включает прежде всего создание унифицированной в широком спектре приложений и полностью структурированной информационной тех нологии, включающей процессы сбора, накопления, хранения, поиска, переработки и выдачи всей инфор мации, необходимой для информационного обеспече ния деятельности.

Для расширения спектра приложений информаци онных технологий необходимо унифицировать:

• представление об информации, т. е. ее классифи кация и описание параметров основных видов, вы деленных в классификационной структуре;

• структура и общее содержание информационного потока, т. е. процессов генерирования, фиксации и циркуляции информации;

• перечень и содержание процедур обработки ин формации во все время и на всех этапах информа ционного обеспечения деятельности;

• перечень и содержание методов решения задач и обработки информации.

Возможности унификации информационных тех нологий открывают широкие перспективы развития как самих технологий, так и информатики в целом. На основе естественно-научных знаний уже в настоящее время можно создать и реализовать информационные технологии, унифицированные до такой степени, что, с одной стороны, информация может использоваться в различных сферах деятельности без дополнитель ной трансформации и адаптации, а с другой — она может быть стабильной, не нуждаться в принципи Глава 8. Естестественно-научные аспекты технологий альном совершенствовании достаточно продолжитель ное время.

При любом подходе к постановке целей и задач информационных технологий вычислительные сред ства в разнообразных формах, начиная от мини-ЭВМ, персональных компьютеров и кончая супер-ЭВМ и сложнейшими вычислительными системами и комплек сами, играют первостепенную, основную роль в инфор мационном обеспечении и развитии общества. Инфор мационные технологии прямо или косвенно касаются каждого из нас. Информация стала постоянным спут ником человека. Она помогает нам не только ориенти роваться в окружающей среде, но и активно воздей ствовать на нее, выбирая наиболее рациональные и оптимальные способы и применяя современные вычис лительные средства.

История развития вычислительных средств. Для облегчения физического труда еще с древних времен изобретаются разнообразные приспособления, меха низмы и машины. Однако лишь немногие из них по могали человеку выполнять работу, похожую на ум ственную, хотя потребность в ней возникла давно.

Вначале в течение длительного времени использова лись примитивные средства счета: счетные палоч ки, камешки и т.д., а затем— счеты. Если раньше подавляющее большинство людей занималось физи ческим трудом, то в XX в. во многих развитых странах стал преобладать умственный труд и, следовательно, возросла потребность в машинах, облегчающих такой труд. Сегодня очевидно: без машин, способных рас ширить умственные возможности человека, трудно представить современные цивилизованные условия жизни.

Первые машины, выполняющие арифметические операции, появились в XVII в.: в 1642 г. французский математик и физик Блез Паскаль (1623— 1662) изоб рел устройство для сложения чисел, а в 1673 г. немец кий ученый Вильгельм Лейбниц (1646— 1716) сконст руировал арифмометр, производящий четыре ариф метических действия. Изобретение арифмометра — важный шаг в развитии вычислительных средств.

Однако производимые с его помощью расчеты требо вали много времени.

Часть IV. ECTВЕTBENHH НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ МИОЛОГИИ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ В первой половине XIX в. сделана первая попытка построить универсальное вычислительное устройство — аналитическую машину, выполнявшую вычисления са мостоятельно, без участия человека, т. е. машину, кото рая работала бы по заданной программе и накапливала информацию. Однако технологические возможности того времени не позволили реализовать идею создания по добной машины. Только спустя почти столетие, в 1943 г., когда появились электромеханические реле, удалось сконструировать первую аналитическую машину.

Новая модификация вычислительных машин на базе электронных ламп работала в тысячу раз быст рее. В основу разработки следующей модификации ана литических машин легли общие принципы функцио нирования универсальных вычислительных средств, предложенные в 1945 г. американским математиком и физиком Джоном Нейманом (1903— 1957). Одна из та ких модификаций создана в 1949 г. С того времени вы числительные машины стали гораздо совершеннее, но большинство из них построено на тех же общих прин ципах функционирования: для универсальности и эф фективности работы вычислительная машина должна содержать арифметико-логическое устройство, выпол няющее арифметические и логические операции, уст ройство управления для организации процесса испол нения программ, запоминающее устройство (или па мять для хранения программ и данных), внешние устройства для ввода-вывода информации. В совре менных вычислительных машинах, называемых ком пьютерами, арифметико-логическое устройство и ус тройство управления, как правило, объединены в цен тральный процессор. Для повышения быстродействия компьютера обработка информации производится од новременно на нескольких процессорах. Компьютер обрабатывает информацию только в цифровой форме.

Вся другая информация (звуки, изображения, показа ния приборов и т. д.), вводимая в компьютер, преобра зуется в цифровую форму.

В развитии вычислительных средств различают несколько поколений, непосредственно связанных с открытиями в физике XX в.,— ЭВМ первого поколения (40-е — начало 50-х годов XX в.) базировались на элек тронных лампах. С применением полупроводниковых Глава 8. Естестественно-научные аспекты технологий приборов связывают второе поколение ЭВМ (середина 50-х — начало 60-х годов). В конце 60-х годов появилось третье поколение ЭВМ, основанное на интегральных микросхемах. В 70-е годы разработаны ЭВМ четверто го поколения, с элементной базой на больших интеграль ных схемах. В последнее время для создания ЭВМ сле дующих поколений модернизируется их элементная база, разрабатываются принципиально новые средства накопления, хранения и обработки информации.

ЭВМ 40-х и 50-х годов XX в. представляли собой крупногабаритные и дорогостоящие устройства, поэто му они были доступны только лишь крупным учрежде ниям и компаниям. По мере развития технологий ЭВМ становились компактнее и дешевле. Современные пер сональные компьютеры стоят от нескольких сотен до 10 тыс. долл. По сравнению с большими ЭВМ и мини ЭВМ персональные компьютеры весьма удобны для многих сфер деятельности.

Суперкомпьютеры. Высокопроизводительные вы числительные системы, суперЭВМ принято считать форпостом компьютерной техники. Они в значитель ной степени определяют экономическую независи мость и национальную безопасность государства. Раз витие отечественной высокопроизводительной техники начиналось с разработки в 1953 г. самой быстродей ствующей в Европе ЭВМ. Ее производительность 8000 — 10 000 операций в секунду (оп/с). Эта машина создана под руководством нашего соотечественника, академика АН СССР С.А. Лебедева (1902- 1974). Производитель ность более совершенной модификации такой машины составляла 1 млн оп/с. Более высокой производитель ностью — 125 млн оп/с — обладал отечественный мно гопроцессорный вычислительный комплекс «Эльбрус-2», созданный в 1985 г. В разработку отечественных вычис лительных и управляющих систем, а также в развитие теории оптимизации автоматических систем управле ния сложными объектами существенный вклад внесли российские ученые СВ. Емельянов (1929), B.C. Бурцев (1927), С.К. Коровин (р. 1945), Г.И. Савин (р. 1948) и др.

Мощные компьютеры разрабатываются и по сей день. Так, в сорока километрах к югу от Токио возведе но здание ангарного типа. Довольно большое, двухэтаж ное — 65 х 50 м и 17 м в высоту. Что там находится?

Компьютер, самый большой и самый мощный в мире.

Часть IV. ЕСТЕСТВЕННО НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И З Ш Р Щ Н Казалось, давно прошли те времена, когда ЭВМ занимала большой зал. Мы привыкли к мощным на стольным компьютерам. Однако в мае 2002 г. вступил в строй огромный суперкомпьютер, названный «Симу лятор Земли». Его строительство длилось пять лет. Су перкомпьютер принадлежит Иокогамскому институту наук о Земле, но им будуг совместно пользоваться три крупных научных центра страны: Центр морских наук и технологий, Институт атомной энергии и Националь ное агентство космических исследований. Он позволя ет моделировать климатические процессы в масшта бах всей планеты, с большой точностью предсказывать погоду, включая тайфуны и цунами. Этот гигант может моделировать и сейсмические явления, предсказывать землетрясения. Внутри суперкомпьютера создана «вир туальная Земля». Около 85% его мощности предусмот рено именно для таких глобальных задач.

