авторефераты диссертаций БЕСПЛАТНАЯ БИБЛИОТЕКА РОССИИ

КОНФЕРЕНЦИИ, КНИГИ, ПОСОБИЯ, НАУЧНЫЕ ИЗДАНИЯ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |   ...   | 11 |

«Annotation "Черный лебедь" - не учебник по экономике. Это размышления очень незаурядного человека о жизни и о том, как найти в ней свое место. За одно только последнее ...»

-- [ Страница 8 ] --

Можно с толком использовать гауссов метод для упорядочения тех величин, которые по объективным причинам не слишком сильно удаляются от средних значений. Если переменные находятся в зоне действия закона гравитации или имеются физические ограничения, препятствующие чрезмерной дифференциации размеров, значит, мы попали в Среднестан. Если сила равновесия настолько велика, что малейшая разбалансировка мгновенно ликвидируется, то опять-таки гауссов метод вполне приемлем. В противном случае грош ему цена. Вот почему экономика в общем-то зиждется на понятии равновесия: оно помимо всего прочего устраивает экономистов тем, что позволяет втискивать экономические явления в гауссовы рамки.

Заметьте, я не утверждаю, что среднестанский тип случайности не допускает никаких крайностей. Но они настолько редки, что в конечном итоге роль их очень невелика. Эффект таких крайностей ничтожно мал и уменьшается с увеличением общей совокупности.

Теперь немного конкретики: если у вас имеется набор великанов и карликов, а иначе говоря, наблюдения, различающиеся на несколько порядков величины, вы можете все-таки оставаться на территории Среднестана. Почему? Сейчас выясним. Предположим, что у вас есть выборка в тысячу человек, с широким диапазоном от карлика до великана. Скорее всего, в этой выборке встретится много великанов, а не только какой-то один, случайный. Неожиданно возникший лишний великан не изменит среднего показателя, потому что заранее предполагается, что великанов несколько и ваш средний показатель, скорее всего, и так достаточно высок. Другими словами, наибольший экземпляр не может сильно возвышаться над средним. Средний показатель всегда учитывает наличие как великанов, так и карликов, поэтому никто из них не попадет в разряд редкостных исключений — если только не народится вдруг какой-нибудь уникальный мегавеликан или микрокарлик. Это будет Среднестан с большой амплитудой разброса.

Снова отметим следующую закономерность: чем реже событие, тем менее точно мы можем оценить степень его вероятности — даже в рамках гауссианы.

Позвольте вам продемонстрировать, как "гауссова кривая" вытесняет из жизни случайность — потому она так и популярна. Мы любим ее за то, что она дает определенность! Каким образом? За счет усреднения, о чем сейчас и пойдет разговор.

Почему нам удается спокойно пить кофе Вспомним кое-что из обсуждения Среднестана в главе 3: ни одно отдельное наблюдение не влияет на итог. И это свойство будет приобретать все большую и большую значимость по мере увеличения рассматриваемой вами совокупности. Средние показатели будут все больше и больше стабилизироваться, пока в конце концов самые разные выборки не станут похожими как две капли воды.

За свою жизнь я выпил множество чашек кофе (это моя главная слабость). Но никогда не видел, чтобы чашка подпрыгнула на два фута и кофе не проливался на эту рукопись без внешнего вмешательства (даже в России). В самом деле, чтобы стать свидетелем такого события, недостаточно невинного пристрастия к кофе;

потребуется больше жизней, чем, пожалуй, можно вообразить, — шансы равны единице после такого количества нолей, что я не смогу их выписать, даже если употреблю на это все свое свободное время.

Но законы физики свидетельствуют, что чашка все же могла бы подпрыгнуть, — это очень маловероятно, но возможно. Частицы постоянно куда-нибудь прыгают. Как получилось, что кофейная чашка, сама состоящая из прыгающих частиц, не прыгает? Причина, говоря попросту, вот в чем: чтобы чашка подпрыгнула, нужно, чтобы все частицы прыгнули в одну и ту же сторону и сделали бы это вместе несколько раз подряд (при компенсирующем движении стола в обратную сторону). Все несколько триллионов частиц в моей кофейной чашке не прыгнут в одну и ту же сторону;

этого не случится, сколько бы ни просуществовала еще наша Вселенная.

Поэтому я могу спокойно поставить кофейную чашку на край письменного стола и призадуматься о более серьезных зонах неопределенности.

Спокойствие, гарантированное моей кофейной чашке, иллюстрирует то, как гауссова случайность "укрощается" усреднением. Если бы моя чашка была одной большой частицей и вела себя так, как обычно ведет себя отдельная частица, то ее прыжки доставляли бы массу неприятностей. Но моя чашка — это триллионы очень маленьких частиц.

Хозяева казино прекрасно это понимают, и поэтому они никогда (если всё правильно делают) не теряют денег. Они просто не позволяют одному игроку сделать крупную ставку, вместо этого предпочитая, чтобы множество игроков сделали ряд ставок ограниченного размера. Игроки могут в сумме поставить 20 миллионов долларов, но не надо беспокоиться о благополучии казино: ставки равны в среднем 20 долларам;

казино ограничивает ставки тем максимумом, который позволяет хозяевам казино спокойно спать по ночам. Поэтому колебания доходов казино будут смехотворно малы, независимо от активности всех имеющихся в наличии игроков. Никто из них никогда не выйдет из казино с миллиардом долларов.

Вышеизложенное представляет собой проявление высшего закона Среднестана: когда игроков множество, отдельный игрок практически не повлияет на итог, кроме как по мелочи.

Отсюда следует то, что колебания вокруг среднего в гауссиане, также называемые "ошибками", на самом деле — не повод для волнений. Они маленькие, их можно легко отбросить. Они — одомашненные флуктуации вокруг среднего.

Любовь к определенности Если когда-то в колледже вам довелось прослушать (скучнейший) курс лекций по статистике и вы не поняли почти ничего из того, чем так восторгался профессор, если вы так и не уяснили, что такое стандартное отклонение, не расстраивайтесь. Понятие стандартного отклонения бессмысленно вне Среднестана. Ясно, что гораздо полезней и куда приятней было бы прослушать курс по биологическим аспектам эстетики или постколониальному африканскому танцу, и это проверяется эмпирически.

Стандартные отклонения не существуют вне гауссианы, а если и существуют, то они не важны и мало что объясняют. Но дальше — хуже. Гауссово семейство (которое включает различных друзей и родственников, скажем, закон Пуассона) — единственный класс распределений, для описания которого достаточно стандартного отклонения (и среднего показателя). Больше ничего не нужно. "Гауссова кривая" — находка для любителей упрощений.

Есть другие понятия, которые почти ничего не значат вне гауссовой ситуации — корреляция и, хуже того, регрессия. Но они глубоко внедрились в наши методы;

в любом деловом разговоре непременно услышишь слово корреляция.

Чтобы увидеть, сколь бессмысленна бывает корреляция вне Среднестана, рассмотрим данные прошлых лет, по две величины, которые уж наверняка из Крайнестана, скажем, рынки облигаций и акций, или две цены акций, или такие две величины, как изменения в продажах детских книг в США и в производстве удобрений в Китае;

или цены на недвижимость в Нью Йорке и обороты монгольского фондового рынка. Измерьте корреляцию между парами величин за различные периоды, скажем, за годы 1994, 1995, 1996 и т. д. Корреляционное соотношение, скорее всего, будет резко меняться от периода к периоду. И при этом все говорят о корреляции как о некой реальности, делая ее осязаемой, наделяя ее физическими свойствами, материализуя ее.

Мы склонны конкретизировать и то, что называем "стандартными" отклонениями.

Рассмотрим любой ряд прошлых цен или значений. Разбейте его на отрезки и измерьте их "стандартное" отклонение. Удивлены? Каждая выборка даст свое "стандартное" отклонение.

Тогда почему все говорят о стандартных отклонениях? Попробуй пойми.

Картина тут та же, что и при искажении нарратива: когда сравниваешь прошлые факты и вычисляешь одну-единствен-ную корреляцию или стандартное отклонение, такой нестабильности не замечаешь.

Как вызывать катастрофы Если вы пользуетесь термином статистически значимый, опасайтесь иллюзии определенности. Всегда есть вероятность, что кто-то примет свои ошибки наблюдения за гауссовы, но тогда и контекст должен быть соответствующим, гауссовым, то есть среднестанским.

Чтобы показать, сколь неизбывно злоупотребление гауссианой и сколь это может быть опасно, рассмотрим (скучную) книгу под названием "Катастрофа", написанную судьей Ричардом Познером, плодовитым писателем. Познер сетует, что госчиновники ничего не смыслят в случайности, и рекомендует высшим должностным лицам учиться статистике... у экономистов. Поистине судья Познер пытается провоцировать катастрофы. Жаль, конечно, что он большую часть времени отдает писательству, а не чтению, но, несмотря на это, мыслитель он проницательный, глубокий и оригинальный. Просто, как и многие другие, не знает о том, что между Среднестаном и Крайнестаном есть существенные различия, и свято верит, что статистика — "наука", а не обман. Если столкнетесь с ним, расскажите ему, как все обстоит на самом деле.

УСРЕДНЕННОЕ ЧУДОВИЩЕ КЕТЛЕ Эта химера, называемая "гауссовой кривой", или гауссианой, создана была не Гауссом. Да, он работал над ней, но как математик-теоретик, не прилагая ее к устройству нашей реальности, как это делают ученые со статистическим поворотом ума.

Г. X. Харди писал в "Апологии математика"[73]:

"Настоящая" математика "настоящих" математиков, таких как Ферма, Эйлер, Гаусс, Абель и Риман, почти целиком "бесполезна" (что верно не только для "чистой", но и для "прикладной" математики)".

