авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 17 | 18 || 20 | 21 |   ...   | 23 |

«УЧЕБНАЯ ЛИТЕРАТУРА Для студентов медицинских институтов Физиология человека Под редакцией чл.-кор. АМН СССР Г. И. КОСИЦКОГО ИЗДАНИЕ ТРЕТЬЕ, ...»

-- [ Страница 19 ] --

Остальные цвета спектра (оранжевый, желтый, зеленый, зелено-голубой, синий) имеют промежуточные значения длины волны. Смешение лучей всех спектральных цветов дает белый цвет. Белый цвет может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение цветов, взятых из разных пар, то можно получить промежуточные цвета. В результате смешения трех основных цветов спектра — красного, зеленого и синего — мо гут быть получены любые цвета.

Теории цветоощущения. Существует ряд теорий цветоощущения;

наибольшим при знанием пользуется трехкомпонентная теория. Она утверждает существование в сетчатке трех разных типов цветовоспринимающих фоторецепторов — колбочек.

О существовании трехкомпонентного механизма восприятия цветов говорил еще М. В. Ломоносов. В дальнейшем эта теория была сформулирована в 1801 г. Т. Юнгом и затем развита Г. Гельмгольцем. Согласно этой теории, в колбочках находятся различ ные светочувствительные вещества. Одни колбочки содержат вещество, чувствительное к красному цвету, другие — зеленому, третьи — к фиолетовому. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эти возбуждения суммируются зрительными нейронами и, дойдя до коры, дают ощущение того или иного цвета.

Согласно другой теории, предложенной Э. Герингом, в колбочках сетчатки сущест вуют три гипотетических светочувствительных вещества: 1) бело-черное, 2) красно-зеле ное и 3) желто-синее. Распад этих веществ под влиянием света приводит к ощущению белого, красного или желтого цвета. Другие световые лучи вызывают синтез этих гипоте тических веществ, вследствие чего появляется ощущение черного, зеленого и синего цвета.

Наиболее веские подтверждения в электрофизиологических исследованиях получила трехкомпонентная теория цветового зрения. В экспериментах на животных с помощью микроэлектродов отводились импульсы от одиночных ганглиозных клеток сетчатки при освещении ее разными монохроматическими лучами. Оказалось, что электрическая активность в большинстве нейронов возникала при действии лучей любой длины волны в видимой части спектра. Такие элементы сетчатки названы доминаторами. В других же ганглиозных клетках (модуляторах) импульсы возникали лишь при освещении лучами только определенной длины волны. Выявлено 7 модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм.). Р. Гранит считает, что три компонента цветовосприятия, предполагавшиеся Т. Юнгом и Г. Гельмгольцем, получаются в резуль тате усреднения кривых спектральной чувствительности модуляторов, которые могут быть сгруппированы соответственно трем основным частям спектра: сине-фиолетовой, зеленой и оранжевой.

При измерении микроспектрофотометром поглощения лучей разной длины волны одиночной колбочкой оказалось, что одни колбочки максимально поглощают красно оранжевые лучи, другие — зеленые, третьи — синие лучи. Таким образом, в сетчатке выявлены три группы колбочек, каждая из которых воспринимает лучи, соответствующие одному из основных цветов спектра.

Трехкомпонентная теория цветового зрения объясняет ряд психофизиологических феноменов, например последовательные цветовые образы, и некоторые факты патологии цветовосприятия (слепота по отношению к отдельным цветам). В последние годы в сет чатке и зрительных центрах исследовано много так называемых оппонентных нейронов.

Они отличаются тем, что действие на глаз излучений в какой-то части спектра их возбуж дает, а в других частях спектра — тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете. Эти данные имеют много общего с постулиро ванными Э. Герингом процессами, однако переносят их из рецепторов в нейронные слои анализатора. Противоречие между двумя теориями цветового зрения, таким образом, снимается.

Последовательные цветовые образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую бумагу, то тот же предмет виден окрашенным в допол нительный цвет.

Согласно трехкомпонентной теории, при длительном действии лучей определенной длины волны (определенного цвета) в колбочках, которые их воспринимают, происходит расщепление соответствующего светочувствительного вещества. Поэтому, когда после этого на глаз действует белый свет, входящие в его состав лучи той длины, которые ранее действовали на глаз, соответствующими колбочками воспринимаются хуже. В ито ге возникает ощущение дополнительного цвета (из белого цвета вычитается тот, который действовал на глаз до этого).

Цветовая слепота. Отсутствие различения отдельных цветов — частичная цветовая слепота — было впервые описано в конце XVIII века физиком Д. Дальтоном, который сам страдал этим нарушением зрения. Это и послужило основанием для обозначения самой распространенной аномалии цветовосприятия термином «дальтонизм». Дальто низм встречается у 8% мужчин, возникновение его обусловлено генетическим отсутствием определенных генов в определяющей пол непарной у мужчин Х-хромосоме.

С целью диагностики дальтонизма исследуемому предлагают серию полихроматических таблиц или дают отобрать по цвету одинаковые предметы различных цветов. Диагно стика дальтонизма важна при профессиональном отборе. Люди, страдающие дальто низмом, не могут быть водителями транспорта, так как они не различают цвета свето форов.

Существуют три разновидности частичной цветовой слепоты: протанопия, дейтерано пия и тританопия. Каждая из них характеризуется отсутствием восприятия одного из трех основных цветов. Люди, страдающие протанопией («краснослепые»), не восприни мают красного цвета, сине-голубые лучи кажутся им бесцветными. Лица, страдающие дейтеранопией («зеленослепые»), не отличают зеленые цвета от темно-красных и голу бых. При тританопии — редко встречающейся аномалии цветового зрения, не воспри нимаются лучи синего и фиолетового цвета.

Все перечисленные виды частичной цветовой слепоты хорошо объясняются трех компонентной теорией. Каждый из них — ре зультат отсутствия одного из трех колбочковых цветовоспринимающих веществ. Вследствие этого у лиц, страдающих протанопией, дейтера нопией и тританопией, зрение дихроматическое, т.

е. осуществляющееся за счет сохранившихся двух фоторецепторных агентов.

Встречается и полная цветовая слепота, ах ромазия, при которой в результате поражения колбочкового аппарата сетчатки все предметы видятся человеком лишь в разных оттенках серого цвета и внешний мир представляется ему подобным бесцветным фотографиям.

Восприятие пространства Острота зрения Остротой зрения называется его макси мальная способность различать отдельные объекты. Ее определяют по наименьшему рас стоянию между двумя точками, которые глаз различает, т. е. видит отдельно, а не слитно.

Нормальный глаз различает две точки, види мые под углом в Г. Максимальную остроту'зре ния имеет желтое пятно. К периферии от него острота зрения много ниже (рис. 220).

Острота зрения измеряется при помощи специальных таблиц, которые состоят из нескольких рядов букв или незамкнутых окружностей различной величины. Против каж дой строчки стоит число, означающее то расстояние в метрах, с которого нормальный глаз должен различать фигуры этой строчки. Острота зрения, определенная по таблице, выражается обычно в относительных величинах, причем нормальная острота принимает ся за единицу.

Поле з р е н и я Если фиксировать взглядом какой-либо предмет, его изображение падает на желтое пятно, в этом случае мы видим предмет центральным зрением. Предметы, изображения которых падают на остальные места сетчатки, видимы периферическим зрением. Прост ранство, различимое глазом при фиксации взгляда в одной точке, называется полем зрения. Измерение границы поля зрения производят прибором, называемым периметром.

Границы поля зрения для бесцветных предметов составляют книзу 70°, кверху — 60°, внутрь — 60° и кнаружи — 90°. Поля зрения обоих глаз у человека отчасти совпадают, что имеет большое значение при восприятии глубины пространства.

Поля зрения для различных цветов неодинаковы, больше всего поле зрения для бес цветных предметов. Для синего и желтого цветов оно значительно меньше, для красного — еще меньше, а для зеленого простирается наружу только на 40°.

Оценка расстояния Восприятие глубины пространства и оценка расстояния до объекта возможны как при зрении одним глазом (монокулярное зрение), так и двумя глазами (бинокулярное зрение). Во втором случае оценка расстояния гораздо точнее. Некоторое значение в оцен ке близких расстояний при монокулярном зрении имеет явление аккомодации.

Для оценки расстояния имеет значение также то, что образ предмета на сетчатке будет тем больше, чем он ближе. Главное же значение в оценке расстояния и глубины рельефа имеет бинокулярное зрение.