Кроме того, часть компьютерного времени отво дится на криптографические работы (видимо, шифро вание своих и расшифровка чужих перехваченных сек ретных посланий), ядерные исследования и биологи ческие расчеты, связанные с прочтением геномов.

Японский суперкомпьютер стоимостью 350 — 400 млн долл. состоит из 5120 микропроцессоров, смон тированных в 320 больших шкафах — в каждом шка фу по 16 процессоров, работающих параллельно. Еще в 150 шкафах расположены дисковые накопители ин формации, и 65 шкафов заполнены соединительными узлами. Почти весь первый этаж занят системой кон диционирования, создающий в помещениях постоян ную прохладу. Там же расположены блоки питания, способные" поддерживать работу компьютера даже при аварии общей сети. Галогенные лампы для осве щения смонтированы на крыше, и свет от них посту пает в машинный зал по стеклянным световодам.

Обычные лампы накаливания, размещенные на потол ке, слишком сильно нагревали бы воздух, а холодные люминисцентные лампы дневного света создают элек тромагнитные помехи.

Если самый мощный из существовавших до сих пор компьютеров ASCI White американской фирмы IBM выполняет в секунду «всего» 12,3 трлн опера 424 ций, то японский гигант достигает скорости свыше Глава 8. Естестественно-научные аспекты ТЕХНОЛОГИЙ 40 трлн оп/с. Кстати, в американском суперкомпьюте ре, больше микропроцессоров — 8192, но их работа менее эффективна.

Один из американских специалистов заявил, что японская разработка суперкомпьютера — такой же тревожный сигнал для США, как запуск советского спутника в 1957 г. До сих пор в ежегодно публикуе мом списке 500 самых мощных компьютеров мира США занимали первые шесть мест. Однако произво дительность японского суперкомпьютера превышает суммарную производительность всех лучших шести американских.

Интернет. Возможности персонального компьюте ра существенно расширяются с применением компью терных сетей. Компьютерная сеть представляет собой набор соединенных между собой компьютеров с пе риферийными и коммуникационными устройствами.

Подавляющее большинство компьютеров образует ту или иную сеть. Опыт эксплуатации сетей показывает, что преобладающая часть объема пересылаемой по сети информации замыкается в пределах одного офиса. Со единенные между собой компьютеры в одном учебном классе либо в одном учебном учреждении, или в каком то административном районе образуют локальную сеть.

Существует два типа компьютерных сетей. В од ном из них выделяется специальный компьютер (сер вер) для организации работы сети, а в другом — нет.

Сервер осуществляет централизованное управление компьютерной сетью. В сети без сервера каждый под ключенный к сети пользователь имеет доступ к ресур сам (дисковое пространство, принтер), предоставлен ным другими пользователями.

Для подключения к удаленным компьютерным сетям либо отдельным компьютерам используются телефонные линии. Передача информации производит ся с помощью устройства, которое преобразует циф ровую информацию, хранимую в компьютере, в ана логовую (в виде модулированных электрических сиг налов), передаваемую по телефонной линии, и одновременно производит обратное преобразование сигнала на входе принимающего компьютера. Такое устройство называется модем (от первых слогов слов:.„_ «модулятор» и «демодулятор»), 4LU Часть IV. ЕСТЕСТВЕННО - НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ Локальные сети образуют узлы. Сеть, состоящая из равноправных и независимых узлов, объединенных между собой каналами связи, носит название Интер нет. Узлом Интернета может быть не только локальная сеть, но и любое вычислительное устройство, в том числе и персональный компьютер, подключенный к сети и имеющий свой индивидуальный адрес. Узел оснащен коммуникационным устройством для переключения каналов связи. Для связи используются обычные и оп товолоконные кабели, радиоканалы и каналы спутнико вой связи. Интернет образует своеобразную паутину, в которой связь между двумя любыми узлами обеспечи вается либо по прямому каналу, либо через ряд проме жуточных каналов. Узлы обмениваются между собой информацией. Любая информация разбивается на па кеты и отправляется по доступным каналам связи.

Интернет — глобальная компьютерная сеть, ох ватывающая весь мир и образующая систему, которая обеспечивает связь информационных сетей, принад лежащих различным пользователям во всем мире.

История развития Интернета начинается с 1961 г., когда в США была создана экспериментальная сеть для оперативной передачи информации. Масштабы вне дрения Интернета резко возросли после введения в 1982 г. протокола — совокупности принципов, правил и форматов данных, регламентирующих взаимодей ствие субъектов сети. В середине 90-х годов XX в. осо бую популярность и новую волну притока в Интернет принес новый сервис — World Wide Web (WWW, все мирная паутина). Именно этот способ организации информации в Интернете сделал его понятным и до ступным широкому кругу пользователей. Так, в 1995 г.

число пользователей удваивалось каждые 50 дней."

К концу 90-х годов XX в. их общее число составляло более 15 млн примерно в 150 странах мира.

Широко распространенным сервисом Интернета является электронная почта. Для обмена письмами по электронной почте каждому абоненту на одном из се тевых компьютеров выделяется область памяти — элек тронный почтовый ящик, доступ к которому осуществ ляется по адресу абонента и его паролю.

_Пр Интернет обеспечивает доступ ко многим видам 4си информации — не выходя и.з дома можно получить Глава 8. Естестественно-научные аспекты технологий сведения о последних событиях в мире, публикуемых в научных журналах материалах, посмотреть ту или иную телепередачу, понравившийся фильм и вести переписку с абонентом, находящимся в любой точке земного шара. В этом смысле возможности Интерне та кажутся неограниченными. Однако следует по мнить, что некоторые виды предоставляемой почти бесплатно информации не всегда являются достовер ными и полезными, а в ряде случаев носят деструк тивный, безнравственный характер, направленный на деградацию личности. Тем не менее не следует огор чаться: огонь может быть огромной разрушающей силой, но в руках разумного человека он приносит только неоценимую пользу. Конечно же, при разум ном, взвешенном подходе в выборе необходимой ин формации Интернет способствует всестороннему развитию личности.

Применение вычислительных средств. Возмож ность сочетания различных видов компьютеров с уже существующими и вновь создаваемыми машинами и их системами освобождает человека от монотонного, однообразного, утомительного физического труда, а иногда и от работы во вредных и опасных условиях.

Можно назвать множество примеров применения современных вычислительных средств.

Самое широкое распространение получили мик ропроцессорные системы для станков с программным управлением. Более сложные микропроцессорные си стемы — промышленные роботы — снабжены про стейшими «органами чувств», способными своевре менно реагировать на изменение ситуации. Приме нение роботов позволяет полностью автоматизировать работу производственных участков, цехов и целых заводов. Однако всегда останутся области деятельно сти, где компьютер не может полностью заменить че ловека. Это прежде всего области, связанные с не формальным творческим подходом к делу. Но компь ютер может облегчить творческий труд. Для этого создаются автоматизированные рабочие места (АРМ). Например, программное обеспечение АРМ директора предприятия содержит автоматизирован ную систему управления (АСУ), которая быстро вы дает на экран дисплея или на бумагу оперативную | Часть IV. ЕСТЕСТВЕННО-НДУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ сводку о положении дел на предприятии (наличие ре сурсов, ход выполнения плана, сведения о работни ках предприятия и т. п.), помогает в выборе смежни ков, а также экономической стратегии и тактики. Со здаются АСУ, предназначенные для обеспечения оптимального взаимодействия уже не отдельных стан ков и автоматических линий, а цехов, производствен ных объединений в масштабах целой отрасли.