Ранее я уже говорил, что кривая нормального распределения была в общем-то изобретением игрока, Абрахама де Муавра (1667-1754), французского изгнанника-кальвиниста, который провел большую часть своей жизни в Лондоне, хотя и говорил по-английски с сильным акцентом. Но, как мы сейчас с вами увидим, одним из самых злостных вредителей в истории развития мысли надо считать совсем даже не Гаусса, а Кетле.

Адольф Кетле (1796-1874) создал понятие "Phomme moyen" — "физически средний человек". Сам Кетле, "человек, наделенный мощными творческими страстями, творец, полный энергии", ни в чем не был moyen. Он писал стихи и даже принял участие в сочинении оперы.

Беда заключалась в том, что Кетле был математиком, а не ученым-эмпириком, только сам этого не осознавал. Он усмотрел гармонию в кривой нормального распределения.

У этой проблемы два уровня.

Primo. Кетле увлекся идеей "нормативности", он хотел подогнать мир под некие средние стандарты, питая иллюзию, что это среднее и есть "норма". Конечно, было бы замечательно, если бы мы могли игнорировать влияние на нашу действительность всего необычного, "ненормального", то есть Черного лебедя. Но оставим эту мечту утопистам.

Secondo вытекает из primo и представляет собой серьезную эмпирическую проблему.

Математику повсюду мерещились колоколовидные кривые. Они ослепляли его, и я вновь убедился: если к тебе в голову забралась такая кривая, ее трудно вытравить оттуда. Позже Фрэнк Исидро Эджуорт будет называть кетлизмом эту опасную тенденцию подводить все под "колокол".

Золотая посредственность Концепция Кетле пришлась весьма кстати идеологам того времени, которые как раз жаждали чего-либо подобного. Вы только взгляните на список его современников: Сен-Симон (1760-1825), Пьер-Жозеф Прудон (1809-1865), Карл Маркс (1818-1883), каждый — создатель своей версии социализма. В эпоху, последовавшую за веком Просвещения, все искали aurea mediocritas, золотую середину: в богатстве, росте, весе и т. д. Это стремление подчас заставляет принимать желаемое за действительное, оно во многом навеяно поисками гармонии и...

платонизмом.

Я навсегда запомнил директиву своего отца — "in medio stat virtus", "доблесть — в умеренности". Да, долгое время это было идеалом;

посредственность в этом смысле даже считалась золотой. Всеохватывающая посредственность.

Но Кетле поднял эту идею на новый уровень. На основе собранных им данных он начал создавать среднестатистические стандарты. Обхват груди, рост, вес детей при рождении — мало что избежало стандартизации. Отклонения от нормы, как он заметил, становятся экспоненциально более редкими с увеличением амплитуды отклонения. Покончив с физическими характеристиками, месье Кетле переключился на социальную сферу. L'homme moyen имел свои привычки, свои запросы, свои методы.

Сконструировав таким образом l'homme moyen physique и l'homme moyen moral (физического среднего человека и нравственного среднего человека), Кетле обозначил некие пределы отклонения от среднего, внутри которых любого человека помещают слева или справа от центра и, по сути, "бракуют" тех, кто оказывается у самого края. Их объявляют аномалией. Это, естественно, очень вдохновило Маркса, который ссылается на понятие среднего, или нормального, идивидуума, введенное Кетле. Он утверждает в "Капитале", что общественные различия (например, те, что обусловлены распределением капитала) должны быть сведены к минимуму.

Надо отдать должное научной элите времен Кетле. Коллеги настороженно отнеслись к его теории. Начнем с того, что Огюстен Курно, философ, математик, экономист, усомнился в том, что можно учредить некий стандарт человека только на основании количественных характеристик. Этот стандарт будет зависеть от рассматриваемой выборки. Замеры, произведенные в одной провинции, могут отличаться от замеров в другой провинции. Ну и какие из них должны быть эталоном? По мнению Курно, Thomme moyen был бы чудовищем.

Я так поясню его мысль.

Даже если кому-то вдруг очень захотелось бы стать средним человеком, то ему пришлось бы утаить от "замерщиков" свои профессиональные таланты, то, в чем он неизбежно превосходит остальных, — человек не может быть средним во всем. Пианист будет лучше "среднего" играть на пианино, но хуже, чем предписано "нормой", ездить верхом. Чертежник будет лучше чертить и так далее. Понятие человека, считающегося средним, отличается от понятия человека, среднего во всем, что он делает. В действительности абсолютно средний человек был бы наполовину мужчиной, наполовину женщиной. Кетле совершенно упустил это из виду.

Ошибка Бога Еще больше удручает то, что во времена Кетле гауссово распределение называлось "la loi des erreurs" — "закон погрешностей", так как одним из самых ранних его приложений было распределение погрешностей в астрономических расчетах. Вам тоже не по себе? С отклонением от среднего (в данном случае и от медианы тоже) обращались как с погрешностью! Не удивительно, что Марксу понравились идеи Кетле.

Понятие усредненности распространилось мгновенно. "Так положено" спутали с "есть" — и все это с благословения науки. Понятие середняка глубоко вошло в культуру, ожидавшую нарождения европейского среднего класса, в молодую культуру постнаполеоновского лавочника, опасающегося излишнего богатства и интеллектуального блеска. В принципе считается, что мечта об обществе с нивелированными доходами отвечает стремлениям всякого рационально мыслящего человека, вынужденного иметь дело с генетической лотереей. Если бы вам предложили выбрать общество, в котором вы родитесь в следующей жизни, но неизвестно кем именно, скорее всего вы не стали бы рисковать — предпочли бы такое общество, в котором нет существенной разницы в доходах.

Курьезной кульминацией восхваления посредственности стало появление во Франции так называемого "пужадизма"[74], политического движения, начавшегося с выступлений лавочников.

Это было горячее братство людей более или менее благополучных, надеявшихся, что вся остальная вселенная подстроится под них — своего рода случай непролетарской революции. Их мелкоторгашеский менталитет проявлялся даже в том, как они обращались с математикой.

Думал ли Гаусс, что создает формулы для лавочников?

Пуанкаре приходит на помощь Сам Пуанкаре относился к гауссиане с большой опаской. Я подозреваю, что он внутренне съеживался, когда ему предлагали этот и подобные подходы к моделированию неопределенности. Достаточно вспомнить, что кол околовидная кривая изначально предназначалась для измерения астрономических погрешностей, а уже небесная механика самого Пуанкаре проникнута куда более глубоким пониманием неопределенности.

Пуанкаре писал, что один из его друзей, "выдающийся физик", жаловался ему, что физики пользуются "гауссовой кривой", потому что, вслед за математиками, считают ее математической необходимостью, математики же пользуются ею, потому что считают ее эмпирической данностью.

Будем справедливы Хочу особо отметить, что вообще-то (если оставить в стороне издержки в виде психологии лавочников) я искренне верю в ценность срединности и посредственности — какой гуманист не мечтает уменьшить неравенство между людьми? Нет ничего более отталкивающего, чем безрассудно сотворенный идеал сверхчеловека! На самом деле меня тревожит иная проблема — эпистемологическая, то есть проблема познания. Пора уяснить, что реальность — не Среднестан и нам надо научиться с этим жить.

"Греки бы его обожествили" Список людей, у которых в мозгу угнездилась (благодаря своей платонической чистоте) гауссиана, невероятно велик.

Сэр Фрэнсис Гальтон, двоюродный брат Чарльза Дарвина и внук Эразма Дарвина, был наряду со своим кузеном одним из последних независимых ученых-джентльменов, к каковым также принадлежали лорд Кавендиш, лорд Кельвин, Людвиг Витгенштейн (на свой лад) и отчасти наш суперфилософ Бертран Рассел. Хотя Джон Мэйнард Кейнс не вполне вписывался в эту категорию, он мыслил в унисон с ней. Гальтон жил в викторианскую эпоху, когда обладатели наследственного состояния и неограниченного досуга не только упражнялись в верховой езде и стрельбе по дичи, но становились философами, учеными или (менее одаренные) политиками. Как это ни печально, вместе с той эпохой ушло нечто невосполнимое: истинные подвижники, занимающиеся наукой ради науки, не думающие о карьере.

К сожалению, занятия наукой из бескорыстной любви к знанию не гарантируют, что ты будешь двигаться в правильном направлении. Познакомившись с "нормальным" распределением, Гальтон влюбился в него. Говорят, он однажды воскликнул, что, если бы грекам было о нем известно, они бы обожествили его. Возможно, восторг Гальтона тоже поспособствовал воцарению гауссианы в научных умах.

Гальтон не сподобился обзавестись надлежащим математическим багажом, но был прямо таки одержим измерениями. Он не знал о законе больших чисел, но сам открыл его, проанализировав собранные данные. Он сконструировал доску Гальтона, или "quincunx" [75], — что-то вроде автомата для игры в пинбол, с помощью которого можно смоделировать колоколовидную кривую, — об этом я расскажу через несколько абзацев. Правда, Гальтон применял кривую нормального распределения в таких областях, как генетика и наследственность, где ее использование оправданно. Но его энтузиазм помог внедрить зарождавшиеся статистические методы в социальные сферы.

Ответьте, пожалуйста, "да" или "нет" А сейчас позвольте мне поговорить о размерах ущерба.

Если вам нужны качественные (а не количественные) выводы, как в психологии или медицине, где вы вполне обойдетесь "безразмерными" ответами "да" или "нет", то можете спокойно допустить, что находитесь в Среднестане. Влияние невероятного не будет слишком большим. У него есть рак либо нет;

она беременна либо нет и так далее. Смертельность или беременность не имеют степеней (если не рассматривать их в эпидемических масштабах). Но, когда вы манипулируете совокупностями, различными по величине (такими как доход, ваш капитал, прибыль с портфеля ценных бумаг или продажи книг), гауссиана может вас здорово подвести, так как эта сфера не в ее компетенции. Одно-единственное число способно порушить все ваши средние показатели;

одна-единственная потеря — зачеркнуть сотни и сотни прибылей.