Зрение обоими глазами При взгляде на какой-либо предмет у человека не возникает ощущения двух предме тов, хотя и имеется два изображения на двух сетчатках. При зрении обоими глазами изображения всех предметов попадают на соответственные, или идентичные, участки сет чаток и в восприятии человека эти два изображения сливаются в одно. В том, что это действительно так, легко убедиться, надавливая слегка на один глаз сбоку: немедлен но начинает двоиться в глазах, потому что нарушилось соответствие сетчаток. Если же смотреть на близкий предмет, конвергируя глаза, то изображения более отдаленной точки попадают на неидентичные точки, которые иначе называются диспаратными (от лат.

disparatus — разделенный, обособленный), поэтому изображение будет представляться раздвоенным. Диспарация играет большую роль в оценке расстояния и, следовательно, в видении глубины, рельефа. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд.

Оценка величины предмета Величина предмета оценивается как функция двух переменных: 1) величины изобра жения на сетчатке и 2) расстояния предмета от глаза. Это видно на рис. 210: АВ (вели чина предмета) целиком определяется через ab и OD. В том случае если расстояние до незнакомого предмета вследствие недостаточной его рельефности оценить трудно, то возможны грубые ошибки в определении величины предмета.

СЛУХОВОЙ АНАЛИЗАТОР Слуховой анализатор (слуховая сенсорная система) — второй по значению дис тантный анализатор человека. Слух играет крайне важную роль именно у человека в свя зи с возникновением членораздельной речи.

Слуховые рецепторы находятся в улитке внутреннего уха, которая расположена в пирамиде височной кости. Звуковые колебания передаются к ним через целую систему образований: наружный слуховой проход, барабанную перепонку, слуховые косточки, жидкость лабиринта и основную перепонку улитки. В слуховом анализаторе особенно много последовательных отделов, осуществляющих обработку сигналов на их пути от рецепторов к коре.

Функции наружного и среднего уха Наружное ухо. Наружный слуховой проход служит для проведения звуковых коле баний к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой перегородку толщиной 0,1 мм, сплетенную из волокон, идущих в различных направлениях. По своей форме она напоми нает направленную внутрь воронку. Барабанная перепонка начинает колебаться при дей ствии звуковых колебаний, проходящих через наружный слуховой проход.

Среднее ухо. Существеннейшей частью заполненного воздухом среднего уха являет ся цепь из трех косточек: молоточка, наковальни и стремечка, которая передает колеба ния барабанной перепонки внутреннему уху. Одна из этих косточек — молоточек — впле тена, рукояткой в барабанную перепонку: другая сторона молоточка сочленена с нако вальней, передающей свои колебания стремечку.

Колебания барабанной перепонки передаются более длинному плечу рычага, образо ванного рукояткой молоточка и отростком наковальни, поэтому стремечко получает их уменьшенными в амплитуде, но зато увеличенными в силе. Поверхность стремечка, при легающая к мембране овального окна, равна 3,2 мм2 (по системе СИ — 3,2-10-6 м2).

Поверхность барабанной перепонки составляет 70 мм2 (7-10-5 м2). Отношение поверхности стремечка и барабанной перепонки равно 1:22, что во столько же раз усиливает давление звуковых волн на мембрану овального окна. Это обстоятельство имеет важное значение, так как даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна и привести в движение столб жидкости в улитке, В стенке, отделяющей среднее ухо от внутреннего, кроме овального, существует еще круглое окно, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у ова льного окна и прошедшие по ходам улитки, достигают, не затухая, круглого окна. Если бы этого окна с мембраной не было, из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе расположены две мышцы: m. tensor tympani и т. stapedius. Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремя и тем самым ограничивает его движения. Сокращение этих мыщц изменяется при разной амплитуде звуковых колебаний и тем самым автоматически регулирует звуковую энергию, посту пающую через слуховые косточки во внутреннее ухо, предохраняя его от чрезмерных колебаний и разрушения. Сокращение обеих мышц среднего уха возникает рефлекторно уже через 10 мс (по системе СИ—1*10 -2 с) после действия на ухо сильных звуков.

Дуга этого рефлекса замыкается на уровне стволовых отделов мозга. При мгновенных сильных раздражениях (удары, взрывы и т.д.) этот защитный механизм не успевает срабатывать (отсюда профессиональная глухота котельщиков, которые в соответствии с прежней технологией должны были производить удары молотком по стенке полого желез ного котла, находясь внутри него).

Благодаря слуховой евстахиевой трубе, соединяющей барабанную полость с носо глоткой, давление в этой полости равно атмосферному, что создает наиболее благоприят ные условия для колебаний барабанной перепонки.

Костная передача звуков. Кроме воздушной передачи звука через барабанную пере понку и слуховые косточки, возможна передача через кости черепа. Если поставить ножку камертона на темя или сосцевидный отросток, звук будет слышен даже при закрытом слуховом проходе. Звучащее тело вызывает колебания костей черепа, которые вовлекают в колебание слуховой рецепторный аппарат.

Внутреннее ухо и восприятие звуков Во внутреннем ухе, кроме преддверия и полукружных каналов (вестибулярный рецепторный аппарат), находится улитка, где расположены рецепторы, воспринимающие звуковые колебания.

Строение улитки. Улитка представляет собой костный спиральный, постепенно рас ширяющийся канал, образующий у человека 2,5 витка. Диаметр костного канала у осно вания улитки 0,04 мм ( 4 - 1 0 -5 м ), а на вершине ее — 0,5 мм ( 5 - 1 0 -4 м). По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: более тонкой — вестибулярной мембраной (мембрана Рейснера) и более плотной и упругой — основной мембраной. На вершине улитки обе эти мембраны соединяются и в них имеется отверстие — геликотрема (helicotrema). Вестибулярная и основная мембраны разделяют костный канал улитки на три узких хода: верхний, средний и нижний (рис. 221 ).

Верхний канал улитки, или вестибулярная лестница (scala vestibuli), берет начало от овального окна и продолжается до вершины улитки, где он через отверстие сообщается с нижним каналом улитки — барабанной лестницей (scala tympani), которая начинается в области круглого окна. Сообщающиеся через геликотрему верхний и нижний каналы представляют собой как бы единый канал, начинающийся овальным и заканчивающийся круглым окном. Верхний и нижний каналы улитки заполнены перилимфой, напоминаю щей по составу спинномозговую жидкость. Перилимфа каналов отделена от воздушной полости среднего уха мембранами овального и круглого окон.

Между верхним и нижним каналами, т.е. между вестибулярной и основной мембра ной, проходит средний — перепончатый канал (scala media). Полость этого канала не сообщается с полостью других каналов улитки и заполнена эндолимфой. Эндолимфа продуцируется специальным сосудистым образованием (stria vascularis), которое нахо дится на наружной стенке перепончатого канала. Состав эндолимфы отличается от сос тава перилимфы примерно в 100 раз большим содержанием ионов калия и в 10 раз меньшим содержанием ионов натрия. Поэтому эндолимфа заряжена положительно по отношению к перилимфе.

Внутри среднего канала улитки на основной мембране расположен звуковосири нимающий аппарат — спиральный (кортиев) орган, содержащий рецепторные волоско вые клетки. Эти клетки трансформируют механические колебания в электрические потен циалы, в результате чего возбуждаются волокна слухового нерва.

Передача звуковых колебаний по каналам улитки. Звуковые колебания передаются стремечком на мембрану овального окна и вызывают колебания перилимфы в верхнем и нижнем каналах улитки. Колебания перилимфы доходят до круглого окна и приводят к смещению мембраны круглого окна наружу в полость среднего уха.

Вестибулярная мембрана очень тонка, поэтому жидкость в верхнем и среднем кана лах колеблется так, как будто она не разделена мембраной и оба канала являются единым общим каналом.

Упругим элементом, отделяющим этот как бы общий верхний канал от нижнего, является основная мембрана. Звуковые колебания, распространяющиеся по перилимфе и эндолимфе верхнего и среднего каналов по типу бегущей волны, приводят в движение эту мембрану и через нее могут передаваться на перилимфу нижнего канала.

Расположение и структура рецепторных клеток спирального (кортиевого) органа.

На основной мембране расположены два вида рецепторных волосковых клеток: внут ренние и наружные, отделенные друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд;

общее число их по всей длине перепончатого канала достигает 3500. Наружные волосковые клетки располага ются в 3—4 ряда;

общее число их составляет 12 000—20 000. Каждая волосковая клетка имеет удлиненную форму. Один полюс клетки фиксирован на основной мембране;

второй ее полюс находится в полости перепончатого канала улитки. На конце этого полюса рецепторной клетки имеются волоски: их число на каждой внутренней клетке составляет 30—40 и они очень короткие — 4—5 мкм (4—5-10-6 м);

на каждой наружной клетке число волосков достигает 65—120, они тоньше и длиннее. Волоски рецепторных клеток омыва ются эндолимфой и контактируют с покровной пластинкой, или текториальной мембра ной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

При действии звуков основная мембрана начинает колебаться, волоски рецепторных клеток касаются текториальной мембраны и деформируются. Это вызывает генерацию электрических потенциалов, а затем через синапсы — возбуждение волокон слухового нерва.