Область применения компьютера расширяется в результате не только увеличения числа механизмов, ма шин и других устройств, к которым он подключается, но и роста его «интеллектуальных» способностей. Так, информационно-поисковые системы и базы данных пе рерастают в базы знаний, развитию которых способ ствует Интернет. В базах знаний хранятся не только данные, но и правила вывода новых утверждений из уже имеющихся. А это означает, что она способна по рождать новые знания.

• 8.2. Современные средства накопления информации Общие сведения. Появление наскальных рисунков и надписей свидетельствует о стремлении человека еще в древние времена сохранить свои наблюдения, пере дать их потомкам. Позднее стали писать на глиняных пластинах, свитках папируса, а примерно два тысяче летия назад появился и поныне самый распространен ный носитель информации — бумага. Но вот наступил век электроники и принес в повседневную жизнь еще одну новинку — ЭВМ — своеобразный кладезь премуд рости человека. Бумага, верой и правдой служившая человеку долгое время, начинает постепенно сдавать некоторые области своей абсолютной монополии. Сей час важнейшее место в развитии цивилизации отво дится электронной вычислительной технике, в первую очередь, получившим широкое распространение пер сональным компьютерам.

Представляют интерес некоторые цифры, харак теризующие объем информации, накапливаемой чело вечеством. Одна книга среднего формата содержит 428 около 1 млн байт информации. Крупнейшая в мире библиотека Конгресса США хранит примерно 20 млн книг и 3,5 млн единиц звукозаписи, что вместе состав ляет приблизительно 2 петабайта ( 1 Пбайт = 10 байт).

По оценке ЮНЕСКО, в мире ежегодно печатается около 100'Гбайт (100- 1012 байт) нового текста (без уче та переизданий)^ в том числе 10 тыс. газет, издающих ся в разных странах. Ежегодно в мире выпускается примерно 5000 кинофильмов, а всего со времен бра тьев Люмьер, французских изобретателей, создавших в 1895 г. первый киноаппарат, в виде кинофильмов вы пущено около 1 Пбайта информации. Профессионалы и любители делают ежегодно 50 млрд фотоснимков, что составляет примерно 0,5 Пбайта. На телевизионные передачи приходится 100 Пбайт. Информация, пере даваемая по телефону во всем мире, оценивается в несколько тысяч петабайт. Приведенные цифры впечат ляют — человечество оказалось в колоссальном инфор мационном океане. Чтобы свободно плавать в таком безбрежном океане, создаются локальные и глобальные сети, объединяющие множество персональных компь ютеров.

По объему накапливаемой информации и скорос ти ее обработки возможности персональных компью теров все же ограничены: на современном персональ ном компьютере можно хранить всего лишь десятки гигабайт информации. Во многих отраслях — банков ское дело, системы резервирования и реализации авиа и железнодорожных билетов, метеослужба и компью терное производство видеофильмов — требуется обра батывать сравнительно большие объемы информации с высокой скоростью и, следовательно, нужны боль шие компьютеры и суперкомпьютеры.

В последнее время наряду с суперкомпьютерами разрабатываются сравнительно небольшие компьюте ры с миниатюрными накопителями информации. Са мый маленький в мире накопитель информации в виде жесткого диска памяти производит американская фир ма IBM. По размерам он сравним с отечественной пятирублевой монетой, однако объем его памяти дос таточно большой — 340 Мбайт. Этот миниатюрный диск очень удобен для карманных компьютеров и цифро вых фотоаппаратов. На винчестер-малютку можно за- _,._ писать несколько сотен цветных фотографий, а затем 4t.il Часть IV. ЕСТЕСТВЕННО-НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ распечатать на принтере или перевести в память боль шего компьютера.

Все виды ЭВМ, в том числе большие и малые ком пьютеры, содержат запоминающее устройство — тот или иной накопитель информации, или память. Па мять •— это то, что наделяет ЭВМ интеллектуальными признаками и что существенно отличает ее от других машин и механизмов.

Память человека и память ЭВМ. Память — несом ненно, один из важнейших атрибутов человека. Разви тый, утонченный и вместе с тем изощренный аппарат памяти, пожалуй, это основное, что выделяет человека среди других представителей живого мира. Не только запоминание окружающего (это неосознанно делают и животные), но и воспоминание, логическое осмысле ние, многократное обращение сознания к хранилищу памяти и извлечение из него всего того, что нужно в данный момент,— на это способен лишь человек, на деленный разумом.

Совокупная память всех людей, коллективная па мять человечества, материализованная в многочислен ных книгах, картинах, нотах, фотографиях, чертежах, кинофильмах, архивных документах и во многом-мно гом другом, вне всякого сомнения образует один из основных краеугольных камней фундамента человечес кой цивилизации. За последние десятилетия разнооб разные технические средства накопления и хранения информации пополнились еще одним — наиболее уни версальным и гибким — памятью ЭВМ, которой во все большей степени отводится постоянно возрастающая роль в совершенствовании ЭВМ и, следовательно, в развитии общества в целом.

Сегодня ЭВМ стала главным инструментом, с по мощью которого осуществляется управление информа ционными потоками. Так в общих чертах выглядит современная картина. О памяти ЭВМ известно гораз до больше, чем о памяти человека, его сознательной и бессознательной деятельности. Надпись «Познай са мого себя», начертанная у входа в дельфийский храм Аполлона, актуальна и по сей день. Память человека обладает индивидуальными, многогранными, удиви _„ п тельными и большей частью не объясненными пока 4ии свойствами. Цицерон считал, что «для ясности памяти Глава 8. Естестественно-научные аспекты технологий важнее всего распорядок;

поэтому тем, кто развивает свои способности в этом направлении, следует держать в уме картину каких-нибудь мест и по этим местам рас полагать воображаемые образы запоминаемых пред метов». Примерно по такому принципу построена и память ЭВМ. Из приведенных образных сравнений понятно, что память ЭВМ по многим параметрам от стает от мозга человека. И мы непременно «должны учиться у природы и следовать ее законам», как утвер ждал Н. Бор.

И творческая, и подсознательная деятельность, и другие ее виды, часто объединяемые одним словом «чувство», применительно к памяти ЭВМ можно отне сти к искусственному интеллекту, привлекающему внимание многих исследователей.

Высокая плотность записи, большая емкость памя ти, высокое быстродействие, способность восприятия и аналоговой, и цифровой информации, возможность оперативного доступа к данным, сочетание адресного и ассоциативного поиска, объединение последователь ного и параллельного принципов ввода-вывода инфор мации, отсутствие механически перемещающихся уз лов, высокая долговечность и надежность хранения — вот те основные качества, которыми хотелось бы наде лить разрабатываемые долговременные запоминающие устройства.

Технологические возможности реализации высо кой информационной плотности. Запоминающие уст ройства большинства моделей ЭВМ основаны на маг нитной записи. Прогнозы специалистов показывают, что в ближайшем будущем устройства магнитной за писи останутся доминирующими на мировом рынке информационной техники.

С развитием средств вычислительной техники растет и будет расти спрос на запоминающие устрой ства небольших размеров, способные хранить большой объем информации. В этой связи проблема повышения информационной плотности записи — одна из важней ших в совершенствовании запоминающих устройств большой емкости.

В запоминающих устройствах на подвижном маг нитном носителе, где основное — это накопление ин формации, фактором первостепенной важности являет Ч а с т ь IV. ЕСТЕСТВЕННО НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ ся поверхностная информационная плотность записи, определяемая количеством информации, приходящей ся на единицу площади поверхности рабочего слоя носителя записи. Поверхностная информационная плот ность записи зависит от плотности записи вдоль одной дорожки (продольной плотности) и числа самих доро жек на единицу ддины в поперечном относительно дви жения носителя направлении (поперечной плотности).

Из теоретических расчетов следует, что продольная плотность записи информации на магнитном носителе может достигать 20 000 бит/мм. Если в настоящее вре мя в лучших производимых магнитных накопителях про дольная плотность — около 5000 бит/мм, то становится понятным, какие возможности еще не реализованы.