Уже нельзя говорить: "Это исключение". Заявление "да, я могу потерять деньги" довольно бессмысленно, если не указать хотя бы приблизительную сумму. Потерять весь свой капитал или потерять долю своего дневного дохода — все-таки разница.

Именно поэтому эмпирическая психология и открытые ею свойства человеческой природы, о которых я говорил в начале этой книги, не страдают от ложного использования гауссианы;

психологам вообще повезло, ибо переменные, которыми они оперируют, в большинстве своем не выходят за рамки обычной гауссовой статистики. Выясняя, сколько человек в выборке имеют определенную особенность или склонность к ошибке, они обычно добиваются результата посредством ответов "да" или "нет". Ни одно отдельно взятое наблюдение не может в корне изменить общего заключения.

Теперь я представлю вам идею гауссианы, разобрав ее по кирпичикам.

МЫСЛЕННЫЙ (ЧИСЛЕННЫЙ) ЭКСПЕРИМЕНТ, ДЕМОНСТРИРУЮЩИЙ, ОТКУДА ПРОИСХОДИТ КРИВАЯ НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ Рассмотрим своего рода пинбольный автомат, такой, как на рисунке 8. Запустим 32 шара, предполагая, что доска правильно сбалансирована, так что у шара одинаковые шансы свалиться направо и налево на любом пересечении, наткнувшись на штырь. Ожидаемый результат — большая часть шаров "приземлится" в центральных ячейках: чем ячейки дальше от центра, тем меньше туда попадет шаров.

Затем проведем мысленный эксперимент. Человек бросает монетку, смотрит, что выпало, орел или решка, и в зависимости от этого делает шаг влево или вправо. Это так называемое "случайное блуждание" не обязательно связано с ходьбой. С таким же успехом можно представить, что вместо шага вправо или влево вы каждый раз выигрываете или проигрываете доллар, при этом ведя учет долларам, накопившимся у вас в кармане.

Предположим, я заключаю с вами честное пари, где возможность выигрыша у вас примерно та же, что и проигрыша. Кидаем монетку. Орел — вы получаете доллар, решка — теряете доллар.

При первом броске вы либо выиграете, либо проиграете.

При втором броске число возможных исходов удваивается. Вариант 1: выигрыш-выигрыш.

Вариант 2: выигрыш-проигрыш. Вариант 3: проигрыш-выигрыш. Вариант 4: проигрыш проигрыш. У каждого из этих вариантов одинаковые шансы, комбинация из одного выигрыша и одного проигрыша встречается вдвое чаще, так как варианты 2 и 3, выигрыш-проигрыш и проигрыш-выигрыш, приводят к одинаковому результату. И в этом ключ к гауссиане. В середине очень многое сглаживается, и, как мы увидим, к середине тяготеет большинство. Поэтому если при каждом броске разыгрывается доллар, то на втором броске ваши шансы таковы: процентов, что вы приобретете или потеряете 2 доллара, и 50 процентов, что выйдете в нуль.

Третий бросок снова удваивает число исходов, так что их становится восемь. Вариант (выигрыш-выигрыш после двух бросков) разветвляется на выигрыш-выигрыш-выигрыш и выигрыш-выигрыш-проигрыш. Мы добавляем выигрыш или проигрыш к каждому из предыдущих результатов. Вариант 2 разветвляется на выигрыш-проигрыш-выигрыш и выигрыш-проигрыш проигрыш. Вариант з разветвляется на проигрыш- выигрыш-выигрыш и проигрыш-выигрыш проигрыш. Вариант 4 разветвляется на проигрыш-проигрыш-выигрыш и проигрыш-проигрыш проигрыш.

Теперь у нас восемь вариантов, все одинаково вероятные. Заметим, что снова можно сгруппировать средние исходы, в которых выигрыш перечеркивает проигрыш. (На доске Гальтона ситуации, когда шар отлетает влево, а затем вправо, или наоборот, преобладают, так что в результате в середине оказывается много шаров.) Совокупный итог таков: 1) три выигрыша;

2) два выигрыша, один проигрыш, итого один выигрыш;

з) два выигрыша, один проигрыш, итого один выигрыш;

4) один выигрыш, два проигрыша, итого один проигрыш;

5) два выигрыша, один проигрыш, итого один выигрыш;

6) два проигрыша, один выигрыш, итого один проигрыш;

7) два проигрыша, один выигрыш, итого один проигрыш;

и, наконец, 8) три проигрыша.

Из восьми вариантов вариант трех выигрышей встречается однажды. Вариант трех проигрышей встречается однажды. Вариант одного итогового проигрыша (один выигрыш, два проигрыша) встречается три раза. Вариант одного итогового выигрыша (один проигрыш, два выигрыша) встречается три раза.

Сделаем еще один бросок, четвертый. Будет шестнадцать равновероятных исходов. Один вариант четырех выигрышей, один вариант четырех проигрышей, четыре варианта двух выигрышей, четыре варианта двух проигрышей и шесть вариантов выхода в нуль.

"Quincunx" (это латинское производное от числительного "пять") в нашем пинбольном примере представляет собой иллюстрацию пятого броска или шага, после которого шансы, как легко высчитать, возрастают до шестидесяти четырех. Вот идея, воплощенная в доске Фрэнсиса Гальтона. Гальтону явно недоставало здоровой лени и математической сметки: вместо того чтобы сооружать такое устройство, вообще-то проще было поработать с алгеброй или провести мысленный эксперимент вроде нашего.

Однако продолжим игру до сорокового броска. На это уйдет лишь несколько минут, но понадобится калькулятор, чтобы вычислить количество исходов, так как наши мозги с этим не справятся. Получится 1 099 511 627 776 возможных комбинаций — то есть более тысячи миллиардов. Не затрудняйтесь просчитывать шаг за шагом — это будет два в сороковой степени, так как на каждом этапе каждая цепочка раздваивается. (Вспомните, как мы добавили выигрыш и проигрыш к вариантам третьего броска, удвоив число вариантов.) Из этих комбинаций только одна будет состоять из сорока выигрышей и только одна — из сорока проигрышей. Остальные будут тяготеть к середине, в данном случае — к нулю.

Вам уже ясно, что этот тип случайности чрезвычайно беден крайностями. Все сорок бросков оказываются выигрышными лишь в одном случае из 1 099 511 627 776. Если вы станете час за часом проделывать это упражнение с сорока бросками, вам придется здорово попотеть, прежде чем выпадут сорок орлов (или сорок решек) подряд. Поскольку вы наверняка будете прерываться, чтобы поесть, поспорить с друзьями и соседями, попить пива и поспать, то готовьтесь, ради такой удачи, прожить около четырех миллионов жизней. А представьте, что вы добавляете один лишний бросок. Чтобы выкинуть орла сорок один раз подряд, понадобится потратить на попытки восемь миллионов жизней! Переход от 40 к 41 уменьшает шансы вдвое.

Это — ключевое свойство немасштабируемого подхода к анализу случайности: крайние отклонения убывают с все возрастающей скоростью. А пятьдесят орлов подряд могут выпасть один-единственный раз на протяжении 4 миллиардов жизней!

Мы еще не получили "гауссову кривую", но сильно приблизились к ней. Пока это протогауссиана, но суть уже видна. (На самом деле вы никогда не встретите "гауссову кривую" в чистом виде, так как это платоническая фигура — к ней можно только стремиться, но достичь ее невозможно.) Но, как показывает рисунок 9, знакомая колоколовидная форма уже просматривается.

Способны ли мы ближе подойти к совершенной "гауссовой кривой"? Да. Для этого нужно разбить раунд на большее количество менее результативных бросков. Можно ставить на кон не доллар, а десять пенсов и бросать не 40, а 4000 раз, складывая результаты. Ожидаемый риск будет приблизительно тем же — ив этом фокус. В соотношении двух названных вариантов игры есть небольшой сознательный сдвиг. Мы умножили число бросков на 100, но поделили размер ставки на 10 — не ищите сейчас причины, просто предположите, что варианты "эквивалентны".

Общий риск эквивалентен, но теперь нам открылась возможность выиграть или проиграть долларов за 400 последовательных бросков.

Шансы равны единице на единицу со 120 нулями,то есть 1/1 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000.

Продолжим процесс дробления. Будем бросать 400 000 раз, ставя на кон по 1 центу и подходя, таким образом, все ближе и ближе к гауссиане. Рисунок показывает распределение результатов между 40 и минус 40 долларами, то есть восьмьюдесятью смысловыми точками.

При ставке в 1 цент мы доводим их до 8000 смысловых точек.

Пойдем дальше. Мы можем бросить монету 4000 раз, ставя по 1/10 цента. Ну а как насчет 400 000 раз по 1/1000 цента? Совершенная кривая Гаусса (как платоническая форма) — это отображение бесконечного числа бросков с бесконечно малыми ставками. Не пробуйте их себе представить — не получится. Нам нет смысла говорить о "бесконечно малых" ставках (поскольку у нас их бесконечное множество, а значит, мы имеем дело с тем, что математики называют бесконечной структурой). Но хочу вас обрадовать: существует альтернатива.

Мы начали с простой ставки и пришли к чему-то абсолютно абстрактному. Начали с наблюдений и оказались в царстве математики. В математике вещи обретают абстрактную чистоту.

Но, поскольку чистых абстракций в природе не существует, пожалуйста, даже не пытайтесь постичь глубинный смысл фигуры на рисунке 10. Просто знайте, как ею пользоваться.