Электрические явления в улитке. При отведении электрических потенциалов от разных частей улитки исследователи обнаружили 5 различных электрических феноме нов. Два из них — мембранный потенциал слуховой рецепторной клетки и потенциал эндолимфы — не обусловлены действием звука (они наблюдаются и при отсутствии звуковых раздражений). Три электрических явления — микрофонный потенциал улитки, суммационный потенциал и потенциалы слухового нерва — возникают под влиянием звуковых раздражений (рис. 222).

Мембранный потенциал слуховой рецепторной клетки регистрируется при введении в нее микроэлектрода. Так же как и в других нервных или рецепторных клетках, внутрен няя поверхность мембран слуховых рецепторов заряжена отрицательно (—80 мВ). Так как волоски слуховых рецепторных клеток омываются положительно заряженной эндолимфой (+80 мВ), то между внутренней и наружной поверхностью их мембраны разность потенциалов достигает 160 мВ (80+80 мВ). Значение столь большой разности потенциалов состоит в том, что она резко облегчает восприятие слабых звуковых ко лебаний.

Потенциал эндолимфы, регистрируемый при введении одного электрода в перепон чатый канал, а другого — в область круглого окна, обусловлен деятельностью сосуди стого сплетения (stria vascularis) и зависит от интенсивности окислительных процессов.

При нарушениях дыхания или подавлении тканевых окислительных процессов циани дами потенциал эндолимфы падает или даже исчезает.

Если ввести в улитку электроды, соединить их с усилителем и громкоговорителем и воздействовать звуком, то громкоговоритель точно воспроизводит этот звук. Описы ваемое явление получило название микрофонного эффекта улитки, а регистрируемый электрический потенциал назван кохлеарным микрофонным потенциалом. Доказано, что он генерируется на мембране волосковой клетки в результате деформации волосков.

Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда этих потенциалов в определенных границах пропорциональна интенсивности звука, действующего на ухо.

В ответ на сильные звуки большой частоты (высокие тона) отмечают стойкий сдвиг исходной разности потенциалов. Это явление получило название суммационного потен Рис. 222. Электрические явления в улитке.

Ре акци и, рег истрир уе мые с круг ло го о кна у лит ки ( ни жн ие кр ив ые ) в от ве т н а зву к ( в ерхн ие к ри в ые ) :

тон 300 Гц ( 1 ), т о н 1000 Гц ( 2 ), щелчок ( 3 ), тональную посылку 21 кГц ( 4 ).

М — микрофонный потенциал;

Н — нервный компонент (суммарный синхронизированный ответ волокон слухового нерв а);

4 — су ммационный потенциа л.

циала. Различают положительный и отрица тельный суммационные потенциалы. Их ве личины пропорциональны интенсивности звукового давления и прижатия волосков рецепторных клеток покровной мембраной.

Микрофонный и суммационный потенциал рассматривают как рецепторные потенциалы волосковых клеток. Имеются указания, что отрицательный суммационный потенциал связан с внутренними, а микрофонный и положительный суммационные потенциалы — с наружными волосковыми клетками.

И наконец, в результате возникновения в волосковых клетках при действии на них звуковых колебаний микрофонного и суммационного потенциалов происходит импульс ное возбуждение волокон слухового нерва (рис. 223). Передача возбуждения с волоско вой клетки на нервное волокно происходит, по-видимому, как электрическим, так и хими ческим путем.

Электрическая активность путей и центров слухового анализатора Для волокон слухового нерва даже в тишине характерна сравнительно высокая частота спонтанных разрядов (фоновой импульсации) —до 100 имп/с. При звуковом раздражении частота импульсации в волокнах нарастает в течение всего времени, пока действует звук. Степень учащения разрядов различна у разных волокон и связана с интенсивностью воздействия. Для каждого волокна слухового нерва может быть найдена так называемая оптимальная частота звука, дающая наибольшую частоту разрядов и наиболее низкий порог реакции. Эта оптимальная частота определяется местом на основной мембране, где расположены рецепторы, связанные с данным волок ном. Таким образом, частотная избирательность волокон слухового нерва отражает пространственное кодирование информации в улитке, определяемое ее конструкцией.

Рисунок возбуждения нейронов центральных отделов слухового анализатора весьма разно образен. Наиболее часто здесь встречаются клетки, возбуждение которых длится в течение всего времени действия стимулов, несколько снижаясь по частоте. Реже, чем в зрительном анализаторе, на низких уровнях в слуховом анализаторе встречаются нейроны, отвечающие лишь на включение и выключение звука или резкие перепады его интенсивности (on-, off-, on — off-типа). На более высоких уровнях слухового анализатора процент таких нейронов возрастает. В слуховой зоне коры имеется много нейронов, вызванные разряды которых длятся десятки секунд после прекращения звука.

На каждом из уровней слухового анализатора с помощью макроэлектродов могут быть зареги стрированы характерные по форме вызванные потенциалы, отражающие синхронизированные реакции больших групп нейронов и волокон (рис. 224).

Рис. 223. Импульсация волокон слухового нерва.

Схематическая иллюстрация принципа залпов (по Шварцкопфу).

а — звуковой сигнал;

б — и — реакции отдельных волокон;

к — суммарная реакция этих волокон, повто ряющая частоту звука.

Рис. 224. Вызванные потенциалы разных уровней слуховой системы.

Суммарные ответы на звуковой щелчок в слуховом нерве (СН), кохлеарных ядрах (КЯ), верхней оливе (ВО), латеральной петле (ЛП), задних холмах четверохолмия (ЗХ), внутреннем коленчатом теле (ВКТ) и слуховой коре (СК). Отметка времени — 5 мс слева и 20 мс справа.

Анализ частоты звуков (высоты тонов) Звуковые колебания вовлекают в колебательный процесс перилимфу верхнего и нижнего каналов улитки на всем их протяжении неодинаково. Колебательная реакция основной мембраны, передаваемая на эндолимфу, имеет характер бегущей волны, а локализация амплитудного максимума этой волны на мембране зависит от частоты звука. Таким образом, в процесс возбуждения вовлекаются разные клетки спирального (кортиева) органа, примыкающие к основной мембране.

Существенное значение для восприятия звуков разной частоты локализации рецеп торных клеток спирального органа, вовлекаемых в возбуждение, доказывается, в част ности, и поведенческими экспериментами. Если повредить у собаки завиток улитки у ее основания, то исчезают ранее выработанные условные рефлексы, на высокие тона;

если же повреждение нанести в области вершины улитки, исчезают условные рефлексы на низкие тона;

разрушение только среднего завитка улитки вызывает выпадение тонов средней частоты диапазона. Раздельное пространственное представительство зон, возбуждаемых при действии звуков разной частоты, подтверждается электрофизиоло гическими методами (вызванные потенциалы, нейронная активность) на всех уровнях слухового анализатора.

Для сравнительно низких частот возможен анализ высоты тона за счет реакции группы волокон слухового нерва, повторяющей частоту действия раздражителя. Это означает, что существуют два сочетающихся механизма различения высоты тонов. При действии высоких тонов происходит лишь пространственное кодирование, основанное на неодинаковом расположении возбужденных реценторных клеток на основной мем бране. При низких и средних тонах осуществляется и временное кодирование, когда информация передается по определенным группам волокон слухового нерва в виде импульсов, частота которых соответствует частоте воспринимаемых улиткой звуковых колебаний.

Основным отражением частотной настройки отдельных нейронов на всех уровнях слуховой системы является наличие у них так называемых частотно-пороговых показа телей. Эти показатели отражают зависимость пороговой интенсивности звука, необходи мой для возбуждения клетки, от его частоты. В обе стороны по диапазону частот от оптимальной, или характеристической, частоты порог реакции нейрона резко возрастает.

Таким образом, элемент оказывается «настроенным» на выделение из всей совокупности звуков лишь определенного, достаточно узкого участка частотного диапазона. Частотно пороговые кривые разных клеток перекрывают весь частотный диапазон слышимых звуков. Форма этих кривых у многих нейронов высших слуховых центров значительно усложняется.

Анализ силы звуков (интенсивности звучания) Сила звука кодируется числом возбужденных нейронов и частотой их импульсации.

Увеличение числа возбужденных нейронов при действии все более громких звуков связано с тем, что нейроны слухового анализатора резко отличаются друг от друга по уровню возбудимости (порогам реакций). При слабых раздражителях в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении стимулов возбуждается все большее количество дополнительных нейронов. Кроме того, сами пороги возбуждения внутренних и наружных рецепторных клеток спирального органа неодинаковы. Возбуждение внутренних волосковых клеток возникает при боль шей силе звукового раздражения. Поэтому в зависимости от интенсивности звукового раздражения изменяется соотношение числа возбужденных внутренних и наружных волосковых клеток.