Магнитная запись с перпендикулярным намагни чиванием, когда перемагничивание рабочего слоя осу ществляется в его перпендикулярной плоскости, обес печивает существенное повышение информационной плотности записи. Так, в лабораторных образцах нако пителей уже достигнута продольная плотность, состав ляющая более 10 000 бит/мм. Для этого применяется записывающий элемент толщиной 0,1 мкм. При его ширине 0,1 мкм поверхностная плотность записи ин формации равна 100 бит/мкм 2, что примерно на два порядка больше предельно возможной плотности в оптических накопителях. Воспроизведение информа ции, записанной с такой высокой плотностью, произ водится с помощью высокочувствительных магниторе зистивных преобразователей.

Голографическая память. Быстродействие памяти зависит от длительности процессов записи, поиска и воспроизведения информации. Увеличение емкости памяти требует и роста скорости обмена информаци ей. Существенно повысить быстродействие в результа те модернизации дисковых накопителей информации — задача довольно трудная. Нужна другая идейная кон цепция. Оказывается, такая концепция известна и уже привела к некоторым результатам. Речь идет о гологра фической памяти. Она основана на применении ла зерного излучения и позволяет реализовать многие свойства, присущие памяти человека.

Однако прошли десятки лет с начала разработки 432 голографической памяти, а реальных, конкурентоспо собньтх устройств, которые можно было бы отнести к промышленным, а не к лабораторным, до сих пор нет.

В чем же дело? Все тот же известный диссонанс идей ных концепций и элементной базы. Транзистор, интег ральная схема, микропроцессор— элементы, в свое время определявшие лицо вычислительной техники и не только параметры конкретных ЭВМ, но и идеоло гию научно-технического прогресса. Появился ла зер — и возникли новые отрасли естествознания: кван товая радиофизика, топография, нелинейная оптика.

Хотя идейные основы таких отраслей предложены го раздо раньше, но только лазер дал им жизнь. С приме нением полупроводниковых лазеров созданы оптичес кие дисковые накопители.

С голографическои памятью ситуация, увы, иная.

Используемые в лабораторных разработках ее элемен ты — газовые лазеры, разнообразные оптические зат воры и другие •— пока еще несовершенны: как прави ло, они громоздки, недолговечны, сложны в изготовле нии и эксплуатации, в них используются разнородные материалы. Приходится констатировать, что элемент ная база голографическои памяти для промышленного производства еще не создана.

Правда, в последнее десятилетие в развитии ряда направлений оптоэлектроники достигнуты опреде ленные успехи, которые косвенно, а иногда и прямо способствуют решению рассмотренной проблемы.

Созданы полупроводниковые лазеры с высокой сте пенью когерентности излучения, позволяющие запи сывать качественные голограммы. Развивается ин тегральная оптика, в рамках которой традиционные объемные оптические элементы заменяются тонко пленочными. Например, тонкопленочные оптические затворы могут переключаться напряжением всего в несколько вольт, при этом время переключения ме нее 1 не.

Нейронные сети. С начала 80-х годов XX в. про гресс в развитии вычислительной техники многие свя зывают с созданием искусственных нейронных сетей.

Успехи в разработке и использовании нейрокомпью теров определяются их принципиально новым свой ством — возможностью эффективного самообучения в ходе решения наиболее сложных задач. По своей суги 28 С. X. Карпенков — КСЕ нейрокомпьютер является имитацией нейронной сети мозга человека.

Используя терминологию вычислительной техники, можно сказать, что нейрон является бинарной ячейкой.

Он может находиться либо в возбужденном, либо в не возбужденном состоянии, которое изменяется в резуль тате взаимодействия с другими нейронами. В нейронной сети полезная информация запоминается не отдельны ми нейронами, а группами нейронов, их взаимным со стоянием. Каждый нейрон в большей или меньшей сте пени связан примерно с 104 нейронами. Принимая вне шнюю информацию и обмениваясь внутри головного мозга, каждый отдельный нейрон имеет возможность последовательно приближаться к принятию в сложной внешней обстановке решения и переходу в нужный момент в нужное (возбужденное либо невозбужденное) состояние. Чем больше объем нейронной сети, тем более сложную задачу можно решить с ее помощью.

К настоящему времени производится моделирова ние нейронных сетей. Магнитооптические управляемые устройства уже сегодня позволяют сформировать вы сококачественный массив информации, скорость обра ботки которого по алгоритму нейронной сети существен но превосходит возможности человеческого мозга.

• 8.3. Альтернативные компьютеры Квантовые компьютеры. В модернизации элемент ной базы компьютеров, основанной на традиционном электронном принципе, есть фундаментальное ограни чение, связанное с тем, что из отдельного атома невоз можно создать проводник, по которому протекал бы электрический ток, как в элементах обычных электрон ных приборов. Поэтому нужны принципиально новые идеи, которые позволят в дальнейшем развивать ком пьютерную технику. К настоящему времени предложе но несколько подобных идей и одной из них, основан ной на квантовом принципе, уделяется большое вни мание. Предполагается, что созданный на таком принципе квантовый компьютер поможет решить мно гие важные задачи, трудно решаемые с помощью тра хит ДИЦИОННЫХ компьютеров.

Квантовая механика, описывающая, казалось бы, далекий от нас микромир, все активнее вторгается в практические сферы человеческой деятельности. По является все больше приборов, основанных на кванто во-механических принципах — от квантовых генера торов до микроэлектронных приборов. Видимо, пришел черед и вычислительной техники — компьютеры, по строенные на квантовых вычислительных элементах, откроют новые возможности для решения довольно сложных задач вычислительной математики.

Один из важных принципов квантовой механики — принцип суперпозиции: если квантовая система может существовать в двух состояниях, то она может нахо диться и в виде их суперпозиции. Математический принцип суперпозиции — это следствие линейности уравнения Шредингера, основного уравнения кванто вой механики.

Попытаемся наглядно представить простейшую квантовую систему, на основании которой можно со здать квантовый компьютер. Проведем несложный мысленный эксперимент. Возьмем, например, стрелку компаса и начнем разрезать ее пополам. Каждая из половинок будет обладать тем же свойством, что и неразрезанная стрелка, а именно, один конец их будет указывать на север, а другой — на юг. Разрезая полу ченные половинки вновь и вновь, можно дойти до стрелки, состоящей из одной частицы. Куда она на правлена? Казалось бы, нужно взять микроскоп с высоким разрешением и посмотреть. Но для этого надо направить на систему какое-либо излучение (в случае оптического микроскопа — световое), т. е. заставить ее взаимодействовать с внешними частицами (фотонами).

Таким образом можно изменить состояние квантовой системы, или, иначе, когерентность, просто наблюдая за ней. Соответственно и информация будет относить ся не к исходной, а к новой. Если принять за «1» на правление на север, а за «О» — на юг, то направление намагниченности можно рассматривать как квантовый бит, или кубит, содержащий в себе с равной вероятно стью оба состояния. Квантовая система с двумя состо яниями, способная нести один бит информации, носит название кубит. Работая с кубитом, можно одной ко- 28' мандой обработать оба возможных состояния. Два ку бита содержат уже четыре возможных состояния, три — восемь и т. д. Добавление в систему каждого нового кубита повышает число содержащихся в ней вариан тов состояний вдвое.

Рассмотренный простейший кубит, основанный на двух состояниях, называется спиновым кубитом. Прин ципиально возможны и другие квантовые системы, которые отличаются поляризацией (например, фотоны) или фазой (сверхпроводники). Квантовой системой может быть не только отдельная частица, но и различ ные макроскопические системы в виде сверхпровод ников, сверхтекучих жидкостей, бозе-газа.

Квантовая логика для работы с кубитами остава лась для ученых-кибернетиков чем-то умозрительным вплоть до 1994 г., когда американский ученый Питер Шор предложил квантовый алгоритм решения очень важной задачи — разложения больших чисел на про стые сомножители. Для примера достаточно сказать, что разложение 155-значного числа, работа над кото рым велась одновременно на нескольких компьютерах, в 1999 г. заняла 7 месяцев. Если бы удалось построить хотя бы 50-кубитный квантовый компьютер, эта задача была бы решена за доли секунды.