Воспринимайте ее как градусник: не обязательно понимать, что означает температура, чтобы пользоваться показаниями градусника. Главное — знать соответствие между температурой и, скажем, комфортностью (или какими-то другими эмпирическими факторами). Шестьдесят градусов по Фаренгейту соответствуют приятной погоде;

минус десять — не то, о чем следует мечтать. Не обязательно интересоваться действительной скоростью столкновений между частицами, которая помогла бы уяснить подоплеку понятия "температура". Градусы — это некое подсобное средство, с помощью которого ваше сознание может перевести какие-то внешние явления на уровень чисел. Вот и гауссиана устроена так, что 68,2 процента наблюдений сосредоточиваются между минус одним и плюс одним стандартным отклонением от среднего. Я повторю: даже не пытайтесь понять, является ли стандартное отклонение средним отклонением — нет, не является, и многие (слишком) многие люди, использующие термин стандартное отклонение, этого не понимают. Стандартное отклонение — это вопрос простого соотношения, обычное число, с которым соизмеряются явления, если они действительно из разряда "гауссовых".

Стандартное отклонение часто называется сигмой. Также говорят о дисперсии (дисперсия — это сигма в квадрате).

Обратите внимание на симметричность "колокола". Одинаковый результат получается при отрицательной и при положительной сигме. Шансы спуститься ниже минус четырех сигм равны шансам перевалить через четыре сигмы, у нас они 1 к 32 000.

Как видите, основная идея "гауссовой кривой" (о чем я говорил выше) в том, что большинство наблюдений колеблется в рамках заурядного, среднего, в то время как шансы отклонения сокращаются быстрее и быстрее (экспоненциально), чем дальше вы уходите от центра. Если хотите ухватить главное, вот оно: резкое ускорение падения шансов при удалении от середины. Вероятность аномалий стремительно уменьшается. Ими можно спокойно пренебречь.

Из этого свойства вытекает высший закон Среднестана: поскольку большие отклонения чрезвычайно редки, их вклад в итог будет чрезвычайно мал.

В примере с замерами человеческого роста я брал за единицу отклонения десять сантиметров, показывая, как тает процент гигантов по мере увеличения роста. Это были отклонения на одну сигму;

а еще ростовая таблица наглядно показывает, как происходит "соизмерение с сигмой", — ее использование в качестве единицы измерения.

эти утешительные постулаты Выделим главные постулаты, определившиеся в ходе нашей игры в монетку, которая привела к протогауссовой, или рядовой, случайности.

Первый главный постулат: броски не зависят друг от друга. У монетки нет памяти. То, что вам выпали орел или решка, вовсе не означает, что в следующий раз вас ждет удача. Умение бросать монету не приходит со временем. Если ввести такой параметр, как память или мастерство бросания, вся эта гауссова конструкция зашатается.

Вспомним наши рассуждения из главы 14 о привязках и кумулятивном преимуществе. Обе теории утверждают, что сегодняшний выигрыш повышает шансы на выигрыш завтра. Поэтому вероятности зависят от истории и первый главный постулат, на котором строится гауссиана, в реальности не работает. В играх, конечно, прошлые выигрыши не должны увеличивать вероятность будущих, но в жизни это не так, и поэтому я такой противник обучения теории вероятности на примере игр. Если выигрыш влечет за собой дальнейший выигрыш, то у вас гораздо больше шансов стать свидетелем сорока выигрышей подряд, чем в пределах протогауссианы.

Второй главный постулат: "сумасшедших" прыжков не бывает. Размер шага, этого элементарного кирпичика классического случайного распределения, всегда известен: как раз один шаг. Он всегда определен. Мы не встречали ситуаций с "сумасшедшей" неравномерностью движений.

Помните, что, если один из этих двух главных постулатов отсутствует, ваши шаги (или подбросы монетки) не создадут в итоге гауссиану. При определенных обстоятельствах вы можете столкнуться с из ряда вон выходящей масштабно-инвариантной случайностью мандельбротовского типа.

"Вездесущесть гауссианы" Всякий раз, когда я заявляю, что "гауссова кривая" вездесуща отнюдь не в реальной жизни, а только в умах статистиков, от меня требуют: "Докажи!" Как мы увидим в следующих двух главах, это сделать очень легко, а вот противоположное никому еще до сих пор доказать не удалось. Стоит мне высказать предположение, что существуют процессы, не описываемые гауссианой, меня просят это обосновать и, помимо фактов, "предъявить стоящую за ними теорию". В главе 14 мы рассматривали модель "деньги идут к деньгам", предлагавшуюся, чтобы оправдать неиспользование гауссианы. Разработчикам таких моделей приходится тратить уйму времени на подведение теоретической базы под возможные масштабируемые ситуации — как будто им надо за что-то извиняться. Теория-фигория! У меня с этим эпистемологическая проблема — с необходимостью оправдывать то, что миру не удается соответствовать идеализированной модели, которую сумел пропиарить какой-то слепец, отрешенный от реальности.

Я предпочитаю не моделировать возможные ситуации возникновения негауссовой случайности (впадая тем самым в грех слепого теоретизирования), а делать нечто противоположное: пристально изучать гауссиану и определять, где она действует, а где нет. Я знаю, где Среднестан. По-моему, именно приверженцы гауссианы часто (да что там — почти всегда) не вполне понимают, с чем они имеют дело, и должны обосновывать свои действия, а не наоборот.

Эта вездесущесть гауссианы — не свойство мира, а проблема, существующая в наших умах и вытекающая из нашего взгляда на мир.

В следующей главе мы обратимся к масштабируемости окружающего мира и к свойствам фрактала. А в той, что за ней, коснемся злоупотребления гауссианой в социоэкономике и "необходимости строить теории".

Я порой излишне горячусь, но только потому, что провел значительную часть своей жизни, размышляя над этой проблемой. С тех пор как я начал думать над ней и проводить разнообразные мысленные эксперименты вроде описанного выше, я тщетно искал вокруг себя, в мире бизнеса и статистики, кого-нибудь, кто был бы до конца интеллектуально последователен в смысле осознания угрозы Черного лебедя и отказа от гауссианы и ее инструментария. Многие, принявшие мою идею Черного лебедя, не смогли довести ее до логического завершения, а именно — не смогли признать, что нельзя использовать одну-единственную меру случайности, называемую стандартным отклонением (и называть ее "риском");

нельзя рассчитывать на простые ответы, когда речь идет о неопределенности. Отказ от гауссианы требует смелости, преданности истине и способности соединять разрозненные факты, требует желания глубже постичь случайность. И еще нужно не возводить чужую мудрость в абсолют.

Затем я начал знакомиться с физиками, которые отвергли гауссов подход, но стали жертвой другого заблуждения (иной формы платонизма), а именно — веры в точные предсказательные модели, эксплуатирующие в основном привязку из главы 14. Я не мог найти ни одного глубокого и технически подкованного ученого, который смотрел бы на мир случайности и понимал его природу, видел бы в расчетах подспорье, а не самоцель. Мне потребовалось около полутора десятилетий, чтобы открыть для себя такого мыслителя. Человека, сделавшего многих лебедей Серыми: Мандельброта — великого Бенуа Мандельброта.

Глава 16. Эстетика случайности Библиотека Мандельброта. — Был ли Галилей слеп? — Бисер перед свиньями. — Самоподобие. — Простая многосложность, или, может быть, многосложная простота, мира ПЕВЕЦ СЛУЧАЙНОСТИ Одним грустным вечером я вдыхал запах старых книг в библиотеке Бенуа Мандельброта.

Это было в августе 2005-го, и от жары старые французские книги сильнее пахли клеем, вызывая сильную обонятельную ностальгию. Обычно мне удается подавлять такие приступы ностальгии, но только не те, что накатывают на меня с волной музыки или запахов. Запах книг Мандельброта — это запах французской литературы, библиотеки моих родителей, многих часов, проведенных в книжных магазинах и библиотеках, когда я был подростком, когда меня окружали книги в основном (увы) на французском языке и когда я думал, что Литература превыше всего. (Мне не приходилось видеть столько французских книг с той поры.) Как бы мне ни хотелось считать Литературу абстракцией, она имела материальное воплощение. У нее был запах, и я его ощущал.

Тот день был печальным еще и потому, что Мандельброт уезжал — как раз тогда, когда я удостоился права звонить ему в самое неурочное время только ради того, чтобы, например, спросить: почему до людей не доходит, что 80/20 можно запросто трансформировать в 50/1?

Мандельброт решил переехать в район Бостона — он не уходил на пенсию, а собирался работать в исследовательском центре, спонсируемом одной национальной лабораторией. Ему предстоял переезд в квартиру в Кембридже, и, покидая свой просторный дом под Нью-Йорком, он пригласил меня набрать у него книг.

Даже их названия звучали ностальгически. Я наполнил коробку французскими изданиями, такими как вышедшая в 1949 году "Материя и память" Анри Бергсона, — ее Мандельброт, похоже, купил, еще будучи студентом (ах, этот запах!).

После того как я множество раз упоминал Мандельброта, я наконец-то представлю его.

Прежде всего — как первого человека с ученой степенью, с которым я когда-либо говорил о случайности, не чувствуя, что меня обманывают. Другие математики, специализирующиеся на вероятностях, швыряли в меня "винеровской мерой" и какими-то теоремами с русскими названиями типа теоремы Соболева или теоремы Колмогорова, без которых они как без рук. Им никак не удавалось ухватить суть предмета или хотя бы высунуться из своей маленькой скорлупки, чтобы увидеть со стороны ее эмпирические изъяны. С Мандельбротом все было не так: казалось, что мы были рождены в одной стране, встретились после многих горьких лет изгнания и наконец-то можем свободно поговорить на родном языке. Он — единственный учитель из плоти и крови, который у меня был;

главные мои учителя — это книги в моей библиотеке. Я слишком мало уважал математиков, занимающихся неопределенностью и статистикой, чтобы считать кого-то из них своим учителем. По моим представлениям, математики, натасканные на определенность, не должны совать нос в случайность.