Звуковые ощущения Тональность (частота) звука. Человек может воспринимать звуки с частотой коле бания от 16 до 20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже;

старики часто не слышат высоких тонов (например, звука, издаваемого сверчком). У многих животных верхняя граница слуха лежит значительно выше: у собаки, например, удается получить условные рефлексы на очень высокие, неслышимые человеком звуки. Различе ние частоты звука характеризуется тем минимальным различием по частоте двух звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1—2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.

Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютной слуховой чувствитель ностью. Установлено, что пороги слышимости сильно изменяются в зависимости от частоты звука.

В области частот от 1000 до 4000 Гц слух человека обладает максимальной чувстви тельностью. В этих пределах слышен звук, имеющий ничтожную энергию порядка 1*10-12 Вт/м2 ( 1 * 1 0 -9 эрг/с-см2). При звуках ниже 1000 и выше 4000 Гц чувствитель- ' ность резко уменьшается: например, при 20 и при 20 000 Гц пороговая энергия звука должна быть около 1*10 -3 Вт/м2 (1 эрг/с-см3 ) (нижняя кривая AEFGD на рис. 225).

При увеличении силы звука неизменной частоты можно дойти до такой силы, когда звук вызывает неприятное ощущение давления и даже боли в ухе. Звуки такой силы Рис. 225. Область звукового вос приятия человека.

Зависимость пороговой интенсивности звука (ось ординат — звуковое давле ние в дин/см2) от частоты тональных звуков (ось абсцисс в Г ц ). Линия AEFGD абсолютные пороги, ABCD пороги болевого опущения от громких звуков.

дадут, очевидно, верхний предел слышимости (кривая ABCD на рис. 225) и ограничат область слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых по частоте и интенсивности распределяются звуки речи.

Громкость звука. Кажущуюся громкость звука следует отличать от его физической силы. Ощущение громкости не идет строго параллельно нарастанию интенсивности звучания. Единицей громкости звука является бел. Эта единица представляет собой десятичный логарифм отношения действующей интенсивности звука I к пороговой его интенсивности I0. В практике обычно используется в качестве единицы громкости де цибел (дБ), т. е. 0,1 бела, иначе говоря, 10 lg 10 I/Io.

Нарастание ощущения громкости при усилении звука различно в зависимости от его частоты. В среднем диапазоне слышимых частот (1000 Гц) человек замечает изменение интенсивности всего на 0,59 дБ (5,9• 10-2 Б), а на краях шкалы дифференци альный порог по громкости доходит до 3 дБ (0,3 Б ). Максимальный уровень громкости, когда звук вызывает болевое ощущение, равняется 130—140 дБ над порогом слыши мости человека. Таким образом, громкость звучания определяется сложным взаимодей ствием таких его показателей, как интенсивность (сила) и высота тона (частота).

Адаптация. Если на ухо долго действует тот или иной звук, то чувствительность слуха падает. Степень этого снижения чувствительности (адаптация) зависит от дли тельности, силы звука и его частоты.

Механизмы адаптации в слуховом анализаторе изучены далеко не полностью.

Известно, что сокращения m. tensor tympani и т. stapedius могут изменять интенсив ность звуковой энергии, передающейся на улитку. Кроме того, раздражение определен ных точек ретикулярной формации среднего мозга приводит к угнетению вызванной звуком электрической активности кохлеарного ядра и слуховой зоны коры. Анатоми ческим образованием, через которое может опосредоваться это влияние на рецепторы, являются волокна, направляющиеся от ретикулярной формации к улитке и слуховым передаточным нейронам.

Бинауральный слух. Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинаураль ный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологиче ской основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удаленности звука от организма связана с ослаб лением звука и изменением его тембра.

Бинауральный эффект часто изучают путем раздельной стимуляции правого и левого уха через - наушники. При этом задержка между звуками уже в 1*10 с ( 1 1 мкс) или различие в интенсив ности двух звуков на 1 дБ. приводит к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. На уровне задних холмов четверохолмия и в вышерасположенных отделах слухового анализатора найдены нейроны с острой специфической настройкой па определенный ограниченный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.

ВЕСТИБУЛЯРНЫЙ АНАЛИЗАТОР Вестибулярная сенсорная система играет наряду со зрительным и кинестетическим анализаторами ведущую роль в пространственной ориентировке человека. Она передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярного анализатора не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает- сохра нение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.

Периферическим отделом вестибулярного анализатора является вестибулярный аппарат, находящийся в лабиринте пирамиды височной кости. Он состоит из преддверия (vestibulum) и трех полукружных каналов (canales semicircularis). Кроме вестибуляр ного аппарата в лабиринт входит улитка, в которой располагаются слуховые рецепторы.

Полукружные каналы (рис. 226) располагаются в трех взаимно перпендикулярных плоскостях: верхний — во фронтальной, задний — в сагиттальной и наружный — в горизонтальной. Один из концов каждого канала расширен (ампула). Вестибулярный аппарат включает в себя также два мешочка: saccu lus и utrieulus. Первый из них лежит ближе к улитке, а второй — к полукружным каналам. В мешочках преддверия находится отолитовый аппарат: скопле ния рецепторных клеток (вторичночувствующие ме ханорецепторы) на возвышениях или пятнах (macula sacculi;

macula u tr i cu l i). Выступающая в полость мешочка часть рецепторной клетки оканчивается од ним более длинным подвижным волоском и 60— склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция — отолиты. Возбуж дение волосковых клеток преддверия происходит вследствие скольжения отолитовой мембраны по во лоскам, т. е. их сгибания (а не растяжения или сжа тия, как считали раньше) (рис. 227).

В перепончатых полукружных каналах,,повто ряющих форму костных каналов, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2—3 раза больше, чем у воды), рецепторные волос ковые клетки сконцентрированы только в ампулах в виде крист (cristae ampularis). Они также снабжены волосками. При движении эндолимфы (во время Рис. 226. Строение лабиринта височ- угловых ускорений), когда волоски сгибаются в одну ной кости ( с х е м а ). сторону, волосковые клетки возбуждаются, а при 1, 2, 3 - по лу к ру ж н ые к а н а льц ы, 4 противоположно направленном движении — тормозятся.

ампулы каналов;

5, 6 преддверие ко торое разделяется на два мешочка 7 — В волосковых клетках и преддверия, и ампулы при их сгибании генерируется рецепторный потен улитка.

Рис. 227. Строение отолитового аппарата.

1 —отолиты;

2 — отолитовая мембрана;

3 — волоски рецепторных клеток;

4- рецепторные клетки;

5 — опорные клетки;

(i - нернные волокна.

циал, который через синапсы (посредством выделения ацетилхолина) передает сигналы о раздражении волосковых клеток окончаниям волокон вестибулярного нерва.

Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают на нейроны бульварного вестибулярного комплекса (ядра: преддверное верхнее Бехтерева, пред дверное латеральное Дейтерса, Швальбе и др.). Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и вегетативные ганглии.

Даже в полном покое в вестибулярном нерве регистрируется спонтанная импуль сация. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при поворотах в другую сторону (детекция направления движения). Реже частота разрядов повышается или, наоборот, тормозится при любом движении. Две трети волокон обнаруживают эффект адаптации (уменьшение частоты -разрядов) во время действия углового ускорения.

Нейроны вестибулярных ядер обладают способностью реагировать и на изменение положения конечностей, повороты тела, сигналы от внутренних органов, т. е. осущест влять синтез информации, поступающей из разных источников. При этом они обеспе чивают контроль и управление различными двигательными реакциями.

Важнейшие из этих реакций вестибулоспинальные, вестибуловегетативные и вести булоглазодвигательные. Вестибулоспинальные влияния через вестибуло-, ретикуло и руброспинальные тракты обеспечивают изменения импульсации нейронов сегментар ных уровней спинного мозга. Таким образом осуществляются динамическое перераспре деление тонуса скелетной мускулатуры и рефлекторные реакции, необходимые для сохранения равновесия. Мозжечок при этом ответствен за фазический характер этих реакций: после его удаления вестибулоспинальные влияния становятся по преимуществу тоническими. Вовремя произвольных движений вестибулярные влияния на спинной мозг ослабляются.

В вестибуловегетативные реакции вовлекаются сердечно-сосудистая система, желудочно-кишечный тракт и другие органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названный болезнью движения (примером которой может служить морская болезнь). Последняя проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением движения желудка, головокружением, тошно той и рвотой. Повышенная склонность к болезни движения может быть уменьшена специальной тренировкой (вращение, качели) и применением ряда лек арственных средств.

Вести було глазод ви г ат ельны е р еф лек сы (глазной ни стаг м) со сто ят в ри т миче ском медленном движении глаз в противоположную вращению сторону, сменяющемся скачком глаз обратно. Само возникновение и характеристика вращательного глазного нистагма — важные показатели состояния вестибулярной системы и широко исполь зуются в авиационной, морской и космической медицине, а также в эксперименте и клинике.