Основные проблемы в создании квантового ком пьютера вытекают из его природы: для решения ка кой-либо задачи нужно сначала заложить в компьютер исходные данные и программу, а потом считать полу ченный результат. Однако любое вмешательство в зам кнутую квантовую систему приводит к нарушению ее когерентности. Это означает, что в момент измерения кубит принимает какое-либо одно из возможных зна чений, утрачивая другое.

Тем не менее к настоящему времени получены некоторые практические результаты. Наиболее значи мых из них добилась группа ученых из исследователь ского центра Almaden компании IBM. Сначала выби рались молекулы, способные реализовать нужную ло гическую функцию. Водяной раствор таких молекул помещался в сильное магнитное поле, а кубитами слу жили направления намагниченности (спины) атомных ядер. Чтобы не нарушить когерентность системы, на чальный набор спинов задавался радиочастотными импульсами, а полученные результаты считывались при помощи ядерного магнитного резонанса (ЯМР).

Этот метод, основанный на избирательном поглощении веществом электромагнитного излучения, использует ся уже довольно давно в разных областях естественно научных исследований. Медики, например, с помощью ЯМР получают хорошие изображения внутренних ор ганов человека с разрешением вплоть до долей милли метра, причем из-за довольно низкой энергии излуче ния их вредное воздействие на организм сводится к минимуму.

В 1998 г. в центре Almaden был собран двухкубит ный квантовый компьютер, а в 1999 г.— трехкубитный.

В декабре 2001 г. продемонстрирован первый резуль тат работы 7-кубитного квантового компьютера. В ка честве дубитов использованы спины 5 ядер фтора и 2 ядер углерода-13. Остальные атомы и молекулы по добраны таким образом, чтобы образовать нужное вза имодействие между электронами разных элементов и обеспечить стабильность всей системы. В одной неболь шой пробирке содержится миллиард миллиардов (10!8) молекул, каждая из которых может быть компьютером.

С помощью 7-кубитного квантового компьютера удалось найти простые сомножители числа 15. Как ни странно, оказалось, что это 5 и 3. Те, кто считает, что большого ума для этого не нужно, совершенно правы:

потребовалась всего лишь одна молекула.

Фотонный компьютер. Одна из наиболее перспек тивных альтернатив процессорам и компьютерам на электронной основе — это использование фотонов, т. е.

частиц (квантов) света с нулевым электрическим заря дом. Фотонный компьютер обладает рядом преиму ществ, связанных с особенностями распространения света. Световые лучи устойчивы к посторонним элек тромагнитным шумам. Их передача может осуществ ляться на гораздо более высоких частотах. К тому же они могут находиться сколь угодно близко друг к другу и даже пересекаться, не теряя при этом информации, что позволяет одновременно вести передачу и обработ ку потоков информации.

Столько преимуществ, но почему же пока не уда лось создать столь привлекательный фотонный компь ютер? Дело в том, что еще нужно разработать оптичес Часть IV. ЕСТЕСТВЕННО -НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ кие аналоги электрических проводников и логических элементов. Уже сравнительно давно луч света переда ется по оптическому волокну или световоду, но до сих пор нельзя вместить десятки, сотни километров опти ческого волокна в сравнительно небольшом объеме.

Плотность упаковки электрических элементов гораздо выше. В качестве логических схем могут выступать линзы, зеркала и лазеры, но их размеры опять же исключают возможность создания конкурирующих производительных процессоров.

Оптические импульсы, несущие информацию, можно передавать по оптическим волноводам опто электронной платы. Такой способ позволяет передавать информацию гораздо быстрее, чем по электронным соединениям традиционных микросхем, и гораздо луч ше использовать вычислительную мощность, самых быстрых микропроцессоров.


Практической основой, на которой в будущем, по видимому, будут реализованы все компоненты фотон ного компьютера, могут стать так называемые фотон ные кристаллы, способные пропускать или задерживать свет только с определенной длиной волны. Один из образцов фотонного кристалла иллюстрирует рис. 8.1.

Он состоит из набора чередующихся кремниевых по лос, образующих многоуровневую структуру в виде своеобразной решетки, способной улавливать свет.

Световой луч с определенной длиной волны, попав внутрь такой решетки, не покидает ее. При этом длина волны зависит от размеров кремниевых полос и их вза имного расположения. Так, решетка, состоящая из крем ниевых полос шириной 1,2 мкм, не выпускает инфра красное излучение с длиной волны 10 мкм.

Можно создать и одномерный фотонный кристалл в виде моста — световой волновод, по которому инфор мация передается фотонами. В нем, благодаря равным промежуткам между отверстиями, образуется периоди ческая структура, в которой не может распространять ся свет с определенной длиной волны. Оставленный более длинный промежуток в середине волновода слу жит ловушкой для фотонов. Этот промежуток называет ся резонансной полосой. Таким образом, одномерный фотонный кристалл позволяет выделить из пучка свето вых лучей с разными длинами волн какой-либо один.

Глава 8. Естестественно-научные аспекты технологий Рис. 8.1. Фотонный кристалл С помощью двухмерного фотонного кристалла можно повернуть луч света на 90°. Набор одно-, двух и трехмерных фотонных кристаллов, позволяющий улавливать и направлять световые потоки, может со ставить основу фотонных логических схем и ячеек памяти.

Фотонный волновод изгибает световой луч на го раздо более коротком расстоянии, чем обычное опто волокно. Следовательно, появляется возможность со здания миниатюрных оптических компонентов фотон ного компьютера.

Из фотонных кристаллов можно изготовлять све товоды произвольной формы, модули памяти и логи ческие элементы. Разработанные в последние годы образцы фотонных кристаллов имеют микронные раз меры, что представляет практический интерес для те лекоммуникаций, связи и хранения информации. По видимому, сначала появятся не полностью фотонные компьютеры, а комбинированные устройства, в кото рых информация будет обрабатываться электронными логическими схемами, а храниться и передаваться в фотонных кристаллах.

Биокомпьютеры. Можно ли представить себе ком пьютер размером с молекулу? А ведь существует он со времени зарождения жизни на Земле. В каждую секун ду в человеческом организме делится множество кле ток, причем в головном мозге образуются именно ней роны, а в бицепсах — клетки мышечной ткани. Орга низм непрерывно развивается. И управляет этими процессами молекула ДНК — созданный природой жи вой компьютер. В нем заложена программа, в которой с помощью набора генов реализуется нужный организ му алгоритм, обусловливающий специфику и особен ности развития каждого организма.

Так, если существует живой универсальный меха низм, отсекающий миллиарды неправильных решений и оставляющий одно правильное, то нельзя ли им вос пользоваться для решения абстрактных задач? Понят но, что построенный по такому принципу компьютер вряд ли сможет заниматься какими-либо сложными вычислениями, но вот мгновенно перебрать массу ва риантов, выбрав оптимальный, он сможет. Конечно, сами молекулы ДНК сравнительно малы, а значит, в обычной пробирке — их триллионы, и необходимо за программировать каждую из них своим набором дан ных, чтобы выбрать оптимальное решение. В качестве примера можно привести классическую «задачу ком мивояжера», которая заключается в том, чтобы выбрать между несколькими городами маршрут с наименьшей длиной пути. Число вариантов в зависимости от числа городов растет стремительно — если для двух городов возможно всего лишь два маршрута, для трех — шесть, то для десяти — уже более трех миллионов.

Сейчас, конечно, существуют вычислительные методы, позволяющие определить оптимальные марш руты движения транспорта. Однако подобная задача для крупных авиакомпаний, самолеты которой совер шают полеты в сотни городов мира, довольно сложна даже для современной вычислительной техники.