Мандельброт показал, что я не прав.

У него необычайно чистый и правильный французский язык, совсем как у поколения моих родителей в Леванте или у аристократов Старого Света. Поэтому, когда мне случалось слышать его не лишенный акцента, но совершенно стандартный американский английский, я каждый раз удивлялся. Он высок, у него лишний вес, отчего его лицо кажется младенческим (хотя я никогда не видел, чтобы он много ел), и его присутствие физически ощутимо.

Может показаться, что объединяющие нас с Мандельбротом предметы — это из ряда вон выходящая неопределенность, Черные лебеди и скучные (иногда не слишком скучные) статистические понятия. Но, хотя мы и сотрудничаем в этих сферах, это не то, вокруг чего обычно крутятся наши разговоры: в основном мы обсуждаем литературные и эстетические материи или вспоминаем исторические байки о людях блестящего ума. Я имею в виду именно блестящий ум, а не ученость. Мандельброт может много чего порассказать о феноменальной когорте деятелей науки, с которыми ему доводилось работать на протяжении прошлого века, но так уж я устроен, что мне гораздо менее любопытны личности ученых, чем колоритных эрудитов. Подобно мне, Мандельброт интересуется просвещенными индивидуумами, в которых сочетается то, что считается несочетаемым. Среди его любимых персонажей — барон Пьер Жан де Менаш, с которым он познакомился в Принстоне в 1950-е годы, где тот делил комнату с физиком Оппенгеймером. Де Менаш был в точности тем, что меня особенно занимает, — воплощением Черного лебедя. Он происходил из состоятельной купеческой семьи александрийских евреев, говорившей по-французски и по-итальянски, как все культурные левантинцы. Его предки переделали свою арабскую фамилию на венецианский манер (Menasce), добавили к ней походя венгерский аристократический титул и вращались среди особ королевской крови. Де Менаш не только обратился в христианство, но стал священником доминиканцем и крупным исследователем семитских и персидского языков. Мандельброт все время расспрашивал меня об Александрии, поскольку неустанно искал таких уникумов.

Да и я, честно сказать, искал в жизни именно их — обладателей незаурядного интеллекта.

Мой эрудированный и разносторонний отец (который, оставайся он в живых, был бы всего на две недели старше Бенуа М.) любил общество чрезвычайно культурных монахов-иезуитов. Я помню, как они, приходя, занимали мое место за обеденным столом. Один из них был "остепененным" медиком и физиком, но при этом преподавал арамейский язык местным студентам в Бейрутском институте восточных языков. Его прежним послушанием вполне могло быть преподавание физики в высшей школе, а еще раньше — чтение лекций на медицинском факультете. Эрудиция такого рода производила на моего отца куда большее впечатление, чем конвейерная научная работа. Может, у меня врожденная неприязнь к bildung-sphilisters.

Хотя Мандельброт часто восхищался темпераментом эрудитов высокого полета и замечательных, но не очень известных ученых, вроде его старого друга Карлтона Гайдузека, человека, сумевшего докопаться до причин некоторых тропических болезней, о своих связях с теми, кого принято считать великими, он не склонен был распространяться. Я далеко не сразу узнал, что он сотрудничал с огромным количеством ученых чуть ли не всех специальностей — о чем любой другой твердил бы с утра и до ночи. Хотя я уже несколько лет тесно знаком с ним, только на днях, беседуя с его женой, я выяснил, что он два года ассистировал как математик психологу Жану Пиаже. Еще одно потрясение я испытал, когда узнал, что он работал и с великим историком Фернаном Броделем. Но Мандельброт, казалось, был безразличен к Броделю. Его не тянуло поболтать о Джоне фон Неймане, под чьим началом он проходил стажировку. Его иерархия была перевернутой. Однажды я спросил Мандельброта о встреченном мною на вечеринке Чарльзе Трессере, безвестном физике, писавшем статьи по теории хаоса и пополнявшем свой заработок исследователя выручкой от продажи пирожных собственного изготовления. "Un homme extraordinaire!"[76] — вскричал Мандельброт и рассыпался в похвалах Трессеру. Но когда я спросил его об одном научном корифее, он ответил: "Типичный bon eleve, прилежный студент без глубины и без полета". Корифей был нобелевским лауреатом.

ПЛАТОНИЗМ ТРЕУГОЛЬНИКОВ Теперь о том, почему я называю это дело мандельбротовской, или фрактальной, случайностью. Каждый отдельный кусочек и деталь головоломки уже упоминались кем-нибудь раньше, скажем, Парето, Юлом и Ципфом, но именно Мандельброт а) соединил точки, б) связал случайность с геометрией (причем с ее определенной областью) и в) придал предмету естественную завершенность. По правде говоря, многие математики знамениты сегодня отчасти потому, что он использовал их работы, чтобы подвести фундамент под собственные построения, — как делаю и я в этой книге. "Мне пришлось придумать себе предшественников, чтобы люди относились ко мне серьезно", — сказал он мне однажды, так что его ссылки на мнение авторитетов — всего лишь риторический прием. Почти всегда можно раскопать тех, кто уже высказывал данную мысль, и опереться на их вклад. Олицетворением большой идеи, носителем "брэндового имени" становится в науке тот, кто соединяет точки, а не тот, кто случайно сделал наблюдение. Даже Чарльз Дарвин, который, как утверждают невежды от науки, "придумал" выживание наиболее приспособленных, заговорил об этом не первым. Он написал во введении к "Происхождению видов", что излагаемые им факты не всегда новы;

но его выводы, как ему кажется, "представляют интерес" (такова его по-викториански скромная формулировка). В конечном счете известность приобретают те, кто делает выводы и улавливает важность идей, видя их реальную ценность. Именно они способны развить тему.

Итак, вот что представляет собой мандельбротова геометрия.

Геометрия природы Треугольники, квадраты, круги и другие геометрические фигуры, которые заставляли многих из нас зевать в классе, — сами по себе прекрасные и чистые понятия, но, похоже, в сознании школьных учителей, а также современных архитекторов и дизайнеров, они встречаются чаще, чем в природе. Пусть бы так, да вот только большинство из нас об этом не подозревает. Горы — не треугольники и не пирамиды;

деревья — не окружности;

прямых линий почти нигде не увидишь. Мать-природа не посещала уроков геометрии и не читала книг Евклида Александрийского. Ее геометрия полна зазубрин, но с собственной логикой, причем такой, которую легко понять.

Я уже говорил, что мы, похоже, от рождения склонны платонизировать и мыслить исключительно в рамках пройденного материала: любому, будь то хоть каменщик, хоть натурфилософ, не так легко вырваться из рабства рефлексов. Подумайте, что великий Галилей, разоблачитель лжи в других вопросах, написал следующее:

Великая книга Природы всегда лежит раскрытая перед нашими глазами, и истинная философия записана в ней... Но мы не можем прочитать ее, если не выучим сперва языка и символов, с помощью которых она написана... Она написана на языке математики, а буквы ее—треугольники, круги и другие геометрические фигуры.

Галилей что, был незрячим? Даже великий Галилей, со всей своей знаменитой независимостью ума, не сумел ясным взором взглянуть на мать-природу. Я уверен, что у него в доме были окна и что он иногда выходил на свет божий: ему следовало бы знать, что треугольники в природе найти нелегко. Гораздо легче промыть себе мозги.

Мы либо слепы, либо невежественны, либо и то и другое вместе. Ведь совершенно же очевидно, что геометрия природы — не евклидова, однако никто, почти никто, этого не видит.

Подобная (физическая) слепота равносильна игровой ошибке, заставляющей нас думать, что казино — это олицетворение случайности.

фрактальность Но сначала о том, что такое фракталы. Потом мы покажем, как они связаны с так называемыми степенными, или масштабируемыми, законами.

Слово фрактал введено Мандельбротом для описания геометрии неровного, ломаного (оно образовано от латинского fractus — дробный, фрагментарный). Фракталъностъ — это повторение в разном масштабе геометрических узоров, плодящих все более и более мелкие версии самих себя. Каждая часть в некоторой степени напоминает целое. Я постараюсь показать в этой главе, как фракталы соотносятся с тем типом неопределенности, который должен носить имя Мандельброта: мандельбротовская случайность.

Прожилки в листьях выглядят как ветви;

ветви выглядят как деревья;

камни выглядят как маленькие горы. Когда предмет меняет размер, не происходит качественных изменений. Если взглянуть на побережье Британии с самолета, оно напоминает то, что ты видишь, глядя на его крохотный кусочек в увеличительное стекло. Такой род самоподобия подразумевает, что одно обманчиво короткое и простое правило повторения может использоваться либо компьютером, либо, более произвольно, матерью-природой, чтобы строить формы, кажущиеся очень сложными. Это правило может оказаться полезным для компьютерной графики, но, что важнее, именно так работает природа. Мандельброт выстроил математический объект, известный сейчас как множество Мандельброта, самый знаменитый объект в истории математики. Множество приобрело популярность у последователей теории хаоса, потому что оно плодит картины все возрастающей сложности, подчиняясь на вид пустяковому рекурсивному правилу (то есть такому, которое способно применять себя к себе же до бесконечности). Можно рассматривать этот объект во все более и более крупном масштабе, так и не достигая предела — формы будут по-прежнему узнаваемыми. Они никогда не повторяются, но обладают сходством друг с другом, общими семейными чертами.

Такие построения играют заметную роль в искусстве. Вот несколько примеров:

Визуальные искусства. Сейчас в основе большинства объектов компьютерной графики лежит та или иная разновидность мандельбротова фрактала. Фракталы также встречаются в архитектуре и живописи — разумеется, неосознанно включенные художниками в структуру произведения.