Интересно, что при переходе от земных условий, когда отолитовый аппарат посто янно возбуждается ускорением силы тяжести, к условиям орбитальных полетов, харак теризующихся невесомостью, деятельность отолитовых рецепторов изменяется: вначале (до 70 ч) их активность резко снижается, а затем увеличивается и лишь к 5 суткам возвращается к норме (адаптация). Это было выявлено путем регистрации импульсов в отдельных веточках вестибулярного нерва лягушек, запущенных в космос на специаль ном биоспутнике.

В коре больших полушарий мозга обезьян основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. В моторной коре кпереди от нижней части центральной борозды обнаружена вторая вестибулярная зона. Исследование этих проекций осуществляется экспериментально путем электрического раздражения вестибуляр ного нерва и регистрации вызванных потенциалов в разных отделах мозга. Выяснено, что есть два основных пути поступления вестибулярных сигналов в кору обезьян: прямой — через дорсо медиальную часть вентрального постлатерального ядра (VPL) и непрямой вестибуло-церебело таламический путь через медиальную часть вентролатерального ядра (VL).

Локализация вестибулярной зоны коры человека окончательно не выяснена.

Вестибулярный анализатор помогает организму ориентироваться в пространстве при активном движении животного и при пассивном переносе с места на место с завязан ными глазами. При этом лабиринтный аппарат с помощью корковых отделов системы анализирует и запоминает направление движения, повороты и пройденное расстояние.

Следует подчеркнуть, что в нормальных условиях пространственная ориентировка обеспечивается совместной деятельностью зрительной и вестибулярной сенсорных систем.

Чувствительность вестибулярного анализатора здорового человека весьма высока: отолито вый аппарат позволяет воспринять ускорение прямолинейного движения, равное всего 2 см/с2.

Порог различения наклона головы в сторону — всего около 1°, а вперед и назад — 1,5—2°. Рецеп торная система полукружных каналов позволяет человеку замечать ускорения вращения в 2— 3° в 1 с2.

СОМАТОСЕНСОРНЫЙ АНАЛИЗАТОР В соматосенсорную анализаторную систему включают систему кожной чувстви т ель но ст и и чу вст вит ельну ю си ст ему ск елет но-мы шеч ного ап п ар ат а, г лавн ая ро ль в которой принадлежит проприорецепции.

Кожная рецепция Кожные рецепторы. Рецепторная поверхность кожной чувствительной системы огромна — от 1,4 до 2,1 м 2. В коже сосредоточено большое количество чувствительных к прикосновению, давлению, вибрации, теплу и холоду, а также к болевым раздражениям нервных окончаний. Они весьма различны по структуре (рис. 228), локализуются на Рис. 228. Виды кожных рецепторов.

I — пластинчатое тельце (Фатера — Начини);

2 — осязательное (Мейсснера) тельце;

3 — нервное сплетение в волосяном мешочке;

4 — луковица (колба Краузе);

5 - нервное сплетение в роговой оболочке;

Н нервное волокно.

разной глубине кожи и распределены неравномерно по ее поверхности. Больше всего их в коже пальцев рук, ладоней, подошв, губ и половых органов.

У человека в коже с волосяным покровом (90 % всей кожной поверхности) основ ным типом рецепторов являются свободные нервные окончания ветвящихся нервных волокон, идущих вдоль мелких сосудов, а также более глубоко локализованные раз ветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность волос к прикосновению. Рецепторами прикос новения считают также осязательные мениски (диски Меркеля), образованные в нижней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук.

В коже, лишенной волосяного покрова, в сосочковом слое дермы пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках груди находят много осяза тельных телец (телец Мейсснера). Тельце это имеет конусовидную форму, сложное внутреннее строение и покрыто капсулой. Другими инкапсулированными нервными окончаниями, но более глубоко расположенными являются пластинчатые тельца, или тельца Пачини (рецепторы давления и вибрации). Их находят также в сухожилиях, связках, брыжейке.

Теории кожной чувствительности многочисленны и во многом противоречивы. Одной из наиболее распространенных является теория о наличии специфических рецепторов для 4 основных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой.

Согласно этой теории, в основе разного характера кожных ощущений лежат разли чия в пространственном и временном распределении импульсов в афферентных волокнах, возбуждаемых при разных видах кожных раздражений. Исследования электрической активности одиночных нервных окончаний и волокон свидетельствуют о том, что многие из них воспринимают лишь механические или температурные стимулы.

Возбуждение кожных рецепторов возникает следующим образом. Механический стимул приводит к деформации мембраны рецептора. В результате этого процесса электрическое сопротивление мембраны уменьшается, увеличивается ее проницаемость для ионов Na+. Появляется ионный ток, приводящий к генерации рецепторного по тенциала.

При достижении рецепторным потенциалом критического уровня деполяризации генерируются импульсы, распространяющиеся по волокну в ЦНС.

Адаптация кожных рецепторов. По скорости адаптации при длящемся действии раздражителя большинство кожных рецепторов может быть разделено на быстро- и медленноадаптирующиеся. Наиболее быстро адаптируются тактильные рецепторы, расположенные в волосяных фолликулах, а также пластинчатые тельца. Большую роль в этом играет капсула тельца: ее удаление приводит к значительному снижению адапта ционного процесса (удлинению рецепторного потенциала), так как капсула хорошо проводит быстрые и гасит медленные изменения давления. Именно поэтому пластинчатое тельце работает как рецептор, реагирующий на вибрации в диапазоне 40—1000 Гц с максимальной чувствительностью при 300 Гц. Адаптация кожных механорецепторов приводит к тому, что мы перестаем ощущать постоянное давление одежды или, напри мер, привыкаем носить на роговице глаз контактные линзы.

Тактильная рецепция. Ощущение прикосновения и давления на кожу довольно точно локализуется, т. е. относится человеком к определенному участку кожной поверх ности. Эта локализация вырабатывается и закрепляется в онтогенезе при участии зрения и проприоцепции. Абсолютная тактильная чувствительность существенно различается в разных частях кожи: от 50 мг до 10 г. Пространственное различение на кожной поверхности, т. е. способность человека раздельно воспринимать прикосновение к двум соседним точкам кожи, также сильно отличается в разных ее участках. На слизистой языка порог пространственного различия равен 0,5 мм (5-10-4 м ), а на коже спины — более мм ( 6 - 10-2 м). Эти отличия связаны главным образом с различными размерами кожных рецептивных полей (от 0,5 мм2 до 3 см2) и со степенью их перекрытия.

Температурная рецепция. Температура тела человека характеризуется значитель ным постоянством и поэтому информация о температуре внешней среды, необходимая для деятельности механизмов терморегуляции, имеет особо важное значение. Терморе цепторы располагаются в коже, на роговице глаза, в слизистых оболочках, а также в ЦНС — в гипоталамусе. Они делятся на два вида: тепловые (их намного меньше и в коже они лежат глубже) и холодовые. Больше всего терморецепторов в коже лица и шеи. Гистологически тип терморецепторов до конца не выяснен, полагают, что ими могут быть немиелинизированные окончания дендритов афферентных нейронов.

Терморецепторы можно разделить на специфические и неспецифические. Первые возбуждаются лишь температурными воздействиями, вторые отвечают и на механиче ское раздражение. Большинство терморецепторов име.ет локальные рецептивные поля и реагирует повышением частоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Повышение частоты импульсации происходит пропорционально изменению температуры, причем постоянная частота у тепловых рецепторов наблюдается в диапазоне от 20 до 50 °С, а у Холодовых — от 10 до 41 °С. Дифференциальная чувстви тельность терморецепторов велика: достаточно изменить температуру на 0,2 °С, чтобы вызвать длительные изменения их импульсации.

В определенных условиях холодовые оецепторы могут быть возбуждены и теплом (выше 45 °С). Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ванну.

В настоящее время считают, что наиболее важным фактором, определяющим актив ность терморецепторов, связанных с ними центральных структур и ощущения человека, является абсолютное значение температуры, а не ее изменения. В то же время интенсив ность в начале температурных ощущений зависит от разницы температуры кожи и температуры действующего на нее раздражителя, его площади и места приложения.

Так, в первый момент кажется холодной вода температуры 25 °С, если до этого руку держали в воде температуры 27 °С. Аналогичное ощущение возникает в первый момент при переносе руки из воды, нагретой до 34 °С в воду температуры 31 °С. Однако уже через несколько секунд становится возможной истинная оценка абсолютной тем пературы.

Болевая рецепция Болевая, или ноцицептивная, чувствительность имеет особое значение для выжи вания организма, так как сигнализирует об опасности при действии любых чрезмерно сильных и вредных агентов. В симптомокомплексе многих заболеваний боль — одно из первых, а иногда и единственное проявление патологии и важный индикатор в диаг ностике. Однако корреляция между степенью болевых ощущений и тяжестью патологи ческого процесса отмечается не всегда. Несмотря на интенсивные исследования, до сих пор не удается решить вопрос о существовании специфических болевых рецепторов и адекватных им болевых раздражителей.