Сегодня уже доказана теоретическая возможность построения ДНК-компьютеров, проведены и первые успешные эксперименты. Так, в 1999 г. решена «зада ча коммивояжера» для семи городов (несколько сотен вариантов), правда, с относительно большой ошибкой.

Спустя несколько лет удалось создать ДНК-компьютер, способный отвечать только на вопрос «да» или «нет», и доля правильных решений составила 99,8%.

В последнее время открылось еще одно важное направление исследований, связанное с использова нием вычислительных способностей нейронных сис тем. Человеческий мозг, например, содержит десятки миллиардов нейронов, связанных в единую сеть. Для сравнения отметим: число элементов современной кремниевой интегральной схемы с линиями шириной 0,5 мкм эквивалентно лишь нескольким десяткам ней ронов. Таким образом, современная электроника по своим функциональным возможностям отстает от че ловеческого мозга почти на 10 порядков. В этой связи понятно, какие потенциальные возможности предсто ит еще реализовать.

Одна из основных целей биокомпьютерных иссле дований — это создание живых организмов, генетичес ки программируемых для решения прикладных задач.

Первым успехом на этом пути завершился экспери мент, проведенный в Институте Макса Планка в Гер мании. Он доказывает реальную возможность постро ения гибридных нейронно-кремниевых цепей (рис. 8.2).

Нейроны удерживаются на поверхности кремниевой микросхемы полиимидными опорами. Клетки культи вируются до тех пор, пока из них не образуется свя занная нейронная сеть. Под каждой клеткой находит ся транзистор, который может се стимулировать по средством передаваемого сигнала. Этот же сигнал передается по нейронам другим клеткам, которые, в Рис. 8,2. Гибридная нейронно кремниевая цепь Часть IV. ЕСТЕСТВЕННО НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ И ЭКОЛОГИИ свою очередь, изменяют состояние находящихся под ними транзисторов. Таким образом, сигнал от одного транзистора к другому передается не напрямую, а по нейронной сети. Для построения такой сети использо вались нервные клетки и нейроны улитки в сочетании с традиционными кремниевыми транзисторами.

Предполагается, что в будущем колонии живых клеток найдут применение для программирования вполне определенных изменений в их среде и отра ботки соответствующих функций и действий. Напри мер, находясь в организме человека, они смогут опре делить наличие яда и автоматически начать выработку противоядия. Клетки организма в комбинации с ком пьютерными микросхемами могут использоваться в качестве внешних сенсоров.

Вне всякого сомнения, рассмотренные идеи созда ния альтернативных компьютеров весьма интересны, и только дальнейшие экспериментальные исследова ния покажут, какие из них найдут реальное практичес кое воплощение.

• 8.4. Мультимедийные системы и виртуальный мир Мультимедиа — это объединение нескольких кана лов передачи информации от машины к человеку: звук, изображение, реже — движение реальных предметов.

Подразумевается и обратная связь — действия челове ка должны напрямую и существенно влиять на ход со бытий в системе. Разработчики современных мультиме дийных систем стремятся к возможно более точному мо делированию реальности, созданию виртуального мира, в котором человек мог бы совершать то, что недоступно ему в реальной жизни, и в котором он занимал бы ве дущее место. Для этого прилагаются всевозможные уси лия. Так, создан специальный шлем, позволяющий улуч шить стереофоническое восприятие звука и изображе ния.

А теперь попытаемся разобраться в диалектике двуединого начала мультимедийной системы. Но преж де вспомним, чем люди занимались долгие тысячеле тия по изгнании их за грехи из рая. Они создавали все _ необходимое для защиты от холода и жары, изобрета 44с ли средства передвижения по земле, в воде и в воздухе Глава 8. Ествстественио-научные аспекты технологий и т. п. В результате вокруг человека формировалась искусственная среда, отделяющая его от реальной природы. Люди стали пренебрегать естественной сре дой обитания, активно вторгаясь в нее и засоряя ее бытовыми и промышленными отходами. Плата за все это — приближение глобальной экологической катас трофы, предотвращение которой требует региональных и глобальных мер экологической защиты.

Создание искусственной мультимедийной среды с ее альтернативной реальностью — виртуальным ми ром — влечет за собой подобные следствия. Основная функция искусственной среды, как изначально предпо лагалось, заключается в повышении эффективности ав томатического управления машинами. Усложнялась конструкция машин, и вместе с тем становились все сложнее устройства управления. В настоящее время создаются устройства управления микроклиматом жи лища, различными видами транспорта и технологичес кими процессами. Программирование их работы тре бует знания не только возможностей технических средств управления, их структуры и специфики, но и свойств рецепторного и рефлекторного аппаратов че ловека, а также психологии восприятия визуальных и акустических образов. Конечно, развитие работ в таком направлении вполне органично вписывается в более общую проблему совершенствования мультимедийных систем — именно в этом их положительное качество.

Стремительный рост информационного потока активизирует защитную реакцию человека, и неосоз нанно начинает появляться желание избавиться от внешнего информационного воздействия. Люди наше го поколения, как никогда ранее, почувствовали уста лость от различного рода политической информации и прежде всего от явных идеологических спекуляций, что обусловливает одну из причин чрезвычайно боль шой популярности современной аудио- и видеотехни ки, позволяющей в определенной степени изолиро ваться от внешнего информационного потока. Не нужно забывать, что многие видео- и аудиосюжеты выбираются из общего идеологического «корыта», за полняемого чаще всего зарубежными «доброжелате лями», преследующими вполне определенные поли тические цели. При этом наиболее удобны мультиме дийные игры.


Сущность их заключается в создании для играю щего искусственного информационного простран ства — от несложных операций укладки кубиков или сбора яиц в лукошко до почти натуральных вылетов на боевых машинах, когда пробуждается присущее каж дому человеку естественное желание обогнать, пора зить, победить и т. п. Монотонные и однообразные движения и ритмы усыпляют человека, позволяют лег ко воздействовать на него, гипнотизировать, парали зовать его волю и подспудно вдалбливать в его созна ние любую (в том числе вредную и опасную!) инфор мацию. Что-то подобное происходит на некоторых кино- и телепредставлениях, дискотеках и концертах с чрезмерно шумной, одурманивающей музыкой.

Отгораживаясь таким образом от реальной жизни людей с ее голодом, холодом, болезнями, войнами, стра Дги-гаями и оказавшись в виртуальном пространстве, где нажатием кнопки можно взорвать инопланетный космический корабль, сжечь город, наслать повальные болезни, насладиться интимом с «любимым человеком», наконец, быть «убитым» самому игроку в этих вирту альных видео-аудиотактических мирах, человек теря ет ощущение реальности жизни. Он начинает пренеб регать реальными информационными потоками, жить своими интересами в выдуманном мире, где ему хоро шо и удобно только одному. Такой человек вряд ли сможет восхищаться ранним восходом солнца с его золотистыми, скользящими по земле лучами. Для него окажутся ненужными ни классическая музыка, ни классические произведения искусства и литературы, на которых воспитывались многие поколения людей с высокими нравственными качествами.

В той или иной мере всем понятна опасность и страшная губительная сила ядерного, химического и бак териологического оружия, поражающего тело, но оста ется пока незамеченным другое оружие также массово го поражения, которое поражает душу человека, делая его одиноким и беззащитным в придуманном им вирту альном мире.

Следует ли ограничивать новые возможности муль тимедийных систем? Конечно, нет. Известно, что нож в руках хирурга —добро, а в руках бандита — зло. Полез но помнить, что мультимедийные системы только при разумном их использовании могут' непременно способ ствовать развитию личности и общества. Наиболее по лезное использование мультимедийных систем будет не игровым и развлекательным, а научным и учебным, способствующим упрощению и облегчению сложного процесса познания окружающего мира.

• 8.5. Микро- и нанозлектронная технологии Общие сведения. Характерная особенность совре менного естествознания — рождение новых, быстро развивающихся наук на базе фундаментальных знаний.