Музыка. Медленно напойте первые четыре ноты Пятой симфонии Бетховена: "Та-та-та-та!" Затем замените каждую отдельную ноту тем же самым началом из четырех нот, так что получится такт из шестнадцати нот. Вы увидите (вернее, услышите), что каждая маленькая волна напоминает исходную большую. У Баха и Малера, например, музыкальная тема часто состоит из нескольких подтем, похожих на нее.

Поэзия. Поэзия Эмили Дикинсон, к примеру, фрактальна: крупное напоминает мелкое.

Поэтесса, по мнению комментатора, "плетет продуманный узор из слов, размеров, рефренов, движений и звуков".

Сначала фракталы сделали Бенуа М. парией в математическом истеблишменте.

Французские математики были в ужасе. Что? Картинки? Mon dieu! Это все равно что показать порнофильм собранию набожных православных бабушек в моем родном Амиуне. Поэтому Мандельброт некоторое время оставался интеллектуальным изгоем, работая в исследовательском центре "Ай-би-эм" на севере штата Нью-Йорк. Это было типичное "в ж...

деньги!", так как айбиэмовское жалованье позволяло ему заниматься чем хочется.


Но масса людей (прежде всего компьютерщиков) сразу схватила суть. Книга Мандельброта "Фрактальная геометрия природы", вышедшая в свет четверть века назад, произвела настоящий фурор. Ею зачитывались в художественных кругах, она дала толчок новым идеям в искусстве, в архитектурном дизайне, даже крупным индустриальным проектам. Мандельброту предложили место профессора медицины! Может статься, легкие самоподобны? На лекции Бенуа М. ломом ломились художники и артисты, за что его прозвали "рок-звездой математики". Компьютерный век помог ему стать одним из самых востребованных математиков в истории, причем гораздо раньше, чем он был признан обитателями башни из слоновой кости. Мы вскоре увидим, что его теория, вдобавок к универсальности, обладает одним необычным свойством: она на редкость проста для понимания.

Несколько слов о его биографии. Мандельброт приехал во Францию из Варшавы в году, в двенадцать лет. Из-за тягот нелегальной жизни в оккупированной нацистами Франции он, учась в основном самостоятельно, отчасти избежал традиционного галльского образования с его отупляющей зубрежкой алгебры. Позже на него сильно повлиял его дядя Шолем, видный представитель французского математического истеблишмента, возглавлявший кафедру в Коллеж де Франс. Поселившись в Соединенных Штатах, Бенуа М. работал в основном как ученый прикладник, лишь спорадически занимая академические должности.

Компьютер играл две роли в новой науке, становлению которой помог Мандельброт. Во первых, фрактальные объекты, как мы видели, могут генерироваться путем применения простого правила к самому себе, что идеально подходит для автоматической деятельности компьютера (или матери-природы). Во-вторых, в процессе генерирования интуитивных образов происходит постоянная притирка между математиком и создаваемыми объектами.

Посмотрим теперь, какое отношение все это имеет к случайности. Если быть точным, карьера Мандельброта началась именно с вероятности.

Визуальный подход к Крайнестану / Среднестану Я смотрю на ковер в своем кабинете. Если я буду изучать его через микроскоп, то увижу пересеченную местность. Если я стану разглядывать его через увеличительное стекло, то местность покажется мне более ровной, но все же весьма ухабистой. Но когда я смотрю на него с высоты своего роста, он выглядит почти таким же гладким, как лист бумаги. Ковер, обозреваемый невооруженным глазом, соответствует Среднестану и закону больших чисел: я вижу сумму волнистостей, которые сглаживаются. Это как гауссова случайность: моя чашка с кофе не подпрыгивает на столе, потому что суммарное движение всех ее частиц оборачивается стабильностью. Таким же образом, суммируя маленькие гауссовы неопределенности, получаешь определенность: это закон больших чисел.

Гауссиана не самоподобна, и поэтому моя кофейная чашка не прыгает.

Рассмотрим теперь прогулку в горы. Как высоко ни поднимешься над поверхностью земли, она будет оставаться неровной. Даже при взгляде с высоты 30 ооо футов. Когда летишь над Альпами, вместо маленьких камешков видишь зазубренные вершины. Значит, некоторые поверхности — не из области Среднестана и изменение масштаба не приводит к их сглаживанию. (Заметим, что эффект выравнивания достигается, только если подняться на еще большую высоту. Наша планета представляется гладким шаром тем, кто наблюдает за ней из космоса, но это потому, что она слишком маленькая. Будь Земля крупнее, на ней нашлись бы горы, превосходящие по высоте Гималаи, и потребовалась бы еще большая удаленность от нее, чтобы их очертания стерлись. Точно так же, живи на Земле больше людей, пусть даже с тем же средним достатком, наверняка нашелся бы кто-то, чей капитал перекрыл бы состояние Билла Гейтса.) Рисунки и и 12 иллюстрируют эту идею: глядя на первый рисунок, можно подумать, что на землю упала крышка от объектива.

Вернемся к нашему краткому упоминанию побережья Британии. Если взглянуть на него с самолета, контуры не будут так уж отличаться от контуров, видимых с ближайшего обрыва.

Изменение масштаба не меняет формы или степени гладкости.

Бисер перед свиньями Но какое отношение фрактальная геометрия имеет к распределению капитала, величине городов, обороту финансовых рынков, потерям на войне или размеру планет? Давайте соединим точки.

Ключ здесь в том, что у фрактала есть числовая, или статистическая, размерность, которая (более или менее) сохраняется при изменении масштаба, — пропорции (в отличие от гауссианы) постоянны. Другой пример такого самоподобия представлен на рисунке 13. Как мы знаем из главы 15, сверхбогатые сходны с богатыми, только богаче, — богатство масштабно-независимо, или, вернее, о его зависимости ничего не известно.

В 1960-е годы Мандельброт изложил свои идеи о ценах на предметы потребления и акции экономической элите, и экономисты-финансисты пришли в восторг. В 1963 году тогдашний декан бизнес-магистратуры университета Чикаго Джордж Шульц предложил ему место профессора. Это тот самый Джордж Шульц, который позже стал госсекретарем Рональда Рейгана.

Через некоторое время Шульц позвонил ему, чтобы отказаться от своего предложения.

Сейчас, через сорок четыре года, в экономике и социальной статистике ничего не изменилось, если не считать некоторых косметических поправок, учитывающих присутствие в мире лишь рядовой случайности, — и при этом нобелевские медали раздаются направо-налево.

Появилось несколько статей с "доказательствами" неправоты Мандельброта, авторы которых не понимают того, о чем постоянно твержу я: выискивая периоды, лишенные редких событий, всегда можно получить данные, "подтверждающие", что стоящий за ними процесс — из разряда гауссовых. Точно так же можно выбрать день, в который не произошло убийств, и использовать его как "свидетельство" нашей безгрешности. Я повторю, что из-за асимметрии, свойственной индукции, проще оспорить невиновность, чем признать ее, и по той же причине проще оспорить гауссиану, чем принять. Фрактал же, напротив,труднее оспорить, чем принять. Почему? Потому что одно-единственное событие может опровергнуть утверждение, что перед нами — гауссиана.

В итоге четыре десятилетия тому назад Мандельброт вручил экономистам и пекущимся о своем резюме филистерам жемчуг, который они отвергли, потому что его идеи были для них слишком хороши. Именно это самое и называют margaritas ante porcos — бисер перед свиньями.

В оставшейся части главы я расскажу, почему для объяснения большой доли случайностей мною предлагаются именно мандельбротовы фракталы, не обязательно в их точном употреблении. Фракталы — это вариант по умолчанию, приближение, основа. Они не решают проблему Черного лебедя и не превращают всех Черных лебедей в явления предсказуемые, но они значительно смягчают проблему Черного лебедя, делая эпохальные события постижимыми.

(Черные лебеди становятся Серыми. Почему Серыми? Потому что чистая белизна есть только в гауссиане. Подробности позже.) ЛОГИКА ФРАКТАЛЬНОЙ СЛУЧАЙНОСТИ (С ПРЕДУПРЕЖДЕНИЕМ)[77] Я показал в таблицах возрастания богатства в главе 15 логику фрактального распределения:

если богатство удваивается с 1 (минимум) до 2 (минимум) миллионов, доля людей с таким капиталом урезается вчетверо, то есть налицо экспонента 2. При экспоненте 1 доля такого же богатства уменьшилась бы вдвое. Экспонента — это показатель степени, поэтому широко распространен термин степенной закон. Будем называть количество случаев, перекрывающих некий уровень, превышением: превышение 2 миллионов — это количество людей с состоянием больше 2 миллионов. Одно из основных свойств этих фракталов (или еще один способ выразить их основное свойство — масштабируемость) заключается в том, что отношение двух превышений будет отношением их нижних порогов [78], возведенным в степень, равную минус экспоненте.

Проиллюстрируем это. Положим, вы "думаете", что только 96 названий книг в год разойдутся тиражом более 250 000 экземпляров (как это было в прошлом году), и, "по-вашему", экспонента должна быть примерно 1,5. Простым умножением 96 на (500 000 / 250 000)-1,5 вы можете определить, что примерно 34 названия разойдутся тиражом более 500 000 экземпляров.

Пойдя далее, мы установим, что около 8 книг будут проданы в количестве более миллиона экземпляров: 96 х (1 000 000 / 250 000)-1,5.

Давайте рассмотрим разные выверенные экспоненты для всевозможных явлений.

Но прежде всего следует предупредить, что эти экспоненты ни в коем случае не точные показатели. Почему, мы увидим через минуту, но пока отметим, что этих параметров мы не наблюдаем;

мы их просто угадываем или вводим для статистики, и поэтому временами бывает трудно узнать истинные параметры — если они вообще существуют. Сначала поговорим о практической роли экспоненты.