Сформулированы две гипотезы об организации болевого восприятия: 1) сущест вуют специфические болевые рецепторы (свободные нервные окончания с высоким порогом реакции);

2) специфических болевых рецепторов не существует и боль возни кает при сверхсильном раздражении любых рецепторов. В электрофизиологических опытах на одиночных нервных волокнах группы С обнаружено, что некоторые из них реагируют преимущественно на чрезмерные механические, а другие — на чрезмерные тепловые действия. При болевых раздражениях небольшие по амплитуде импульсы возникают также в волокнах группы А. Соответственно разной скорости проведения импульсов в волокнах групп С и А отмечается двойное ощущение боли: вначале четкое по локализации и короткое, а затем — более длительное, разлитое и сильное (жгучее) чувство боли (рис. 229).

Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен.

Предполагают, что особенно значимыми являются изменения рН ткани в области нерв ного окончания, так как этот фактор обладает болевым эффектом при концентрации Н+ ионов, встречающихся в реальных условиях. Таким образом, наиболее общей причиной возникновения боли можно считать изменение концентрации Н+-ионов при токсическом воздействии на дыхательные ферменты или при механическом или термическом повреждении клеточных мембран. Не исключено, что одной из причин длительной жгучей боли может быть выделение при повреждении клеток гистамина, протеолитических ферментов, воздействующих на глобулины межклеточной жидкости и приводящих к образованию ряда полипептидов (например, брадикинина), которые возбуждают окончания волокон группы С.

Адаптация болевых рецепторов возможна: ощущение укола от продолжающей оставаться в коже иглы быстро проходит. Однако важной особенностью болевых рецеп торов во многих случаях является отсутствие существенной адаптации, что делает страдания больного особенно мучительными и требует применения анальгетиков.

Болевые раздражения вызывают ряд рефлекторных соматических и вегетативных реакций, которые при умеренной их выраженности имеют приспособительное значение, но могут привести к вторичным грозным патологическим эффектам, например к шоку.

Отмечают повышение мышечного тонуса, частоты сердечного сокращения и дыхания, повышение давления, сужение зрачков, увеличение содержания сахара в крови и ряд других эффектов.

При ноцицептивных воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов часты так называемые отраженные боли, прое цирующиеся в определенные части кожной поверхности (зоны Захарьина — Геда). Так, при стенокардии кроме болей в области сердца ощущается боль в левой руке и лопатке.

Наблюдаются и обратные эффекты. Так, при локальных тактильных, температурных и болевых раздражениях определенных «активных» точек кожной поверхности вклю чаются цепи рефлекторных реакций, опосредуемых центральной и вегетативной нервной Рис. 229. Развитие болевого ощущения во вре мени.

а — нормальная кожа;

б — кожа с повышенной болевой чувствительностью.

системой. Они могут избирательно изменять кровоснабжение и трофику тех или иных органов и тканей. Методы и механизмы иглоукалывания (акупунктуры), локальных прижиганий и тонического массажа активных точек кожи в последние годы стали предметом глубокого научного исследования новой области медицины — рефлексо терапии.

Для уменьшения или устранения болевых ощущений в клинике используется мно жество специальных веществ — анальгетиков, анестетиков и наркотиков. По локализа ции действия они делятся на местные и общие. Первые (например, новокаин) блокируют возникновение и проведение болевых сигналов от рецепторов в спинной мозг или струк туры ствола мозга. Общие анестетики (например, эфир) снимают ощущение боли, блокируя передачу импульсов между нейронами коры и ретикулярной формации мозга (погружают человека в наркотический сон).

В последние годы выяснена высокая анальгезирующая активность так называемых нейропептидов, большинство которых представляет собой либо гормоны (вазопрессин, окситоцин, АКТГ), либо их фрагменты. Часть нейропептидов является фрагментами р липотропного гормона (эндорфины). Анальгезирующее действие нейропептидов основано на том, что они даже в минимальных дозах (в микрограммах) меняют эффективность передачи в синапсах с «классическими» нейромедиаторами (ацетилхолин, нор-адреналин), в частности между первым и вторым сенсорными нейронами (задние столбы спинного мозга и другие структуры). С использованием нейропептидов в настоящее время связываются надежды на эффективное лечение ряда нервно-психических заболеваний.

МЫШЕЧНАЯ И СУСТАВНАЯ РЕЦЕПЦИЯ (ПРОПРИОРЕЦЕПЦИЯ) В мышцах млекопитающих животных и человека содержатся три типа специали зированных рецепторов: первичные окончания веретен, вторичные окончания веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздра жения и участвуют в координации движений, являясь источником информации о состоя нии двигательного аппарата.

В последние годы разработана методика отведения потенциалов действия отдельных афферентных волокон в нерве человека, что позволило исследовать функцию веретен в естественных условиях работы мышц.

Мышечные веретена представляют собой небольшие продолговатые образования (длиной несколько миллиметров, шириной — десятые доли миллиметра), расположен ные в толще мышцы (рис. 230). В разных скелетных мышцах число веретен на 1 г ткани варьирует от сотни до нескольких единиц. Внутри капсулы каждого веретена находится пучок мышечных волокон. Эти волокна называют интрафузальными в отличие от всех остальных волокон мышцы, которые носят название экстрафузальных. Веретена распо ложены параллельно экстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — уменьшается.

Различают интрафузальные волокна двух типов: более толстые и длинные с ядрами, сосредоточенными в средней, утолщенной части волокна, ядерно-сумчатые и более короткие и тонкие с ядрами, расположенными цепочкой,— ядерно-цепочечные. На интрафузальных волокнах спирально расположены чувствительные окончания аффе-рентов группы Iа — так называемые первичные окончания, и чувствительные окончания афферентов группы II — так называемые вторичные окончания.

Импульсация, идущая от веретен по афферентам группы Iа, на спинальном уровне моносинаптически и по-лисинаптически возбуждает мотонейроны своей мышцы и дисинаптически (через тормозящий интернейрон) тормозит мотонейроны мышцы-антагониста (реципрокное торможение). Афференты группы II полисинап-тически возбуждают мотонейроны сгибателей и тормозят мотонейроны разгибателей.

Имеются, однако, данные, что афференты в группе II, идущие от разгибателей, могут возбуждать мотонейроны своей мышцы.

Веретена имеют и эфферентную иннервацию:

интрафузальные мышечные волокна иннервируются аксонами, идущими к ним от у мотонейронов. Эти так называемые у-эф-ференты подразделяются на динамические и статические.

В расслабленной мышце количество импульсов, идущих от веретен, невелико. Веретена реагируют импульсацией на удлинение (растяжение) мышцы, причем у первичных окончаний частота импульсации зависит главным образом от скорости удлинения, а у вторичных — от длины мышцы (динамический и статический ответы). Активация -эфферентов приводит к повышению чувствительности веретен, причем динамические -эфференты преимущественно Рис. 230. Мышечное веретено.

усиливают реакцию на скорость удлинения Проксимальный конец интрафузального мышечно го волокна ( 1 ), прикрепленного к волокну скелет мышцы, а статические — на длину.

ной мышцы;

2 — дистальный конец этого волокна, И без растяжения мышцы, активация - прикрепленного к фасции;

3 — ядерная сумка;

эфферентов сама по себе вызывает им- 4 — афферентные волокна;

5 — гамма-эфферент пульсацию афферентов веретен вследствие ные волокна;

6 — моторное волокно, идущее к ске летной мышце.

сокращения интрафузальных мышечных во локрн. Показано, что возбуждение а-мото-нейронов сопровождается возбуждением у мотонейронов (—-коактивация). Уровень возбуждения -системы тем выше, чем интенсивнее возбуждены -мотонейроны данной мышцы, т. е. больше сила ее сокращения.

Таким образом, веретена реагируют на два воздействия: периферическое — изме нение длины мышцы и центральное — изменение уровня активации -системы. Поэтому реакции веретен в естественных условиях деятельности мышц довольно сложны. При растяжении пассивной мышцы наблюдается активация рецепторов веретен, вызываю щая рефлекс на растяжение. При активном концентрическом сокращении мышцы (т. е. сокращении с укорочением) уменьшение длины мышцы оказывает на рецепторы веретена дезактивирующее действие, а возбуждение -мотонейронов, сопутствующее возбуждению -мотонейронов, вызывают активацию рецепторов. Поэтому импульсация от рецепторов веретен во время движения зависит от соотношения длины мышцы, скорости ее укорочения и силы сокращения. Таким образом, веретена можно рассматри вать как непосредственный источник информации о длине мышцы и ее изменениях, если только мышца не возбуждена. При активном состоянии мышцы необходимо учитывать влияние -системы. Согласно современным представлениям, во время активных движе ний v-мотонейроны поддерживают импульсацию веретен укорачивающейся мышцы, что дает возможность рецепторам реагировать на вызванные помехами неравномерности движения как увеличением, так и уменьшением частоты имнульеации и участвовать таким образом в коррекции движений (см. рис. 51 на с. 75).