К одной из них относится сформировавшаяся в недрах физики микроэлектроника, перерастающая в последнее время в наноэлектронику. У микроэлектроники и нано электроники один общий корень — электроника. В сов ременном представлении электроника — наука о взаи модействии электронов с электромагнитными полями и о методах создания электронных приборов и устройств (вакуумных, газоразрядных, полупроводниковых), ис пользуемых для передачи, обработки и хранения инфор мации. Возникла она в начале XX в. На ее основе были созданы электровакуумные приборы, в том числе и электронные лампы (диод, триод и т. д.). В 50-х годах XX в.

родилась твердотельная электроника, прежде всего по лупроводниковая, а в следующем десятилетии — мик роэлектроника — наиболее перспективное направление электроники, связанное с созданием приборов и уст ройств в миниатюрном исполнении с использованием групповой (интегральной) технологии.

Основу элементной базы микроэлектроники состав ляют интегральные схемы, выполняющие заданные фун кции блоков и узлов электронной аппаратуры, в которых объединено большое число миниатюрных, связанных между собой элементов. По мере развития микроэлект роники уменьшаются размеры содержащихся в интег ральной схеме элементов, повышается степень интегра ции. В последнее время разрабатываются интегральные схемы, размеры элементов которых определяются нано метрами (10~9 м), т. е. зарождается наноэлектроника.

Разнообразные микроэлектронные приборы и уст ройства находят широкое применение во многих техни ческих средствах. Достижения в микроэлектронике способствовали созданию космических кораблей и уп- 44d равляемых ядерных реакторов. Современная аудио- и видеоаппаратура с достаточно высоким качеством зву чания и изображения — это тоже продукция микроэлек троники. На промышленной микроэлектронике базиру ется автоматизированное производство изделий, узлов, механизмов и машин. Элементная база многочисленных и разнообразных ЭВМ, включающих и персональные компьютеры, также основана на микроэлектронике.

Едва ли можно встретить такого человека, который не был бы прямо или косвенно связан с микроэлект ронной аппаратурой, прежде всего как пользователь.

Вполне очевидно, что от степени внедрения микроэлек тронных средств зависит не только качество произво димой продукции, но и темпы развития той или иной промышленной отрасли и государства в целом.

Развитие твердотельной электроники. История развития твердотельной электроники начиналась с возникших и долгое время необъяснимых физических загадок, так называемых «плохих» проводников. Еще в XIX в. выдающийся физик М. Фарадей столкнулся с первой загадкой — с повышением температуры элек тропроводность исследуемого образца возрастала по экспоненциальному закону, что противоречило извес тному в то время представлению: электрическое сопро тивление многих проводников линейно увеличивается с ростом температуры. Спустя некоторое время фран цузский физик А.С. Беккерель обнаружил, что при освещении «плохого» проводника светом возникает электродвижущая сила — фото-ЭДС. Так появилась вторая загадка. В 1906 г. немецкий физик К.Ф. Браун (1850— 1918) сделал важное открытие: переменный ток, пропущенный через контакт свинца и пирита, не под чиняется закону Ома;

более того, свойства контакта определяются величиной и знаком приложенного на пряжения. Это была третья физическая загадка.

В дальнейшем к плохим «проводникам» были отнесе ны сульфиды и оксиды металлов, кремний, оксид меди и т. п.— вещества, получившие название полупроводников.

Выпрямление электрического тока с помощью полупро водников и их фотопроводимость нашли практическое применение: были созданы соответственно твердотельный выпрямитель электрического тока и фотоэлемент.

В /1/1С 1879 г. а м е р и к а н с к и й ф и з и к Э. Холл (1855— 1938) обнаружил новое явление — возникновение электричес ЧЧU Глава 8. Естестественно-научные аспекты технологий кого поля в тонкой пластине золота с током, помещен ной в магнитное поле,— названное эффектом Холла.

Такой эффект наблюдается и в полупроводниках. Пред полагалось, что направление электрического поля оп ределяют электроны и какие-то неизвестные, положи тельно заряженные частицы. Эффект Холла — четвер тая загадка «плохих» проводников.

Известная к тому времени теория электромагнит ного поля Максвелла не смогла объяснить ни одну из четырех загадок. Пока физики искали отгадки, полупро водники находили применение. Так, контакты из про лупроводниковых материалов и металла использовались в первых приемниках радиоволн. Кристаллические полупроводниковые детекторы позволяли выпрямлять радиочастотные сигналы, по усиливать их не удавалось.

Изучая свойства кристаллического детектора, наш соотечественник, выдающийся радиоинженер О. Лосев (1903— 1942) обнаружил на вольт-амперной характери стике кристалла участок с отрицательным дифферен циальным сопротивлением, на основе чего он создал в 1922 г. генерирующий детектор. Это был первый детек тор, способный генерировать и усиливать электромаг нитные колебания. В нем использовалась контактная пара: металлическое острие — полупроводник (кристалл цинкита). Однако, хотя открытие О. Лосева и вызвало большой интерес, оно не нашло промышленного вне дрения, так как 30 — 40-е годы XX в. были порой расцве та электровакуумных ламп, нашедших широкое приме нение в различных устройствах радиосвязи. Ненадеж ные в то время полупроводниковые приборы не могли конкурировать с ними.

Тем не менее исследование свойств полупровод ников продолжалось. Предпринимались поиски при родных и синтезированных полупроводников. Иссле дования существенно активизировались после созда ния зонной теории полупроводников, в соответствии с которой в твердом теле энергетическое состояние элек тронов характеризуется зонами. В верхней зоне нахо дятся свободные заряды, она названа зоной проводимо сти. Нижняя зона, в которой заряды связаны, получила название валентной зоны. Между ними расположена запрещенная зона. Если ее ширина велика, то в твердом теле электропроводность отсутствует, и оно относится к диэлектрикам. Если же она невелика, то электроны могут возбуждаться различными способами и перехо дить из валентной зоны в более выеокоэнергетичес кую. Например, при нагревании твердого тела проис ходит тепловое возбуждение электронов, повышается их энергия, и они переходят в зону проводимости;

при этом повышается электропроводность твердого тела, и значит, уменьшается его сопротивление. С ростом тем пературы число возбужденных электронов увеличива ется, и как следствие, сопротивление полупроводника падает. Возможен и другой механизм возбуждения элек тронов и перевод их из валентной зоны в зону проводи мости, при котором они становятся свободными под действием света. Таким образом, зонная теория объяс нила две первые загадки: почему сопротивление полу проводников падает при нагревании и при освещении.

Из анализа электропроводности полупроводников следовало, что на освободившихся от электронов мес тах в процессе их перехода в зону проводимости обра зуются вакансии или дырки, эквивалентные носителям положительного заряда, обладающим подвижностью, эффективной массой и способностью давать вклад в электрический ток с направлением, противоположным току электронов. Выяснилось, что существуют полупро водники с электронным типом проводимости (п-тип), для которых эффект Холла отрицателен, и полупровод ники с положительным эффектом Холла, имеющие ды рочный тип проводимости (р-тип). Первые названы донорными, вторые — акцепторными.

В конце 30-х годов XX в. трое ученых-физиков — академик АН Украины А.С. Давыдов (1912— 1993), анг лийский Н. Мотт (1905— 1996) и немецкий В. Шоттки (1886 — 1976) — независимо друг от друга предложили теорию контактных явлений, согласно которой в полу проводниках на границе дырочного и электронного типов полупроводников возникает эффективный элек тронно-дырочный барьер, препятствующий свободно му передвижению электронов и дырок. Через такую границу ток проходит только в одном направлении, а ее электрическое сопротивление зависит от величины и на правления приложенного напряжения. Если электри ческое поле приложено в прямом направлении, высота барьера уменьшается, и наоборот;

при этом неосновные носители тока (дырки в электронном полупроводнике и электроны в дырочном) играют определяющую роль.