Таблица 3 иллюстрирует влияние крайне невероятного. Она показывает долю верхнего процента и верхних 20 процентов в общей сумме. Чем меньше экспонента, тем выше эта доля.

Но посмотрите, сколь чувствителен процесс: переход от 1,1 к 1,3 разом уменьшает процент с до 34. Разница в экспоненте всего лишь в 0,2 резко меняет результат — и ведь такую разницу способна дать простая ошибка в расчетах. А разница-то принципиальная: только подумайте, что мы точно не знаем, чему равен показатель, потому что не можем измерить его непосредственно.


Единственное, что нам остается, — это делать прикидки, основываясь на прошлых данных, или полагаться на теории, которые позволяют построить некую модель, которая, в свою очередь, позволяет строить некие предположения. Но у таких моделей могут оказаться скрытые изъяны, из-за чего опасно безоговорочно применить их к реальности.

Итак, помните, что экспонента 1,5 — это приближение, что ее трудно вычислить, что она не свалится на вас с неба, по крайней мере на счет раз-два, и что вы столкнетесь с гигантской погрешностью. Вы обнаружите, что число книг, проданных в количестве более чем миллион экземпляров, не обязательно будет равно 8 — их может быть целых 20 или всего лишь 2.

Еще важнее то, что применение именно этой экспоненты допустимо начиная с некоторого числа, называемого "переходным". Это могут быть 200 000 книжных экземпляров, а то и 000. Точно так же у богатства, скажем, выше 600 миллионов долларов, когда неравенство растет, и ниже этой черты — свойства разные. Как узнать, где точка перехода? Это проблема. Мои коллеги и я обработали примерно 20 миллионов финансовых данных. Набор данных у нас у всех был один, но мы так и не пришли к согласию в том, какова должна быть экспонента. Мы понимали, что данные подчинены действию фрактального степенного закона, но, как оказалось, точное число высчитать невозможно. Однако знание того, что распределение масштабируемо и фрактально, давало нам право действовать и принимать решения.

Проблема верхней границы Некоторые аналитики исследовали и согласились принять фрактал — "до определенного предела". Они утверждают, что богатство, продаваемость книг и рыночные обороты на некотором уровне перестают быть фрактальными. Предлагаемый ими метод — "усечение"- Я согласен, что есть уровень, на котором фрактальность может сойти на нет, только вот где он?

Сказать: я не знаю, где находится верхний предел, и сказать: предела нет — на практике одно и то же. Устанавливать верхний предел крайне опасно. Кто-нибудь может предложить: ограничим наш анализ богатства потолком в 150 миллиардов долларов. Но кто-то другой имеет все основания возразить: а почему не 151 миллиард? Или не 152? С таким же успехом можно считать, что эта переменная стремится к бесконечности.

Не верьте в точность Я научился на опыте нескольким трюкам: какую бы экспоненту я ни пытался высчитать, она, скорее всего, будет преувеличена (напомню, что чем больше экспонента, тем скромнее роль значительных отклонений) — то, что у вас перед глазами, оказывается менее "чернолебяжьим", чем то, что от вас скрыто. Я называю это проблемой маскарада.

Скажем, я генерирую процесс с экспонентой 1,7. Вы не видите работы генерирующего устройства, а только ряд полученных данных. Если я спрошу, какова экспонента, вы с большой долей вероятности остановитесь на чем-то вроде 2,4. Итог будет таким даже при миллионе показателей. Причина в том, что некоторым фрактальным процессам нужно очень много времени, чтобы раскрыть свои свойства, и вы недооцениваете силу вероятного всплеска.

Иногда фрактал может умело замаскироваться под гауссиану, особенно когда "разветвление" начинается с большого числа. У фрактальных распределений всплески такого рода настолько редки, что мы теряем бдительность: мы не распознаем их фрактальную структуру.

Снова о лужице Из всего вышесказанного вы уже наверняка поняли, что, какую бы модель мы ни признавали властительницей мира, узнать ее параметры непросто. Так что в связи с Крайнестаном вновь встает проблема индукции, на сей раз еще более остро, чем в любой из предыдущих глав. Говоря по-простому, если процесс имеет фрактальный характер, он оперирует громадными величинами, а значит, есть вероятность громадных отклонений, но насколько часто эти отклонения будут возникать, трудно сказать мало-мальски уверенно. Это напоминает проблему лужицы: она могла образоваться из самых разных кубиков льда. Как человек, который идет от реальности к возможным объясняющим моделям, я встречаюсь с массой проблем совершенно иного свойства, чем проблемы тех, кто поступает наоборот.

Я только что прочел три "научно-популярные" книги, посвященные исследованиям сложных систем: "Вездесущесть" Марка Бьюкенена, "Критическую массу" Филипа Болла[79] и "Почему мало что удается" Пола Ормерода. По мнению этих трех авторов, мир социальных наук полон степенных законов, и с таким взглядом я конечно же согласен. Они также заявляют, что многие из явлений такого порядка на самом деле универсальны, что есть удивительное сходство между разными процессами в природе и поведением социальных групп, с чем я тоже согласен.

Подкрепляя свои исследования теориями различных сетей, они указывают на поразительное соответствие между так называемыми критическими явлениями в естественных науках и самоорганизацией социальных групп. Они объединяют процессы, порождающие лавины, социальные поветрия и "информационные каскады", с чем я опять же согласен.

Универсальность — одна из причин, по которым степенные законы, связанные с критическими точками, особенно интересуют физиков. Есть много ситуаций как в теории динамических систем, так и в статистической механике, когда многие свойства динамики возле критической точки не зависят от особенностей действующей динамической системы.

Экспонента в критической точке может быть одинаковой для многих систем одной группы, даже если во многом другом системы различны. Я почти согласен с такой трактовкой универсальности. Наконец, все три автора призывают нас применять методы статистической физики, сторонясь эконометрики и гауссоподобных немасштабируемых распределений, как разносчиков чумы, в чем я с ними полностью солидарен.

Но все три автора, добиваясь точности или призывая к ней, допускают просчет, смешивая прямые и обратные процессы (задачу и обратную задачу),—что для меня есть величайший научный и эпистемологический грех. Они неодиноки в этом;

почти каждый, кто работает с данными, но не принимает решений на основе этих данных, подвержен тому же греху, разновидности искажения нарратива. В отсутствие обратной связи ты смотришь на модели и думаешь, что они подтверждают реальность. Я верю в идеи этих трех книг, но не в способ их применения — и уж конечно не в точность, которую авторы им приписывают. На самом деле теория сложности должна учить нас подозрительнее относиться к научным разработкам "точных" моделей реальности. Она не делает всех лебедей белыми, это ясно;

она делает их Серыми, и только.

Как я сказал раньше, мир для глядящего "снизу вверх" эмпирика с эпистемологической точки зрения — буквально мир иной. Мы лишены роскоши сидеть и медитировать над уравнением, правящим Вселенной;

мы только наблюдаем данные, выдвигаем предположения о том, каким может быть процесс в действительности, и "калибруем" их, подправляя наше уравнение в соответствии с дополнительной информацией. По мере того как события разворачиваются перед нами, мы сравниваем то, что видим, с тем, что ожидали увидеть. Обычно открытие того факта, что история движется вперед, а не назад, сбивает с людей спесь, особенно с тех, кто знаком с искажением нарратива. Какими бы самонадеянными ни были бизнесмены, их часто приводят в чувство напоминания о разрыве между задумкой и результатом, между точными моделями и реальностью.

То, о чем я говорю, — это непроницаемость, неполнота информации, невозможность увидеть "генератор мира". История не открывает нам своих мыслей — мы должны их угадывать.

от представления к реальности Вышеизложенная идея связывает все части книги. Многие изучают психологию, математику или теорию эволюции и потом пытаются выжать из них капитал, применяя свои знания в бизнесе. Я же предлагаю как раз противоположное: изучайте неистовую, незапротоколированную, отрезвляющую неопределенность рынка, чтобы вам приоткрылась природа случайности, которая дает ключ к психологии, теории вероятности, математике, теории решений и даже статистической физике. Вы увидите коварные проявления игровой ошибки, искажения нарратива, великого заблуждения платонизма, идущего от представления к реальности.

Впервые встретив Мандельброта, я полюбопытствовал, почему он, признанный ученый, которому уж наверно есть чем заняться в жизни, заинтересовался таким низменным предметом, как финансы. Ведь финансы, экономика, по моим представлениям, — это такая сфера, где набираются опыта, наблюдая разные эмпирические явления, и пополняют свой банковский счет деньгами, прежде чем заняться чем-то большим и лучшим, послав "в ж... деньги". Ответ Мандельброта гласил: "Данные, золотая жила данных!" В самом деле, все забывают, что, прежде чем перейти к физике и геометрии природы, он начинал в экономике. Работа с таким изобилием данных сбивает с нас спесь;

она вооружает нас интуитивным пониманием того, в каком направлении нужно совершать путь между представлением и реальностью.

Проблема зацикленности статистики (которую также можно назвать статистическим порочным кругом) состоит в следующем. Скажем, вам нужны прошлые данные, чтобы определить, является ли распределение вероятности нормальным, фрактальным или каким-то еще. Нужно установить, достаточно ли у вас данных, чтобы ваше утверждение было обоснованным. Как узнать, достаточно ли у нас данных? Из распределении вероятности. Оно покажет, хватает ли у тебя данных, чтобы то, что ты предполагаешь, "заслуживало доверия". Для кривой нормального распределения достаточно малого количества точек (опять закон больших чисел). А как узнать, что распределение нормальное? Вообще-то на основании данных. Итак, нам нужны данные, чтобы узнать, каково распределение вероятности, и распределение вероятности, чтобы узнать, сколько данных нам нужно. Это порочный крут.