Сухожильные рецепторы Гольджи находится в зоне соединения мышечных волокон с сухожилием и расположены последовательно по отношению к мышечным волокнам.

Они слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении.


Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы, что дает основание рассматривать сухожильные рецепторы как источник информации о силе, развиваемой мышцей. Идущие от этих рецепторов афференты относятся к группе 1б.

На спинальном уровне они через интернейроны вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов антагониста.

Информация от мышечных рецепторов по восходящим путям спинного мозга поступает и в верхние отделы ЦНС, включая кору большого мозга, и участвует в ки нестезии.

Суставные рецепторы изучены меньше, чем мышечные. Известно, что они реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в си стеме обратных связей от двигательного аппарата.

ПЕРЕРАБОТКА СОМАТОСЕНСОРНОЙ ИНФОРМАЦИИ Чувствительность кожи и ощущение движения связаны с проведением в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спинотала мическому, значительно различающимся по своим морфологическим и функциональным свойствам.

В последнее время описан и третий путь — латеральный тракт Морина, близкий по ряду характеристик к лемнисковой системе.

Лемнисковый путь на всех уровнях состоит из относительно толстых и быстропро водящих миелинизированных нервных волокон. Он передает в мозг сигналы о прикосно вении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути — быстрая передача наиболее тонкой информации, дифференцированной по силе и месту воздействия. Первые нейроны этого пути находятся в спинальном ган глии, их аксоны в составе задних столбов восходят к топкому (Голля) и клиновидному (Бурдаха) ядрам продолговатого мозга, где сигналы передаются на вторые нейроны лемнискового пути. Часть волокон, в основном несущих сигналы от суставных рецепто ров, оканчивается на мотонейронах сегментарного спинального уровня.

Проприоцептивная чувствительность передается в спинном мозге также по дорсальному спиномозжечковому, спиноцервикальному трактам и некоторым другим путям.

В продолговатом мозге в ядре тонкого пучка сосредоточены в основном вторые нейроны тактильной чувствительности, а в клиновидном ядре — вторые нейроны про приоцептивной чувствительности. Аксоны этих нейронов образуют медиальный лемни сковый тракт («медиальную петлю») и после перекреста на уровне олив направляются в специфические ядра таламуса (вентробазальный ядерный комплекс— VP). В этих ядрах концентрируются третьи по порядку нейроны лемнискового пути. Их аксоны направляются в соматосенсорную зону коры большого мозга.

По мере перехода на все более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значительно увеличиваются рецептивные поля нейронов (в продолговатом мозге в 2—30, а в коре большого мозга в 15—100 раз).

Ответы клеток становятся все более продолжительными: даже короткое прикосновение Рис. 231. Корковое представительство кожной чувствительности.

Расположение в соматосенсорной зоне коры боль ших полушарий человека проекций различных час тей тела.

I — половые органы;

2 — пальцы;

3 — ступня;

4 — голень;

5 — бедро;

6 — туловище;

7—шея;

8— голова;

9 — плечо;

10-11 — локоть;

12 — пред плечье;

13 — запястье;

14 — кисть;

1 5 — 1 9 — паль иы;

20 — глаз;

2! — нос;

22 — лиио;

23 — верхняя губа;

24, 26 — зубы;

25 — нижняя губа;

27 — язык;

28 — глотка;

29 — внутренние органы. Размеры изображений частей тела соответствуют размерам сенсорного представительства.

к коже вызывает залп импульсов, длящийся несколько секунд. Отмечено появление так называемых нейронов новизны, реагирующих на смену раздражителя. Несмотря на увеличение размеров рецептивных полей, нейроны остаются достаточно специфич ными (нейроны поверхностного прикосновения, глубокого прикосновения, нейроны движения в суставах и нейроны положения или угла сгибания суставов). Для корковой части лемнискового пути характерна четкая топографическая организация, т, е. проек ция кожной поверхности осуществляется «точка в точку». При этом площадь коркового представительства той или иной части тела определяется ее функциональной значи мостью (рис. 231).

Удаление соматосенсорной коры приводит к нарушению способности локализовать тактильные ощущения, а ее электростимуляция вызывает ощущение прикосновения, вибрации и зуда. В целом роль соматосенсорной коры состоит в интегральной оценке сложной афферентной соматосенсорной информации.

Спиноталамический путь значительно отличается от лемнискового. Его первые нейроны также расположены в спинальном ганглии, откуда они посылают в спинной мозг медленно проводящие немиелинизированные нервные волокна. Эти нейроны имеют большие рецептивные поля, иногда включающие значительную часть кожной поверх ности. Вторые нейроны данного пути локализуются в сером веществе спинного мозга, а их аксоны в составе восходящего спиноталамического тракта направляются после перекреста на спинальном уровне в вентробазальный ядерный комплекс таламуса (дифференцированные проекции), а также в вентральные неспецифические ядра тала муса, внутреннее коленчатое тело, ядра ствола мозга и гипоталамус. Локализованные в этих ядрах третьи, нейроны спиноталамического пути лишь частично дают проекции в соматосенсорную зону коры.

Считается, что спиноталамический путь с более медленной передачей афферентных сигналов, со значительно менее четко дифференцируемой информацией о р-азных свой ствах раздражителя и с менее четкой топографической локализацией служит для пере дачи температурной, всей болевой и в значительной мере — тактильной чувствительно сти. Болевая чувствительность практически не представлена на корковом уровне (раз дражение коры не вызывает боли), поэтому считают, что высшим центром болевой чувствительности является таламус, где 60 % нейронов в соответствующих ядрах четко реагирует на болевое раздражение. Таким образом, эта система играет важную роль в организации генерализованных ответов на действие болевых, температурных и так тильных раздражителей, сигналы о которых идут через структуры ствола, подкорковые образования и кору.

ОБОНЯТЕЛЬНЫЙ АНАЛИЗАТОР Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхатель ного пути, он имеет толщину 100—150 мкм и содержит рецепторные клетки диаметром 5—10 мкм, расположенные между опорными клетками (рис. 232). Общее число обоня тельных рецепторов у человека — около 10 млн. На поверхности каждой обонятельной клетки имеется сферическое утолщение — обонятельная булава, из которой выступает по 6 12 тончайших (0,3 мкм) волосков длиной до 10 мкм. Обонятельные волоски погру жены в жидкую среду, вырабатываемую, боуменовыми железами. Считается, что нали чие волосков в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ. Не исключена и активная, двигательная функция волосков, увеличи вающая надежность захвата молекул пахучего вещества и контакта с ними. Булава является важным цитохимическим центром обонятельной клетки;

есть основание пола гать, что в ней генерируется рецепторный потенциал.

Молекулы пахучего вещества вступают в контакт со слизистой оболочкой носовых ходов, взаимодействуют со специализированными белками, встроенными в мембрану рецептора. В результате следующей за этим сложной и пока еще недостаточно изученной цепи реакций в рецепторе генерируется ре цепторный потенциал, а затем и импульсное возбуждение, передающееся по волокнам обонятельного нерва в обонятельную луко вицу — первичный нервный центр обоня тельного анализатора. Изменение суммарной электрической активности, регистрируемое с помощью электродов, помещенных на поверхность обонятельного эпителия, назы вают электроольфактограммой (рис. 233).

Это монофазная негативная волна с ампли тудой до 10 мВ и длительностью в несколько секунд, возникающая даже при кратковре менном воздействии пахучего вещества. Не редко на электроольфактограмме можно ви деть небольшую позитивность, предшест вующую основной негативной волне, а при достаточной длительности воздействия реги стрируется большая негативная волна на его прекращение (off-реакция). Иногда на мед ленные волны электроольфактограммы на кладываются быстрые осцилляции, отра жающие синхронные импульсные разряды значительного числа рецепторов.

Как показывают микроэлектродные исследования, одиночные рецепторы отвечают увеличением частоты импульсации, которое зависит от качества и интенсивности стимула.

Рис. 232. Схема строения обонятельного эпите- Адаптация в обонятельном анализаторе происходит сравнительно медленно (десятки лия по данным электронной микроскопии.

секунд или минуты) и зависит от скорости ОБ - обонятельная булава;

ОК -опорная клет- потока воздуха над обонятельным эпителием и ка;

ЦО - центральные отростки обонятельных концентрации пахучего вещества. Каждый клеток;

БК - - базальная клетка;

БМ — базальная мембрана;

В.П — обонятельные волоски;

МБР обонятельный рецептор отвечает не на один, а микровореинки обонятельных и МВО — микро- на многие пахучие вещества, отдавая ворсинки опорных клеток.

