, , ,

<<


 >>  ()
Pages:     | 1 | 2 ||

...

-- [ 3 ] --

58. Popa N.C.. The (hkl) dependence of diffraction-line broadening caused by strain anf size for all Laue groups in Rietveld Refinement //J.Appl.Cryst. 31 (1998) 176-180.

59. Stephens P. Phenomenological model of anisotropic peak broadening in powder diffraction //J.Appl.Cryst.-1999.-V.32.-P.281-289.

60. .., .., .. //.-1974.-.19, .3.-.489-497.

61. Solovyov L.A. A correction for anisotropic line broadening due tu structural defects in powder diffraction structural analysis //J.Appl. Cryst. -2000.-V.33.-P.338-343.

62. Scardi P., Leoni M., Dong Y.H. Whole powder pattern modeling //Comission on powder diffraction. Newsletter. 2000.-V.24.-P.23-24.

63. .. .-.: , 1967.-336 .

64. .. . : . .

1984. 287 .

65. Berliner R., Gooding R. J. The Diffraction Patterns of Crystals with Layer Defects //Acta Cryst.-1994.-V.A50.-P.98106.

66. .., .., .. // , .-1983.-.1.-.69-73.

67. Babkevich A.Yu., Nikolin B.I. Application of the Monte-Carlo technique to the investigation of one-dimensionally disordered structures //Proceedings of the 3rd European Powder Diffraction Conference, Vienna, Austria.- 1993.-P.5762.

68. .., .. . .: ,1976.-252 .

69. Drits V.A., Tchoubar C. X-ray Diffraction by Disordered Lamellar Structures.-Berlin:

Springer Verlag,1990.-371 p 70. Kakinoki J., Komura Y. Intensity of X-ray Diffraction by One-Dimensionally Disordered Crystal (1) General derivation in ases of the Reichweite S=0 and 1 //J. Phys. Soc. Japan. 1952.-V.7.-P.3035.

71. Kakinoki J., Komura Y. Intensity of X-ray Diffraction by One-Dimensionally Disordered Crystal (2) General derivation in the case of the correlation range S2 //J. Phys. Soc. Japan. 1954.-V.9.-P.169-176.

72. . ., . ., . . //. .-1982.-.265,2.-.339343.

73. . ., . ., . . , S1 G1 //. .-1982.-.265,4.-.871874.

74. Brindley G. W., Mring J. Diffractions des Rayons X par les Structures en Couches Dsordonnes //Acta Crystallogr.-1951.-V.4.-P.441447.

75. Tsybulya S.V., Cherepanova S.V., Kryukova G.N. Full profile analysis of X-ray diffraction patterns for investigation of nanocrystalline systems /Diffraction analysis of the microstructure of materials (Mittemejer E.J., Scardi P. Eds.), Springer-Verlag, Berlin/Heidelberg. 2004.-P.93-123.

76. Jagodzinski H. Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf die Rntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Rntgenintensitten //Acta ryst.-1949.-V.2.-P.201207.

77. . ., . ., . . . // -1998. T.39,3.-.431441.

78. Hosemann R. Die paracristalline Feinstructur natrlicher und synthetischer Eiweisse. //Acta Crystallogr.-1951.-V.4.-P.520530.

79. Franklin R. E. The Structure of graphitic carbons //Acta Cryst.-1951.-V.4.-P.253261.

80. .-. . : . 1998. 334 c 81. .., .. . //. . . .-2002.-.66, 6.-.824-829.

82. .. . .1997. 102 .

83. Tsybulya S.V., Kryukova G.N., Goncharova S.N., Shmakov A.N., Balzinemaev B.S. Study of the real structure of silver supported catalysts of different dispersity //J.Catalysis.-1995. V.154.-P.194-200.

1. 1 1 | a |= ;

| b |= ;

| c |= (1) d100 d 010 d :

r r r r 1 1 r r a = N100 ;

b = N 010 ;

c = N 001 (2).

d100 d 010 d d100, d010, d001, :

V = S bc d100 ;

V = S ca d 010 ;

V = S ab d 001 (3) , , r rS rS rS r r a = N 100 bc ;

b = N 010 ac ;

c = N 001 ab ;

(4) V V V r , N 100 S bc , rr [b c ] .., ..

rr rr rr r [b c ] r [c a ] r [ab ] a= ;

b= ;

c= ;

(5) V V V r rr r rr r rr , , V = (a [b c ]) = (b [c a ]) = (c[ab ]) :

rr rr rr r [b c ] [c a ] [ab ] r r a = r rr ;

b = r rr ;

c = r r r ;

(6) (a[b c ]) (b[c a ]) (c [ab ]) (6) . , :

rr rr rr (a a ) = 1;

(b b ) = 1;

(c c ) = 1 ;

(7) r r r r r r r r r r (a b ) = (a c ) = (b a ) = (c a ) = (c b ) = 0.

:

rr rr rr (8) (a a ) = 2 ;

(b b ) = 2 ;

(c c ) = 2.

rrr , a, b, c, , , r r r r (9) H hkl = ha + kb + lc, h, k, l . (1, 2), h, k, l ( ).

( ) r H hkl , hkl, (dhkl).

(1,2);

(.., .., ... . .: . .-.

. 2000).

?

rr = ( H hkl H hkl ) d hkl (16):

= h 2 a 2 + k 2 b 2 + l 2 c 2 + 2hka b cos + 2lhc a cos + 2klb c cos (10) d hkl 2. .

, , .

:

min = wi ( y icalc y iteor ) 2. (1) i y calc pj, :

= 0. (2) p j , ( , ). ( ). y calc. , :

(3) ) + p calc ( y N p j.

y icalc = y icalc i j j = 0 p j .

, pj :

(4) p (jk +1) = p (jk ) + p (jk ), k .

. R-.



Pages:     | 1 | 2 ||
 
 >>  ()





 
<<     |    
2013 www.libed.ru - -

, .
, , , , 1-2 .