Такого круга не возникает, если предположить заранее, что распределение нормальное. По определенной причине свойства нормального распределения довольно легко выявляются. В отличие от тех, что присущи распределению в Крайнестане. Поэтому выбор гауссианы для выведения некоего общего закона очень удобен мы используем его по умолчанию именно по этой причине. Я не устаю повторять, что априорная ставка на гауссиану допустима лишь в небольшом числе областей, таких как статистика преступности, уровни смертности, вопросы из Среднестана. Но только не там, где дело касается исторических данных с неизвестными свойствами и крайнестанских вопросов.

Но почему статистики, работающие с историческими данными, закрывают на это глаза?

Во-первых, им не хочется признавать, что вся их деятельность перечеркивается проблемой индукции. Во-вторых, они не несут никакой ответственности за результаты своих предсказаний.

Соревнование, устроенное Макридакисом, показало нам, что они во власти искажения нарратива и не хотят этого знать.

ЕЩЕ РАЗ: ОПАСАЙТЕСЬ ПРЕДСКАЗАТЕЛЕЙ Поднимем проблему на уровень выше. Как я заметил ранее, существует много модных моделей, пытающихся объяснить происхождение Крайнестана. Вообще-то они группируются в два широких класса, но встречаются и другие подходы. Первый класс—это простые модели типа "деньги идут к деньгам" (или "успех тянет за собой успех"), объясняющие скопление людей в городах, доминирование на рынке компании "Майкрософт" (а не "Эппл") и формата VHS (а не Betamax), создание академических репутаций и т. д. Второй класс включает в себя так называемые "модели просачивания", в центре внимания которых — не поведение индивида, а среда его обитания. Когда льешь воду на пористую поверхность, структура поверхности оказывается важнее, чем свойства жидкости. Когда песчинка ударяется о кучу других песчинок, именно характер местности определяет, сойдет ли лавина.

Почти все модели, разумеется, претендуют на прогностическую точность, и это меня бесит.

Они — хорошие инструменты для иллюстрации происхождения Крайнестана, но я настаиваю на том, что "генератор реальности" не подчинен им настолько, чтобы с их помощью можно было делать точные прогнозы. Все, что я нахожу в современной литературе на тему Крайнестана, свидетельствует именно об этом. Перед нами здесь снова встает серьезнейшая проблема калибровки, так что лучше бы нам избежать обычных ошибок, совершаемых при калибровке нелинейного процесса. Напомним, что у таких процессов больше степеней свободы, чем у линейных (как мы показали в главе и), а следовательно, чрезвычайно велик риск того, что модель окажется неправильной. Мне то и дело попадают в руки книги или статьи, которые ратуют за применение моделей статистической физики к реальности. Например, восхитительные книги Филипа Болла насыщены информацией и иллюстративным материалом, но это не основа для точных количественных моделей. Не встречайте их по одежке.

Однако посмотрим, что мы можем позаимствовать у этих моделей.

Снова счастливое решение Во-первых, признавая масштабируемость, я соглашаюсь с тем, что любое самое большое число возможно. Другими словами, неравенство не должно прекращаться после достижения некоторой известной верхней границы.

Скажем, продано около 60 миллионов экземпляров книги "Код да Винчи". (Библии продано около миллиарда экземпляров, но вынесем ее за скобки, ограничившись светскими книгами, написанными отдельными авторами.) Хотя мы и не встречали светских книг, разошедшихся тиражом 200 миллионов экземпляров, можно считать, что вероятность этого не нулевая. Да, она мала, но не нулевая. На каждые три бестселлера в духе "Кода да Винчи" может найтись один супербестселлер, и, хотя до сих пор таких не появилось, исключить этого нельзя. А на каждые пятнадцать "Кодов да Винчи" — супербестселлер, который разойдется, например, тиражом миллионов экземпляров.

Применим ту же логику к богатству. Допустим, самый богатый человек на Земле имеет капитал размером 50 миллиардов долларов. Есть вероятность, которой нельзя пренебречь, что в следующем году из ниоткуда выскочит кто-то, кто имеет 100 или более миллиардов. На каждых трех людей, имеющих более чем 50 миллиардов долларов, может найтись один со миллиардами. Есть вероятность, хоть и гораздо меньшая, что найдется кто-то, владеющий более чем 200 миллиардов долларов — одна треть предыдущей вероятности, но все равно не нуль. Есть даже крошечная, но не нулевая вероятность того, что обнаружится кто-то, чье состояние превышает 500 миллиардов долларов.

Это подсказывает мне следующее: я могу строить предположения о вещах, существование которых свидетельствами не подтверждается, но они должны принадлежать царству возможного. Где-то там есть бестселлер, о каких прежде не слыхивали, но его следует принимать во внимание. Напомню основную мысль главы 13: благодаря этому отсутствию предела вложение денег в книгу или лекарство порой оказывается более выгодным, чем подсказывают статистика или прежние наблюдения. Но из-за него же потери на фондовом рынке часто превосходят те, что когда-либо имели место.

Войны фрактальны по своей природе. Война, которая убьет больше людей, чем опустошительная Вторая мировая, возможна. Она маловероятна, но не исключена, хотя такой войны никогда не случалось в прошлом.

Во-вторых, чтобы прояснить вопрос о точности, я приведу пример из природы. Гора чем-то похожа на камень, она сродни камню, у нее есть семейное сходство с камнем, но это не одно и то же. Для описания такого сходства есть замечательное слово — самоподобный, а уж никак не самоповторяющийся, но Мандельброт не потрудился тщательно разжевать то, что вкладывается им в понятие "подобие", и в обиход вошел термин "самоповторение", подразумевающий точное, а не семейное сходство. Как в случае с горой и камнем, распределение состояния выше миллиарда долларов не совсем таково, как распределение состояния менее миллиарда долларов, но эти распределения "подобны".

В-третьих, как я сказал раньше, в области эконофизики (являющейся приложением статистической физики к социальным и экономическим явлениям) было много статей, в которых предпринималась попытка такой "градуировки", то есть извлечения чисел из мира явлений. Многие порываются предсказывать. Увы, мы не способны предсказать "марш-бросок" к кризису или поветрию. Мой друг Дидье Сорнетт пробует строить прогностические модели, которые я обожаю, хотя и не могу использовать для прогнозирования, — только, пожалуйста, не говорите ему об этом: вдруг он перестанет их строить. То, что я не могу использовать их так, как предполагает он, не лишает смысла его работу (не имеющую ничего общего с традиционной экономикой, чьи модели ошибочны в корне), а просто требует незашоренного мышления для ее интерпретации. С некоторыми из сорнеттовских феноменов мы, может, еще сумеем поладить — но не со всеми.

Вся эта книга посвящена Черному лебедю. Это не потому, что я влюблен в него;

как гуманист, я его ненавижу. Я виню его во многих несправедливостях и бедах. Поэтому я хотел бы устранить многих Черных лебедей или хотя бы смягчить последствия их воздействия и защититься от них. Познание фрактальной случайности — это способ приготовиться к сюрпризу, превратить некоторых лебедей в ожидаемых, осознать, чем они чреваты, малость их, так сказать, "осветлить". Но фрактальная случайность не дает точных ответов. Преимущества здесь следующие. Если ты знаешь, что фондовый рынок может обвалиться, как и было в году, то это событие не Черный лебедь. Обвал 1987 года — не есть нечто, выходящее из ряда вон, если пользоваться фракталом с экспонентой 3. Если знать, что биотехнологические компании могут создать для нас супермегалекарство, которое окажется популярнее, чем все, какие у нас были прежде, то оно не будет Черным лебедем и вы не удивитесь, если оно появится.

Итак, фракталы Мандельброта позволяют нам держать под контролем Черных лебедей, но не всех. Я сказал выше, что некоторые Черные лебеди появляются потому, что мы пренебрегаем источниками случайности. Другие возникают, когда мы преувеличиваем экспоненту фрактала.

Серый лебедь принадлежит к разряду моделируемых экстремальных ситуаций, Черный лебедь — это нечто из области "неизвестного неизвестного".

Я сел и обсудил вышеизложенное с великим человеком, и это обсуждение превратилось, как обычно, в языковую игру. В главе 9 я объяснил различие, которое экономисты делают между "неопределенностью по Найту" (которую просчитать нельзя) и "риском по Найту" (который просчитать можно). Это различие не настолько оригинальная идея, чтобы не было слова для ее выражения, так что мы поискали его во французском языке. Мандельброт упомянул одного из своих друзей — аристократа-математика Марселя-Поля Шютценберже, утонченного эрудита, которому (как и автору этой книги) все быстро приедалось: дальше точки "убывающей отдачи" он никогда в своих работах не шел. Шютценберже настаивал на отчетливом различии во французском языке между "hasard" и "fortuit". "Hasard", от арабского "az-zahr", означает (как и "alea", игральные кости) контролируемую случайность;

"fortuit" — это мой Черный лебедь, то, что абсолютно непредсказуемо. Мы обратились за помощью к словарю "Малый Робер" и убедились в правоте математика. "Fortuit", похоже, соответствует моей эпистемической непроницаемости, l'imprevu et поп quantifiable[80];

"hasard" — более игровому виду неопределенности, описанному шевалье де Мере[81], одним из ранних теоретиков азартных игр.

Стоит заметить, что те же арабы, возможно, ввели еще одно слово, имеющее отношение к неопределенности, — "rizk", что значит собственность.

Я повторю: Мандельброт занимается Серыми лебедями, я занимаюсь Черным лебедем.

Мандельброт одомашнил многих моих Черных лебедей, но не всех и не полностью. Однако с помощью своего метода он дает нам проблеск надежды, способ задуматься о проблемах неопределенности. Ведь гораздо безопаснее знать, где находятся дикие животные.



Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |   ...   | 11 |
 





 
© 2013 www.libed.ru - «Бесплатная библиотека научно-практических конференций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.