«предпочтение» некоторым из них. Считают, что на этих свойствах рецепторов, раз личающихся по своей «настройке» на разные группы веществ, может быть основано кодирование раздражителей (запахов) и их опознание в центрах обонятельного анализатора. Действительно, при электрофизиологиче ских исследованиях обонятельных луковиц выявлено, что параметры регистрируемого там при действии запахов электрического ответа зависят от пахучего вещества. При разных запахах меняется и пространственная мозаика возбужденных и заторможенных участков луковицы.

Служит ли это способом кодирования обонятельной информации, пока судить трудно.

Эфферентная регуляция активности обонятельной луковицы изучена еще недоста точно, хотя имеется много морфологических предпосылок, свидетельствующих о возмож ности таких влияний.

Особенность обонятельного анализатора состоит, в частности, в том, что его аффе рентные волокна не переключаются в таламусе и не переходят на противоположную сторону большого мозга.

Выходящий из луковицы обонятельный тракт состоит из нескольких пучков, которые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обоня тельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндале видного комплекса. Связь обонятельной луковицы с гиппокампом, пириформной корой и другими отделами обонятельного мозга осуществляется через несколько переключе ний. Электрофизиологические исследования и опыты на животных с условными рефлек сами показали, что наличие значительного числа центров обонятельного мозга (rhinen cephalon) не является необходимым для опознания запахов. Поэтому большинство областей проекции обонятельного тракта можно рассматривать 'как ассоциативные центры, обеспечивающие связь обонятельной системы с другими сенсорными системами и организацию на этой основе ряда сложных форм поведения — пищевой, оборонитель ной, половой и т. д.

Чувствительность обонятельного анализатора человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения.

В то же время изменение интенсивности действия вещества (порог различения) оцени вается людьми довольно грубо (наименьшее воспринимаемое различие в силе запаха составляет 30—60 % от его исходной концентрации). У собак эти показатели в 3—6 раз меньше.

ВКУСОВОЙ АНАЛИЗАТОР Вкус, так же как и обоняние, основан на хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или удалению вредных для организма веществ, попавших в рот с пищей.

Рецепторы вкуса — вкусовые почки — расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике языка, его краях и задней части. Каждая из примерно 10 000 вкусовых почек человека состоит из нескольких (2—6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму, длина и ширина ее у человека около 7-10-5 м (70 мкм), она не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.

Вкусовые клетки — наиболее короткоживущие эпителиальные клетки организма;

в среднем через каждые 250 ч каждая клетка сменяется молодой, движущейся к центру вкусовой почки от ее периферии. Каждая из рецепторных вкусовых клеток длиной 10—20 мкм (1—2- 10-5 м), шириной 3—4 мкм (3—4-10-6 м) имеет на конце, обращенном в просвет поры, 30—40 тончайших микроворсинок — 0,1—0,2 мкм (2*10 -7 м) длиной 1—2 мкм (1—2 - 1 0 -6 м ). Считают, что они играют важную роль в возбуждении рецеп торной клетки, воспринимая те или иные химические вещества, адсорбированные в канале почки. Предполагают, что в области микроворсинок расположены активные центры — стереоспецифические участки рецептора, избирательно воспринимающие адсорбцию разных веществ. В настоящее время многие этапы первичного преобразова ния химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов еще не известны.

В опытах с введением микроэлектрода внутрь вкусовой почки животных показано, что суммарный потенциал рецепторных клеток изменяется при раздражении языка разными веществами (сахаром, солью, кислотой). Этот потенциал развивается довольно медленно: максимум его достигается к 10—15 с после воздействия, хотя электрическая активность в волокнах вкусового нерва начинается значительно раньше. Проводниками всех видов вкусовой чувствительности служат барабанная струна и языкоглоточный нерв, ядра которых в продолговатом мозге содержат первые нейроны вкусового анали затора. Регистрация импульсации в отдельных волокнах данных нейронов показала, что многие из волокон отличаются определенной специфичностью, так как отвечают лишь на соль, кислоту и хинин. Есть волокна, чувствительные к сахарам. Однако наиболее убедительной сейчас считается гипотеза, согласно которой информация о 4 основных вкусовых ощущениях: горьком, сладком, кислом и соленом — кодируется не импульса цией в одиночных волокнах, а разным распределением частоты разрядов в большой группе волокон, одновременно, но по-разному возбуждаемых вкусовым веществом.

Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга.

От ядра одиночного пучка аксоны вторых нейронов восходят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, дающие аксоны до корковых центров вкуса. В настоящее время результаты электрофизиологи ческих исследований еще не позволяют оценить характер преобразований вкусовых афферентных сигналов на всех уровнях вкусового анализатора.

У разных людей абсолютные пороги вкусовой чувствительности к разным веществам могут существенно отличаться вплоть до «вкусовой слепоты» к отдельным агентам (например, к креатину). Кроме того, абсолютные пороги вкусовой чувствительности во многом зависят от состояния организма (они изменяются при голодании, бере менности и т. д.).

При измерении абсолютной вкусовой чувствительности возможны две ее оценки:

возникновение неопределенного вкусового ощущения (отличающегося от вкуса дистил лированной воды) и возникновение определенного вкусового ощущения. Порог возник новения второго ощущения выше. Пороги различения минимальны в диапазоне средних концентраций веществ, но при переходе к большим концентрациям резко повышаются.

Поэтому 20 % раствор сахара воспринимается как максимально сладкий, 10 % раствор хлорида натрия — как максимально соленый, 0,2 % раствор соляной кислоты — мак симально кислый, а 0,1 % раствор сульфата хинина — максимально горький. Пороговый контраст ( I / I ) для разных веществ значительно колеблется.

При действии вкусовых веществ наблюдается адаптация (снижение интенсивности вкусового ощущения). Продолжительность адаптации пропорциональна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена и перекрестная адаптация, т. е. изменение чувствительности к одному веществу при действии другого. Применение нескольких вкусовых раздражи телей одновременно или последовательно дает эффекты вкусового контраста или смеше ния вкуса. Например, адаптация к горькому повышает чувствительность к кислому и соленому, адаптация к сладкому обостряет восприятие всех других вкусовых ощуще ний. При смешении нескольких вкусовых веществ может возникнуть новое вкусовое ощущение, отличающееся от вкуса составляющих смесь компонентов.

В процессе эволюции вкус формировался как механизм выбора или отвергания пищи. В естественных условиях вкусовые ощущения комбинируются с обонятельными, тактильными и термическими, также создаваемыми пищей. Важным обстоятельством является то, что предпочтительный выбор пищи отчасти основан на врожденных, но в значительной мере на выработанных в онтогенезе условнорефлекторным путем ме ханизмах.

ВИСЦЕРАЛЬНЫЙ АНАЛИЗАТОР Огромная роль в интегральном функционировании сенсорных систем принадлежит интерорецепторам. Они воспринимают различные изменения внутренней среды орга низма и рефлекторно через ЦНС и вегетативный отдел нервной системы обеспечивают регуляцию работы всех внутренних органов, взаимосвязь и координацию их деятель ности, направленную на поддержание гомеостаза и формирование защитно-приспосо бительных реакций. Типичными в этом отношении являются рефлексы Геринга и Брейера (саморегуляция дыхания), рефлексы с прессо- и хеморецепторов каротидного синуса, рефлекторное выделение желудочного сока, рефлекторные акты мочеиспускания и дефекации, рефлекторные кашель и рвота и др.

Исследование интерорецепторов (интероцепторов), путей проведения и центров переработки афферентных сигналов позволяет говорить о существовании висцеральной сенсорной системы или висцерального анализатора (В. Н. Черниговский). Началом таких исследований явилась разработка проблемы кортико-висцеральных взаимоотношений.

Оказалось, что на раздражение рецепторов внутренних органов можно выработать разнообразные условные рефлексы. Это свидетельствует о возможности коркового ана лиза интероцептивных сигналов (К. М. Быков).

Морфологами описаны разнообразные интероцепторы, которые представлены сво бодными нервными окончаниями (дендриты нейронов спинальных ганглиев или клеток Догеля II типа периферических ганглиев вегетативной нервной системы), инкапсу лированными [пластинчатые тельца (тельца Фатера-Пачини), колбы Краузе)], распо ложенными на особых гломусных клетках (рецепторы каротидного и аортального клубочков).

Механорецепторы реагируют на изменение давления в полых органах и сосудах, их растяжение и сжатие. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержа нии постоянства внутренней среды организма.

Возбуждение хеморецепторов головного мозга может быть вызвано высвобожде нием из нервных окончаний его структур гистамина, индольных соединений, изменением содержания в желудочках двуокиси углерода и другими факторами. Рецепторы каротид ных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН (в пределах 6,9—7,6) и повышение напряжения углекислоты.

Терморецепторы ответственны за начальный, афферентный этап процесса терморе гуляции. Сравнительно малоисследованными остаются пока осморецепторы, они обнару жены в интерстициальной ткани вблизи капилляров.



Pages:     | 1 |   ...   | 17 | 18 || 20 | 21 |   ...   | 23 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.