В результате многочисленных экспериментов уда лось изготовить полупроводниковый образец, включа ющий границу перехода между двумя типами проводи мости. Так впервые был создан р-л-переход, сыгравший важнейшую роль в развитии полупроводниковой элек троники, и к сороковым годам прошлого века удалось разгадать все четыре загадки «плохих» проводников.

Первым твердотельным прибором для усиления электрического тока, способным работать в устройствах вместо незаменимой в те времена электронной лампы, стал точечный транзистор, в котором два точечных кон такта расположены в непосредственной близости друг от друга на верхней поверхности небольшой пластинки кремния л-типа. В конце 1947 г. был испытан первый транзистор. Он позволял усиливать сигнал вплоть до верхней границы звуковых частот более чем в сто раз.

В 1956 г. за разработку транзисторов американские физики Д. Бардин (1908- 1991), У. Браттейн (1902- 1987) и У. Шокли (1910— 1989) получили Нобелевскую премию.

Истоки современной микроэлектроиной технологии.

Совершенствование различных полупроводниковых при боров способствовало развитию микроэлектронных тех нологий, позволивших создать не только превосходные по качеству и надежности транзисторы, но и интегральные схемы, а затем большие и сверхбольшие интегральные схемы, на базе которых производится разнообразная элек тронная техника, включая современную аудио- и видео аппаратуру, быстродействующие ЭВМ и т. п.

Первое промышленное производство полупроводни ковых приборов освоено в середине 50-х годов XX в.

после разработки технологии зонной очистки для равно мерного распределения примесей в кристаллах. В 1955 г.

созданы транзисторы со сплавными и р-п-переходами, а затем — дрейфовые и сплавные с диффузией.

Самая первая модификация транзистора — бипо лярный транзистор. Он имел форму цилиндра с тремя выводами, соответственно, от эмиттера (т. е. части тран зистора, из которой поступает ток), коллектора (пункта назначения электронов) и от регулирующей части — базы. Будучи своеобразной «заслонкой», база либо спо собствовала, либо препятствовала потоку электронов, 29 С. X. Карпенков — КСЕ Ч а с т ь IV. ЕСТЕСТВЕННО НАУЧНЫЕ ОСНОВЫ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ, ЭНЕРГЕТИКИ I! ЭКОЛОГИИ В 1957 г. американский инженер Г. Кремер изобрел и запатентовал гстероструктурный транзистор, состоя щий из нескольких слоев полупроводникового матери ала— соединения галлия с различными присадками.

Такой транзистор отличался от биполярного гораздо более высоким быстродействием. Позднее тот же автор предложил идею гетероструктурного лазера. Одновре менно и независимо от Г. Кремера подобную идею запа тентовали российские ученые Ж. Алферов и Р. Казари нов из Физико-технического института им. А.Ф. Иоффе.

В 1970 г. в этом же институте был создан гетерострук турный лазер, способный (в отличие от его аналогов) непрерывно работать при комнатной температуре.

В 1958 г. американский инженер Д. Килби пред ложил конструкцию микросхемы, в которой весь на бор электронных элементов из слоев различных ма териалов располагался на одной пластине из герма ния. Эта конструкция оказалась основополагающей для изготовления интегральных схем с многослой ной структурой, включающей множество транзис торов и других элементов на одной пластине, изго тавливаемых с применением тонкопленочной груп повой технологии. Интегральные схемы составляют техническую базу информационных технологий. За их разработку ученые Ж. Алферов, Г. Кремер и Д. Килби удостоены Нобелевской премии по физи ке 2000 г.

По мере освоения тонкопленочной технологии осаждались тонкие пленки не только полупровод никовых, но и других материалов: диэлектриков, магнетиков и т. д. Особенно широко развернулась тонкопленочная индустрия тонких ферромагнитных пленок, позволившая создать многие высокочув ствительные преобразователи и приборы. В нашей стране напыление тонких магнитных пленок и их эк спериментальное исследование впервые производи лись в начале 60-х годов XX в. на физическом факуль тете МГУ им. М.В. Ломоносова в лаборатории изве стного магнитолога Р.В. Телеснина (1905— 1985). Эти первые работы послужили активным началом для многих перспективных направлений исследования физических свойств тонкопленочных ферромагнит ных материалов.

При создании современной электронной аппара туры различного назначения — от аудио- и видеоап паратуры до сложнейших компьютерных, космичес ких и других систем — возникают непростые задачи измерений и контроля. Для их решения российские ученые С.Х. Карпенков и Н.И. Яковлев предложили магниторезистивные методы измерений, на основании которых созданы принципиально новые высокочувстви тельные преобразователи и приборы, позволяющие из мерять магнитные параметры образцов толщиной до 0,01 мкм и массой менее 0,01 мг, контролировать биото ки в живых тканях и регистрировать сверхбольшие токи — до 300 000 А. За эту работу С.Х. Карпенков и Н.И. Яковлев удостоены Государственной премии Рос сийской федерации в области науки и техники 1998 г.

Дальнейшая модернизация различных микроэлек тронных средств связана с освоением и внедрением нанотехнологий.

Развитие нанотехнологий. В результате совершен ствования тонкопленочной технологии в течение пос ледних десятилетий удавалось размещать все большее число элементов на меньшей площади кристалла-под ложки интегральной схемы, т. е. постоянно повышать степень интеграции. Еще в I960 г., вскоре после изоб ретения микросхемы, американский инженер Гордон Мур предсказал темп роста числа компонентов интег ральной схемы, сформулировав закономерность: чис ло элементов интегральной схемы будет удваивать ся каждые 1,5 года. Специалисты часто называют эту закономерность законом Мура. В течение последних сорока лет прогнозы Мура оправдывались. Например, в 1970 г. число компонентов в микросхеме модуля па 3 мяти составляло 10, а в 2000 г.— 10. Действительно, темпы роста степени интеграции впечатляют.

Известны три пути повышения степени интег рации. Первый из них связан с уменьшением то пологического размера и соответственно повыше нием плотности упаковки элементов на кристалле.

Совершенствование технологических процессов, особенно литографии, позволяло ежегодно умень шать размер элемента примерно на 11%. В настоя щее время достигнут топологический размер 0,3 — 0,5 мкм, а в ряде экспериментальных работ исполь 29* зуется топографический рисунок с еще меньшими размерами элементов. Дальнейшее уменьшение то пологических размеров требует разработки новых технологических приемов. Увеличение площади без дефектного кристалла — второй путь повышения сте пени интеграции. Однако получение таких кристал лов больших размеров — весьма сложная технологи ческая задача: наличие дефектов резко снижает процент выхода годных и увеличивает стоимость ин тегральной схемы. Третий путь заключается в опти мальной компоновке элементов.

Тенденция к усложнению интегральных схем — от больших (БИС) в 70-х годах до ультрабольших (УБИС) в 90-х годах XX в. и гигантских (ГИС) после 2000 г.— выражается прежде всего в увеличении числа транзисторов на кристалле.

При разработке транзисторов открывались новые направления в полупроводниковой электронике. Одно из них связано с разработкой полевого транзистора, выполняющего функцию резистора, управляемого на пряжением. Типичный полевой транзистор имеет структуру металл-оксид-полупроводник и носит назва ние МОП-транзистор. Предполагается, что модифи цированная технология МОП-транзисторных схем будет применяться для создания гигантских интег ральных схем.

Переход к сравнительно малым размерам элемен тов требует принципиально нового подхода. С уменьше нием размеров элементов приходится отказаться от традиционных технологических операций. Так как дли на волны света препятствует миниатюризации, фотоли тография заменяется электронной, ионной и рентгено вской литографией. На смену диффузионных процес сов приходят ионная и электронно-стимулированная имплантация. Термическое испарение и отжиг матери ала вытесняются ионно-лучевой, ионно-плазменной, электронно-лучевой обработкой. Появилась возмож ность локального воздействия на поверхность полупро водникового кристалла.



Pages:     | 1 |   ...   | 9 | 10 || 12 | 13 |   ...   | 16 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.